CEUR-WS.org/Vol-3452/paper2.pdf

Considering Distributed Processing in the Query Optimizer

Maximilian Rieger

supervised by Prof. Dr. Thomas Neumann, Technische Universitit Miinchen

Abstract

Distributed database systems gain relevance both in industry and academia. However, existing research on query optimization
for relational database systems focuses largely on systems running on a single machine. Work on distributed systems neglects
available workload information in database systems. In this work, we present optimization strategies to fully leverage
the potential of distributed systems running on modern cloud architectures with fast networks. We focus on the optimal
assignment of tasks to compute nodes and the joint optimization of join ordering and distribution layout of data. Furthermore,
we introduce distributed plans and simulation-based evaluations using a new cost model for computation time.

1. Introduction

Considering the very high bandwidth available in mod-
ern cloud systems, distributed processing becomes more
and more attractive to not only handle large data sizes
but also to improve processing performance. Still, good
physical plans are key for efficient execution. We argue
that distributed execution engines require changes to
existing query optimizers for optimal performance. Ex-
isting join ordering algorithms yield suboptimal results
because they fail to model the cost of data transfers. Fur-
thermore, they need to spread computational load while
avoiding waiting on data when assigning tasks to ma-
chines. We plan to contribute the following components
to investigate new optimization opportunities:

1. A strategy to transform query plans for efficient
distributed execution. Methods like hash dis-
tributed joins require repartitioning of their input
data. Our strategy chooses favorable distribu-
tions and introduces necessary data shuffling.

2. A new operator-based computation time estima-
tion method that allows us to compare the cost of
transferring data over the network against local
processing time.

3. An optimization method for the task assignment
problem which determines on which node each
part of a distributed query should be executed to
minimize query response time.

4. A simulator that models the execution of dis-
tributed query plans on a cluster considering
each nodes computation and network capabilities.
This simulator uses our previous computation
time estimations to track execution times accu-
rately. We can verify the quality of assignments

VLDB 2023 PhD Workshop, co-located with the 49th International
Conference on Very Large Data Bases (VLDB 2023), August 28, 2023,
Vancouver, Canada
Q& max.rieger@tum.de (M. Rieger)

@77 © 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).
[#=== CEUR Workshop Proceedings (CEUR-WS.org)

Res Res
Ll L)
I><]l Ml
7N 72 N
1 2 Rl MZ
7N 7 A
R, Ry R, Ry

(b) New pipeline boundaries

D,
I
Dy
<N

D, Ds

Ll I

D, Dy = Pipeline Break

/ \ = Pipelining

o - Required D
T — Required Data
D, = Shuffle Stage

(c) Distributed query plan

Figure 1: Stages of distributing a query plan with partitioned
base relations.

across various cluster setups using simulation-
based evaluation.

5. A new join ordering algorithm that can take ef-
fects of distributed data partitioning and execu-
tion into account to jointly optimize distribution
layout.

(3) will directly improve query response time. It makes
use of (2) to estimate computational load and can be eval-
uated using (4). (5) also has a direct impact on query
performance and can be compared against existing algo-
rithms using (1).


mailto:max.rieger@tum.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Related Work

There are several distributed database systems, but the
number of publications on distributed optimization is
rather limited. Microsoft extended the search space of
SQL Server’s query optimizer with data distribution infor-
mation for cost-based search [1]. Its cloud-native succes-
sor Polaris avoids the task assignment problem by writ-
ing and reading all intermediate results from a decoupled
storage service [2]. This removes many effects of data
locality. Redshift automatically chooses partition keys
and distribution for observed query workloads, but there
is little information published about its query optimizer
[3]. Snowflake [4] uses a classical Cascades-like query
optimizer [5] but fixes the data distribution at query run-
time. Vertica segments tables by their columns instead
of hash partitioning [6]. It chooses join ordering with a
worklist-based approach that considers distribution in-
formation and terminates when the memory budget is
exhausted. MemSQL performs cost-based query rewrites
in a heuristically pruned search space, weighing data
transfers with a constant factor [7]. SparkSQL uses cost
and rule-based optimizations to broadcast small tables
and perform preaggregations [8]. Rodiger et al. propose
network optimal partition assignment using MILP for
single join operations in [9]. They approach data skew
with selective broadcast and Flow-Join that dynamically
broadcast partitions and tuples respectively [10].

There is also a lot of related work in the area of big
data that covers similar optimization aspects, such as
task scheduling [11]. In contrast to big data systems
like Hadoop and Spark, relational database systems have
much more information ahead of time. We build upon
that research utilizing this additional information and
database-specific optimizations such as join ordering.

3. Distributed Processing Model

First, we define the characteristics of distributed systems
for which we want to optimize. We focus our work on
OLAP systems, but the concepts are also applicable to
transactional workloads. The system of concern has dis-
aggregated compute from storage to allow flexible scaling
of compute nodes similar to Snowflake [4]. Nodes can
vary in computational and network capabilities to use
available cloud instances cost-effectively. The full dataset
has to be stored on a storage service. Tables are stored in
a columnar fashion and hash partitioned on user-defined
distribution keys. Similarly to Polaris [2], nodes may
cache arbitrary partitions locally. In contrast, we explic-
itly do not disaggregate query state from compute nodes
to avoid the latency overhead of writing back and reading
all intermediate results from the storage service.

We generalize relations, intermediate results, and final

query results to data units. Hash-distributed execution
can be used to effectively perform aggregations and joins
on large amounts of data. However, the processing speed
of joins can be improved by broadcasting data units in
cases of skewed data or vast differences in cardinalities
[9]. Furthermore, it is possible that the overhead of data
transfers in further stages outweighs the advantages of
distributed processing. Thus, the optimizer should also
be able to decide that a data unit should only reside on a
single node. In summary, data units can have the follow-
ing four partition layouts:

« Hash-partitioned: The data unit is hash parti-
tioned by a key.

» Broadcast: All data resides in a single partition
that is broadcast to all eligible nodes.

+ Single-node: All data resides on one node, fur-
ther processing will not be distributed.

+ Scattered: Tuples are partitioned without a key.

There are many metrics, such as throughput, query la-
tency, cloud cost, and energy consumption. We choose
to optimize for latency, as we expect that optimizing for
lower execution and transfer times will improve results
in all metrics.

4. Components For Distributed
Query Optimization

The main components of our research project are dis-
tributed plan generation, computation time estimation,
task assignment, a simulator for distributed execution,
and a new join ordering optimizer.

4.1. Distributed Plan Generation

We compose distributed query plans from three main
components:

Data Units can be base relations from a database,
intermediate results, or the final result of a query. They
contain the available attributes and the estimated number
of tuples in the data unit. Each data unit is annotated with
a partition layout determining the type of partitioning
and the partition key if any.

Pipelines represent the fused computation of oper-
ators that is not interrupted by data materialization or
transfers. A pipeline always takes one data unit as an in-
put and creates one data unit as an output. Additionally,
a pipeline may require the presence of further data units,
e.g., a pipeline performing a hash-join would require the
data unit of the build side while taking the data unit of
the probe side as input.

Shuffle Stages repartition data. A shuffle stage takes
one data unit as input and returns one data unit as output.



The only difference between input and output data unit
is their respective partition layout.

We initially create distributed query plans from phys-
ical plans created for single machines, as depicted in
Figure la. Our method takes a query plan and partition
layout information for all base relations and distributes
the plan in several passes.

First, the operators in the plan are combined to
pipelines. Next, we determine the best partition layout
at each operator and split pipelines where necessary, as
in Figure 1b. Finally, we explicitly name the data units
at the ends of each pipeline. The output of a pipeline
may have a different partition layout than the required
input layout of its scanning pipeline. In this case, we
create two data units and link them with a shuffle stage,
as shown for Ds and D in Figure 1c.

Distributing single-node plans like this will not yield
optimal results as the original plan does not incorporate
any information about the distributed system. Ultimately,
the optimizer should consider distribution in all phases.
Most stages of this method can be reused for such an end-
to-end optimizer, and we can create distributed plans to
conduct experiments early. Our work on this rule-based
plan generation is mostly done.

4.2. Computation Time Estimation

Traditional single-node query optimizers rely on rela-
tively simple cost models because cardinality estimation
errors outweigh the effect of more detailed models [12].
For distributed processing, however, we need to compare
the relative cost of data transfers over the network to
local computation to find good execution strategies. In
the presence of fast modern networks, it is no longer suf-
ficient to simply rely on the sizes of intermediate results
and ignore the computation time. For an exact compari-
son, we want to accurately predict the computation time
of pipelines. We build a fine-grained operator-based cost
model to predict the average computation time required
for each tuple at each operator. The profiling method pro-
posed by Beischl et al. [13] provides very detailed data for
modern compiled data processing engines. We use this
data and available information about each operator, such
as tuple size, input cardinality, and expression complex-
ity, to create a detailed performance model. Optimization
stages can consider the performance estimations of this
model if they are included in the query plan. We have
yet to implement this method.

4.3. Task Assignment Optimizer

Single pipelines can be distributed using data-parallelism.
If the scanned data unit is partitioned into n partitions, we
create n tasks for this pipeline, where each task scans one
partition and outputs one partition of the pipelines result.

1.00 125 150 175 2.00 225 250 275
Relative Cost of Assignment

Figure 2: Cost distribution of 100 thousand sampled task
assignments for TPC-H Q21 on 16 machines.

The task assignment optimizer focuses on the choice of
which node should execute which tasks. Each node can
execute any task, if the necessary data is transferred ac-
cordingly. However, this will have significant impact
on performance. We want to evenly spread the com-
putational load among nodes and minimize time spent
waiting on data transfers. Each assignment also has an
effect on subsequent execution, as it determines on which
node the resulting partition will reside.

As depicted in Figure 2, good task assignments can
improve performance over 2x. The number of possible
assignments nygsion = n?;;’]‘izs grows exponentially in the
number of nodes, which renders exhaustive enumera-
tion of assignments infeasible. Using our computation
time estimates and estimated time spent for data trans-
fers, we plan to build a heuristic optimizer for the task
assignment problem that is able to generate good assign-
ments in short time. We will consider sampling-based
and greedy methods to find good initial plans in short
time and refining methods like iterative improvement
and simulated annealing to further improve these plans.
We have implemented first approaches to this problem.

4.4. Distributed Execution Simulator

The best way to evaluate optimizations is to conduct
benchmarks on a real system. However, it is intricate to
conduct thorough large scale benchmarks on distributed
systems. Experiments on large compute clusters are ex-
pensive and take substantial effort to realize with a work-
in-progress system. Hence, we decided to simulate the
distributed system without the need for a real implemen-
tation. This simulator is much more flexible, as we can
make fundamental changes to the execution model with
little effort. Also, the structure of the simulated cluster
can be changed in compute nodes count, hardware, and
network speeds effortlessly. It can also be used as a direct
cost function for cost-based optimization methods.

The simulator takes a distributed query plan, a cluster
definition, each nodes cached partitions of base relations,
and a task assignment as input. It maintains pending and
currently active tasks and data transfers over the network
and their current progress in percent. First, it computes
the estimated remaining time to finish for each active
task and transfer. The shortest time ,,;, determines when
the set of currently running tasks and transfers changes.



The simulator advances the progress of all operations
by tmin- At least one of them will finish and therefore
make a new partition available at some node. Finally, it
finds all pending operations that can start since now new
partitions are available. By accumulating all values of
tmin, We can compute the overall runtime of the query.

Our implementation of this simulator is ready for use.
We use it to evaluate randomly sampled task assignments
and give their execution time distribution in Figure 2. As
our implementation is fast, it can easily simulate tens of
thousands of executions per second and is hence suitable
for direct integration in the optimization loop.

4.5. Join Ordering Optimizer

Not only the new problem of task assignment has opti-
mization potential. Join ordering algorithms for single-
node execution yield deficient plans for distributed exe-
cution [7]. As large base relations are likely to be hash
partitioned on join keys, it will be advantageous to ex-
ecute the respective join first and avoid reshuffling the
data, even if that might not be optimal for single-node
execution. Furthermore, the join ordering algorithm can
directly choose the distribution (hash distributed, broad-
cast, or simply using only a single node) of intermediate
results. We will investigate the feasibility of applying ex-
haustive dynamic programming algorithms that extend
solutions by physical properties similar to SQL server
PDW [1]. This will enlarge the search space significantly,
and exhaustive search will be infeasible in many cases.
Hence, we will work on further possibilities to restrict the
search space and gracefully fall back to fast approxima-
tions. Additionally, we will work on a new cost model for
enumeration algorithms which incorporates both com-
putation and network time. We have not yet started
working on this problem.

5. Conclusion

Distributed query processing opens potential for opti-
mizations at many different stages of physical plan gen-
eration. This work proposes approaches to use that po-
tential in several ways. We describe a way to lift current
physical query plans for distributed execution. Then, we
create a simulation-based evaluation method for these
plans. We highlight the importance of the task assign-
ment problem and sketch several methods to find good
assignments. Finally, we present our vision for new
enumeration-based join ordering algorithms that jointly
optimize the distribution of data with the join ordering.

References

[1] S. Shankar, R. V. Nehme, ]J. Aguilar-Saborit,
A. Chung, M. Elhemali, A. Halverson, E. Robinson,
M. S. Subramanian, D. J. DeWitt, C. A. Galindo-
Legaria, Query optimization in microsoft SQL
server PDW, in: SIGMOD Conference, ACM, 2012,
pp. 767-776.

[2] J. Aguilar-Saborit, R. Ramakrishnan, POLARIS: the
distributed SQL engine in azure synapse, Proc.
VLDB Endow. 13 (2020) 3204-3216.

[3] N.Armenatzoglou, S. Basu, N. Bhanoori, et al., Ama-
zon redshift re-invented, in: SIGMOD Conference,
ACM, 2022, pp. 2205-2217.

[4] B.Dageville, T. Cruanes, et al., The snowflake elas-
tic data warehouse, in: SIGMOD Conference, ACM,
2016, pp. 215-226.

[5] G. Graefe, The cascades framework for query opti-
mization, IEEE Data Eng. Bull. 18 (1995) 19-29.

[6] N.Tran, A. Lamb, L. Shrinivas, S. Bodagala, J. Dave,
The vertica query optimizer: The case for special-
ized query optimizers, in: ICDE, IEEE Computer
Society, 2014, pp. 1108-1119.

[7] J. Chen, S. Jindel, R. Walzer, R. Sen,
N. Jimsheleishvilli, M. Andrews, The mem-
sql query optimizer: A modern optimizer for
real-time analytics in a distributed database, Proc.
VLDB Endow. 9 (2016) 1401-1412.

[8] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, M. Zaharia, Spark SQL: relational data
processing in spark, in: SIGMOD Conference, ACM,
2015, pp. 1383-1394.

[9] W. Rodiger, T. Mihlbauer, P. Unterbrunner,

A. Reiser, A. Kemper, T. Neumann, Locality-

sensitive operators for parallel main-memory

database clusters, in: ICDE, IEEE Computer So-

ciety, 2014, pp. 592-603.

W. Rédiger, S. Idicula, A. Kemper, T. Neumann,

Flow-join: Adaptive skew handling for distributed

joins over high-speed networks, in: ICDE, IEEE

Computer Society, 2016, pp. 1194-1205.

M. Soualhia, F. Khomh, S. Tahar, Task scheduling in

big data platforms: A systematic literature review,

J. Syst. Softw. 134 (2017) 170-189.

V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz,

A. Kemper, T. Neumann, How good are query

optimizers, really?, Proc. VLDB Endow. 9 (2015)

204-215.

A. Beischl, T. Kersten, M. Bandle, J. Giceva, T. Neu-

mann, Profiling dataflow systems on multiple

abstraction levels, in: EuroSys, ACM, 2021, pp.

474-489.

(13]



	1 Introduction
	2 Related Work
	3 Distributed Processing Model
	4 Components For Distributed Query Optimization
	4.1 Distributed Plan Generation
	4.2 Computation Time Estimation
	4.3 Task Assignment Optimizer
	4.4 Distributed Execution Simulator
	4.5 Join Ordering Optimizer

	5 Conclusion

