
A Query-Driven Approach for SHACL Type Inference
David Haller1

1Supervised by Richard Lenz, Friedrich-Alexander-Universität Erlangen-Nürnberg, Professorship for Evolutionary Data Management

Abstract
The Semantic Web enables everyone to share knowledge that can be reused in different applications. While the use of a
formal ontology describing the semantics of the shared data is encouraged, it cannot be enforced and is often done incorrectly,
incompletely, or not at all. However, the semantics are present in the minds of those working with the data, as manifested in
all the SPARQL queries they have written. Therefore, analyzing these query logs helps us to learn these semantics and allows
us to construct a graph of SHACL shapes describing the types and their constraints of a data source, which can serve as the
foundation for a human-in-the-loop approach to further extend and correct the generated schema.

Keywords
Semantic Web, Schema Inference, Query-Driven, Data Integration

1. Introduction
In a perfect world, data always represents information
with known semantics. This is easy to achieve when the
applications that produce and consume data are always
built by the same people, and the underlying schema is
rarely changed and well understood. In reality, data is
constantly being used in new contexts, shared with exter-
nal parties, and combined with other data from different
sources. As a result, the meaning of data is not always
clear, because everyone may have their own concept of
seeing the world, so data is not interpreted in the way
it was intended, which can lead to incorrect conclusions
and errors in applications.

The Semantic Web has introduced standards to make
it easier to share data across applications so that it can
be reused in a different context. In the past, knowl-
edge was only made available in human-readable form,
such as texts and images, or in proprietary formats that
could only be processed by special programs. In the
present, machines can also make use of the knowledge
available on the World Wide Web, similarly to humans.
This was done by establishing the Resource Description
Framework (RDF), a flexible data model based on directed
graphs, whose nodes are globally addressable with an
Internationalized Resource Identifier (IRI) [1]. The ad-
vantage of this model is that you can reference anything
in another dataset by simply inserting a new edge, the
same as you would use a hyperlink to point to a different
web page. The disadvantage is that nobody can prevent
multiple individuals talking about different things us-

VLDB 2023 PhD Workshop, co-located with the 49th International
Conference on Very Large Data Bases (VLDB 2023), August 28, 2023,
Vancouver, Canada
Envelope-Open david.haller@fau.de (D. Haller)
GLOBE https://cs6.tf.fau.eu/person/david-haller (D. Haller)
Orcid 0000-0001-5287-7187 (D. Haller)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

ing the same terms, meaning that there is no restriction
that only schema-compliant statements can be added. Of
course, the Semantic Web also introduced methods to
formally define an ontology as the foundation of a knowl-
edge graph, using schema languages such as RDF Schema
(RDFS), Web Ontology Language (OWL), or Shapes Con-
straint Language (SHACL), which even allow us to derive
new statements from existing statements by applying
logical conclusions. While traditional database systems
typically follow the closed-world assumption (a state-
ment is true if and only if it is explicitly stated), the
Semantic Web is based on the open-world assumption
(a statement can be true even if it is not present in the
graph, because it may be added later or stated elsewhere).

The problem is that humans make mistakes, either in
creating an ontology or in interpreting it, which can have
huge consequences. For example, it is shown in [2] that
even if 99.9% of a knowledge base is correct, a few wrong
statements can cause the reasoner to infer types that are
obviously nonsense. This issue is illustrated with a short
example in RDFS:

:Berlin :location :Germany
:location rdfs:domain :City
:location rdfs:range :Country

A reasoner that is applying the rules given by
rdfs:domain and rdfs:range, would infer that Berlin
must be a city, and Germany must be a country, which is
correct in the real world. Let’s add the following triple:

:Zugspitze :location :Germany

Now the reasoner would infer that the Zugspitze is also
a city, but in reality it is Germany’s highest mountain and
is located within Germany. The property :location was
used without considering its domain and scope. Knowl-
edge graphs often suffer from problems like this. There-
fore, it is necessary to develop a method to identify and
correct these problems.

mailto:david.haller@fau.de
https://cs6.tf.fau.eu/person/david-haller
https://orcid.org/0000-0001-5287-7187
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Approach
The semantics of the data stored in a knowledge graph
is determined by the people who created it in the first
place. They had a certain perception of reality in their
minds, which guided their choice of data types and prop-
erties. This can be called a mental model. As described
in [3], models used in databases or applications are not
created from objectively perceivable reality, but from the
individual perspectives of both their creators and their
users (which may not always coincide). In cases where
an ontology is not available, erroneous, or incomplete, it
is impossible to validate the data using a schema consis-
tency check. The mental model needs to be inferred from
other sources. Doing so manually is a tedious and error-
prone task, so it is desirable to automate the process as
far as possible.

When people write queries that access, transform, or
modify data, they do so based on their own mental model.
As a consequence, the approach presented in this paper
is based on analyzing SPARQL query logs and using the
extracted information to automatically infer type con-
straints that can be used to create SHACL shapes for each
referenced resource or property. A large set of queries
can thus be translated into a SHACL graph that serves as
a schema definition for the actual RDF graph containing
the data. Each SPARQL query using the verbs select,
ask, or construct contains information about the enti-
ties it is interested in. Their where clauses each contain
a basic graph pattern, which is a set of triple patterns hav-
ing the structure (𝑇 ∪ 𝑉) × (𝐼 ∪ 𝑉) × (𝑇 ∪ 𝑉), where 𝑉 is the
set of query variables, 𝐼 the set of all IRIs, and 𝑇 = 𝐼 ∪𝐿∪𝐵
with 𝐿 and 𝐵 being the set of literals and blank nodes. A
basic graph pattern restricts the possible structure of the
subgraph a query searches for, queries can thus be seen
as partial schema definitions. They reflect, at least in part,
how the author envisions their knowledge graph; this
applies also to the usage of filters (boolean expressions
over query variables) and solution modifiers (like order
by). For example, someone could write a query such as:

s e l e c t ?name ?web count (? c h i l d)
where
{

? person : name ?name .
? person : web ?web .
? person : c h i l d ? c h i l d .
? c h i l d : age ? age .
f i l t e r (? age < 18 && ?web == ” h t t p

: / / example . com”)
}
group by (? person)
order by (? name)

We learn from this query that its author expected the
knowledge graph to have entities of type Person. A Person

has a name attribute that is sortable, a web attribute that
can contain URLs, and a multi-valued child attribute
(because the edges are counted, which only makes sense
if you expect the result to be greater than 1 in some
occurrences). We also know that the ?person variable
must be an IRI, because only IRIs are allowed as subjects
in RDF and SPARQL, and the variable is also used for
grouping, so it must be some kind of candidate key for
a Person. The ?child variable must be an IRI because it
has a age attribute, which is numeric and has 18 as a
somewhat meaningful threshold.

This information extracted from a single SPARQL
query can be represented as a SHACL shape. As men-
tioned earlier, SHACL is a schema language that can be
used to describe the semantics of a knowledge graph and,
like OWL and RDFS, is a W3C recommendation. Un-
like OWL, SHACL focuses on restricting which triples
are allowed by defining a set of patterns, called shapes,
that a set of triples must match, which is similar to the
closed-world assumption, while OWL focuses on build-
ing complex ontologies, which is similar to the open-
world assumption. We infer the types present in the
mental model from queries and create SHACL shapes for
them, so that each entity in the knowledge graph can
be associated with a shape with some probability. Our
example query from earlier would result in the following
shape graph.

<PersonShape> a sh:NodeShape ;
sh:property [sh:path :name] ;
sh:property [sh:datatype xsd:string ;

sh:path :web] ;
sh:property [sh:nodeKind sh:IRI ;

rdfs:range <ChildShape> ;
sh:path :child] .

<ChildShape> a sh:NodeShape ;
sh:property [sh:datatype xsd:integer ;

sh:path :age] ; .

By analyzing further queries and checking with the
currently existing triples, we may find that persons and
children share almost the same attributes and are there-
fore related types, such as subclasses. The more queries
we have, the more detailed the results will be. From
this single query, we already know that being a child
has something to do with being associated with a person,
suggesting at least two entities involved in a relationship.

2.1. Related Work
This approach is called query-driven in contrast to com-
mon data-driven approaches where semantics are ex-
tracted from existing instance data using data profiling
methods [4]. The advantage of this approach is that the
mental model may not be fully present in the data, but is

present in the queries; for example, a query may refer to
unmet expectations that a user may have had. The two
approaches can complement each other to provide a more
complete view of the mental model. Other query-driven
approaches are scarce, in [5] they use queries to discover
data sources satisfying a given data need, while [6] uses
queries to explain unsatisfactory answers in knowledge
bases and suggest query modifications, but queries are
not yet used for schema inference.

3. Contribution
The previous prototype, Pharos [7], focused on query-
driven schema inference based on SQL query logs. We
moved away from SQL because there are few openly
available query logs that use many non-standard SQL
terms, making them difficult to analyze. Since the con-
cept itself is language agnostic, it could also be applied to
SPARQL query logs, where more query logs are available
and have already been extensively studied [8], perhaps
due to the popularity of RDF for publishing open data,
while RDBMS are used more for internal purposes.

In addition, there are standardized ways to transform
SPARQL queries from their textual form into an RDF
graph [9], which allows queries to be treated like graphs,
for example by applying graph distancemeasures to them.
Graph representations of queries also enable meta query-
ing: using SPARQL queries to search for SPARQL queries
within a query repository. Finally, SPARQL is better
suited for query-driven schema inference because the in-
formation needs in the query are quite explicit, as you are
required to list all the properties your desired resource
shall have, which basically means giving a (partial) type
definition.

We adapted our prototype to parse SPARQL query
logs and infer types from them. A type can be thought
of as a set of attributes. Subtypes are subsets of their
parent attribute sets, while the intersection of two at-
tribute sets could be called a category or type trait. Most
SPARQL queries consist of a conjunction of RDF graph
patterns that specify conditions that must all be satisfied,
effectively describing the subgraph relevant to the query.
Some queries also have filters that must be satisfied by the
attribute values. These two types of queries, conjunctive
patterns (CQs) and conjunctive patterns with filters (CQFs),
are the most common types of queries encountered [8],
which is why we focus on them.

Since we know that subject variables in RDF must
always be IRIs and thus describe resources, we can parti-
tion the attribute sets by subject, as we did in the SHACL
shape example in the last section. Each SPARQL subject
variable gets a SHACL node form, each property used
with that subject becomes a SHACL property. If literals
were used as objects, we assign their type as a SHACL

data type. If a subject variable is also used as an object
variable, we can infer that the query is looking for a rela-
tionship between two entities that is likely to be present
in the mental model. Therefore, we declare the property
in the predicate must point to an IRI, and the scope of
this property is the generated shape that was assigned
to the object variable.

Applying this procedure to a large set of queries gener-
ates a large set of partial types. A major challenge of our
approach is to merge all the partial type definitions de-
scribing the same type into a unified type definition. We
use a density-based clustering algorithm as in [10], but
instead of clustering triple instances of the dataset, we
apply this approach to the SHACL shapes harvested from
the query logs. Similar shapes are merged, which is sim-
ply the union of their triple sets. To speed up the process,
we use a preprocessing method according to [11]. SHACL
shapes generated from similar queries are grouped to-
gether because they are more likely to be merged by the
clustering algorithm.

The result will not always be complete and depend
on the queries being analyzed. If some properties or re-
sources are not used in queries, they will never be discov-
ered. This can be avoided by combining our query-driven
approach with the data-driven approaches found in the
literature. But even then there will be inconsistencies
in the resulting shape graph that need to be corrected
either manually, or by weighting conflicting statements
by frequency, which means assuming that the majority
of users most likely have the more correct concept about
some real-world entity. Either way, much more work
would be required if the shape graphs were created from
scratch, as it would require both domain knowledge and
the need to check for inconsistencies in the data itself.

4. Evaluation
The prototype was evaluated in a real-world scenario.
The grade management and analysis software The Grade
Explorer is a web application built on Semantic Web tech-
niques. All data about exams, students, and grades is
stored in an RDF knowledge graph managed by Apache
Jena, and all data reads and writes are performed using
SPARQL queries. The Grade Explorer was developed at
our chair over several semesters in the context of a prac-
tical software development course. The application has
had its stable release and is already used in production
for various exams.

The students were organized as a scrum team, while
chair members acted as product owners or scrummasters.
In scrum, developers implement feature requests, called
user stories, within an incremental process, delivering a
usable product after each iteration. As a side effect, the
underlying knowledge graph was being expanded on the

fly, with no semantic control. Over time, nobody had an
overview of the meaning of the stored data, and the chaos
was exacerbated by the fact that students changed every
semester. The mental model used for handling exams,
grades and students was never formalized, but hidden in
the used SPARQL queries.

It can be difficult to handle exams properly, as it is nec-
essary to carefully follow the official exam regulations
and deal with various special cases, like exmatriculated
students surprisingly showing up on exam day. The soft-
ware should take away that burden from the shoulders of
the examiners and should do that correctly, so we needed
to verify that all data was being stored and interpreted
as it should be. We had one student manually create a
SHACL shape graph that was manually validated by us,
to serve as our ground truth. Then, the modified Pharos
prototype analyzed a large query log generated by typical
use of The Grade Explorer and by running the normal test
cases. It created its own SHACL shape graph based on
what could be inferred from the queries alone. These two
SHACL shape graphs share a Jaccard similarity of 70 %.
The Jaccard similarity between two RDF graphs 𝐺1, 𝐺2
of type sh:NodeShape with their attribute sets 𝐴1, 𝐴2 is
defined as 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐺1, 𝐺2) =

|𝐴1∩𝐴2|
|𝐴1∪𝐴2|

.
The differences can be explained by the fact that some

constraints in the manually created shape graph, such as
sh:maxCount or sh:minCount, cannot be guessed from
the provided queries or the existing triples, and require
domain knowledge, for example that students cannot
take an exam twice on the same day, but may be able to
try again on a different date.

While the result has some ambiguity, applying the
prototype to a real-world example has shown that the
approach provides a time-saving benefit whenever it is
necessary to reverse-engineer the schema of a knowledge
graph, by automating most of the work.

5. Future Work
The approach is depended on the quality of the query
logs. Not all queries contain much useful information. If
no human-readable variable names were used, it is diffi-
cult to assign meaningful names to the generated shapes.
However, there are methods to derive variable names
from their query context [12] which we will make use
of in the future. Queries can be classified into different
patterns with varying degrees of usefulness for schema
inference; some queries just fetch a single triple with a
given IRI, while others contain detailed schema informa-
tion as in the example above. Queries that were classified
unuseful could be discarded beforehand to speed up the
process and avoid noise in the results. An interesting phe-
nomenon are streaks, a series of queries that are incremen-
tally expanded, representing an exploratory query ses-

sion by a user [13]. Analyzing these small changes could
help better understand user intent, as queries that are cor-
rected likely didn’t return the desired results and don’t
need to be considered for schema inference. Applications
can help users reformulate their queries until they meet
their needs [14], for example, by using auto-completion
or by displaying queries from other users working with
the same data sources. Finally, our approach could be
leveraged by using a large language model trained on
our query logs, which can then be prompted to extract
the implicit knowledge hidden in the queries, similar to
what has been done in [15].

References
[1] A Semantic Web Primer, Cooperative Information

Systems, 3rd ed., MIT Press, Cambridge, 2012.
[2] H. Paulheim, C. Bizer, Type inference on noisy RDF

data, in: ISWC, 2013.
[3] C. Floyd, R. Klischewski, Modellierung - ein Hand-

griff zur Wirklichkeit, in: Modellierung ’98, Pro-
ceedings des GI-Workshops in Münster, 1998.

[4] T. Papenbrock, et al., Data profilingwithMetanome,
VLDB J. 8 (2015).

[5] C. Diamantini, et al., A semantic data lake model for
analytic query-driven discovery, in: iiWAS, 2022.

[6] L. Parkin, Cooperative techniques for dealing with
unsatisfactory answers in RDF knowledge bases,
in: VLDB PhD Workshop, 2021.

[7] D. Haller, R. Lenz, Pharos: Query-driven schema
inference for the Semantic Web, in: Machine Learn-
ing and Knowledge Discovery in Databases, 2020.

[8] A. Bonifati, W. Martens, T. Timm, An analytical
study of large SPARQL query logs, VLDB J. 29
(2020).

[9] M. Saleem, et al., LSQ: The linked SPARQL queries
dataset, in: ISWC, 2015.

[10] K. Kellou-Menouer, Z. Kedad, Schema discovery in
RDF data sources, in: Conceptual Modeling, 2015.

[11] R. Bouhamoum, et al., Scaling up schema discovery
for RDF datasets, in: ICDEW, 2018.

[12] B. Ell, et al., Deriving human-readable labels from
SPARQL queries, in: SEMANTICS, 2011.

[13] A. Bonifati, W. Martens, T. Timm, SHARQL: Shape
analysis of recursive SPARQL queries, in: SIGMOD,
2020.

[14] X. Zhang, et al., Revealing secrets in SPARQL ses-
sion level, in: ISWC, 2020.

[15] M. Urban, D. D. Nguyen, C. Binnig, OmniscientDB:
A large language model-augmented DBMS that
knows what other DBMSs do not know, in: In-
ternational Workshop on Exploiting Artificial Intel-
ligence Techniques for Data Management, 2023.

	1 Introduction
	2 Approach
	2.1 Related Work

	3 Contribution
	4 Evaluation
	5 Future Work

