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Abstract
Cloud data lakes emerge as an inexpensive solution for storing very large amounts of data. The main idea is the separation
of compute and storage layers. Thus, cheap cloud storage is used for storing the data, while compute engines are used for
running analytics on this data in “on-demand” mode. However, to perform any computation on the data in this architecture,
the data should be moved from the storage layer to the compute layer over the network for each calculation. Obviously,
that hurts calculation performance and requires huge network bandwidth. Our research focuses on three related topics:
(1) identify the key challenges to improving query performance in cloud data lakes, (2) provide a theoretical model that
formally defines the problem of poor query performance in cloud data lakes, (3) design a practical solution to the problem
and demonstrate its efficiency via large-scale experimental evaluation.
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1. Introduction
Traditionally, storage systems have been favoring data
locality (meaning they wanted to be as close to the data as
possible to speed up calculations on the data). In single-
node databases, data locality occurs trivially, whereas
in shared-nothing distributed systems, data locality is
achieved by performing computation on the same ma-
chines that store the data. However, with the rise of
cloud technologies, a new family of storage systems has
emerged – cloud object stores (e.g., AWS S3 and Azure
Blob Storage). These systems provide object storage ser-
vice through a web interface. Users create buckets, and
each bucketmay containmultiple binary objects uniquely
identified within the bucket by a string key.
Cloud object stores are widely considered to be the

most cost-effective storage systems in the world right
now [1, 2, 3, 4], and as a result, they are heavily used as the
main building block of enterprise data repositories that
have come to be known as cloud data lakes [1, 2, 3, 4, 5].
The main feature of the cloud data lakes is that they store
data in cloud object stores and as a result do not follow
the traditional shared-nothing architecture but, instead,
disaggregate compute layer from the storage layer. This
new approach is commonly called a data lake architecture
[5].
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A data lake architecture introduces both benefits and
challenges and, not surprisingly, is identified as a promis-
ing research direction by recent studies [2, 5]. Our re-
search focuses on the problem of poor query performance
in cloud data lakes, and our contributions so far can be
summarized as follows:

• We identify the key challenges to improving
query performance in cloud data lakes and dis-
cuss why existing solutions are not sufficient.

• We provide a theoretical model that formally de-
fines the problem of poor query performance in
cloud data lakes. The main component of the
model is an optimization problem that clearly de-
fines the relevant trade-offs. We prove that the
problem is NP-hard and suggest heuristic algo-
rithms to overcome its hardness.

• We outline future research directions that can
significantly improve query performance in cloud
data lakes.

The rest of the paper is structured as follows:

• In section 2 we formally define the problem.
• In section 3 we review related work.
• In section 4 we present our preliminary results.
• We conclude in Section 5.

2. Problem Statement
Let us introduce the problem via a simple example first.
Consider a typical metric data presented in Table 1. Let
us assume that this table is stored in the cloud data lake
such that records 1-3 are stored in “file201”, records 4-6
are stored in “file170”, and records 7-9 in “file051”. Files’
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Table 1
Sample metric data

date metric val ...
1 2020-02-10 cpu 47 ...
2 2020-02-14 cpu 58 ... file201
3 2020-02-18 memory 11 ...
4 2020-02-16 memory 8 ...
5 2020-02-20 cpu 88 ... file170
6 2020-02-21 cpu 66 ...
7 2020-03-13 memory 6 ...
8 2020-03-22 cpu 92 ... file051
9 2020-03-28 cpu 71 ...
... ... ... ... ...

format can be any of the standard supported formats (e.g.,
Parquet or ORC).
Let us briefly review how the state-of-the-art query

engines [6, 7, 8] would execute a typical query on Table 1
stored in the cloud data lake. For example, when a query
engine receives a query with ”where” condition ”metric =
’memory’ and val > 10”, it reads the files from the storage,
scans them in-memory to find the records satisfying the
predicate, and returns the result. In our example, only
record 3 from file201 will be returned. However, all the
data lake files should be read from the storage and pro-
cessed; and since production data lakes might contain
billions of files [9], this approach is extremely wasteful.
So, intuitively, we would like to read only the “relevant”
files for a given query (file201 in our example) and skip
all the rest. Let us define the problem formally now.

2.1. Formal problem definition
We model data lake tables according to the standard
relational model. Given a set of 𝑚 domains 𝐷 =
{𝐷1, 𝐷2, … , 𝐷𝑚}, a table 𝑇 is defined as a subset of the
Cartesian product 𝐷1 ×𝐷2 ×…×𝐷𝑚. Each domain 𝐷𝑖 ∈ 𝐷
has an associated column name 𝑐𝑖 ∈ 𝐿, where 𝐿 is the
set of all column names. 𝑇 is a set of tuples {𝑡1, 𝑡2, … , 𝑡|𝑇 |},
where each tuple 𝑡 is a set of pairs {(𝑐𝑖 ∶ 𝑣) ∣ 𝑐𝑖 ∈ 𝐿, 𝑣 ∈
𝐷𝑖, 𝑖 ∈ {1, … , 𝑚}}. 𝑇 is stored in a cloud object store as a col-
lection of files denoted by 𝐹 = {𝑓1, 𝑓2, … , 𝑓|𝐹 |}. 𝐹 is a parti-
tion of 𝑇, meaning that ∀𝑖≠𝑗 ∶ 𝑓𝑖 ⊆ 𝑇 ,⋃ 𝐹 = 𝑇 , 𝑓𝑖 ∩ 𝑓𝑗 = ∅.

Definition 1 (data lake query). We define a data lake
query 𝑄 as a standard SQL query on table 𝑇 and denote the
predicate in the where clause of 𝑄 as 𝑃𝑄. We assume that
𝑃𝑄 is given in a conjunctive normal form (CNF). If tuple 𝑡
from the file 𝑓 ∈ 𝐹 satisfies 𝑃𝑄 we denote it by 𝑆(𝑃𝑄, 𝑡).

Definition 2 (query coverage). Given a data lake
query 𝑄, 𝑋 ⊆ 𝐹 covers 𝑄 ↔ ∀𝑓 ∈ 𝐹 ⧵ 𝑋 , ¬∃𝑡 ∈ 𝑓 , 𝑆(𝑃𝑄, 𝑡).

When 𝑋 satisfies Definition 2 for some data lake query
𝑄, we say that 𝑋 covers 𝑄 (meaning that 𝑋 contains all

the files needed to satisfy 𝑄) and denote it by 𝐶𝑜𝑣(𝑋 , 𝑄).
We call such 𝑋 a coverage set of 𝑄. Note that for any 𝑄,
holds 𝐶𝑜𝑣(𝐹 , 𝑄).

Definition 3 (query tight coverage). Given
a data lake query 𝑄, 𝑋 ⊆ 𝐹 tightly covers
𝑄 ↔ 𝐶𝑜𝑣(𝑋 , 𝑄)⋀¬∃𝑓 ∈ 𝑋 , ∀𝑡 ∈ 𝑓 , ¬𝑆(𝑃𝑄, 𝑡)

When 𝑋 satisfies Definition 3 for some data lake query
𝑄, we say that𝑋 tightly covers𝑄 (meaning that𝑋 contains
all the files needed to satisfy 𝑄 and only them) and denote
it by 𝑇𝐶𝑜𝑣(𝑋 , 𝑄). We call such 𝑋 a tight coverage set of 𝑄
and denote it by 𝑇𝐶(𝑄).

If for any data lake query 𝑄, we could (efficiently) com-
pute 𝑋 such that 𝑇𝐶𝑜𝑣(𝑋 , 𝑄), we would be able to signif-
icantly improve query performance in a cloud data lake
architecture by accessing only files in 𝑋 instead of all
those in 𝐹 (and in most real-world scenarios |𝑋 | << |𝐹 |).
In fact, as we show below, in many cases finding the
exact tight coverage might be too complicated, and we
can be content with some coverage set that is not tight
but still can help us improve query performance. For
such scenarios, the definition of tightness degree might
be useful.

Definition 4 (tightness degree). Given a data lake
query 𝑄, for any coverage set 𝑋 of 𝑄, the tightness degree
of 𝑋 is defined as:

𝑇𝐷(𝑋 , 𝑄) = { 1 − |𝑋 |−|𝑇𝐶(𝑄)|
|𝐹 |−|𝑇𝐶(𝑄)| if |𝑇 𝐶(𝑄)| < |𝐹 |

0 otherwise
}

Intuitively, the tightness degree shows to what extent
the given coverage set is close to the tight coverage set
(1 means perfectly close).

Based on the above semantics we can formulate our
main research question as follows:

• Can we develop an algorithm, that for any data
lake query 𝑄, can find a coverage set of 𝑄, 𝑋, such
that:

– tightness degree of 𝑋 is maximized
– cost1 of computing 𝑋 is minimized
– as a result of the above, the total execution

time of 𝑄 is reduced as much as possible

3. Related Work
The most trivial approach for query execution in cloud
data lakes is to read all the files. Clearly, 𝐹 covers any 𝑄,
but the coverage is far from being tight and hence query
performance is poor.

One of the first suggested optimizations was data par-
titioning [6] which is supported by all modern query
1cost is measured by the number of files read from the cloud



engines. Unfortunately, only a limited subset of table
columns can be used in partitioning, while production
tables may contain tens of thousands of columns [10].
Another well-known approach [11] is to attach meta-

data to each data lake file and use it during the reads to
skip irrelevant files. Columnar formats support metadata-
based skipping out-of-the-box by storing the metadata
and the data in the same file and relying on the fact that
cloud object stores support reading of the particular sec-
tions of the file. Unfortunately, metadata-based skipping
is very sensitive to data distribution and helps only in
cases where the data is nicely clustered.
Some cloud providers in some cases (e.g., AWS S3-

Select) support pushing the query predicate to the storage
layer, so irrelevant records might be filtered out during
the read operation and only the relevant records would be
returned to the compute layer. This technique is a great
optimization, as we do not need to move huge amounts
of data between storage and compute layers. However,
we still perform a lot of costly filtering operations; the
only difference is that the operation is performed in a
different place (i.e., in the worst-case scenario all |𝐹 | files
should be accessed).

Table format (e.g., Delta Lake, Apache Iceberg) [9] is a
novel approach to add missing capabilities (e.g., transac-
tions, schema evolution, query optimization) to the data
lake architecture. The main idea is to add an additional
layer of metadata between the files in the storage and
the compute layer. This metadata then can be used, for
example, for storing information about schema changes,
data mutation, and various statistics to improve query
performance. While table format is an important step
towards query optimization in cloud data lakes, so far it
does not solve the main problem considered in our study:
reading of (a lot of) irrelevant files from the storage.
Indexing is the primary method for improving query

performance in relational databases but it is rarely used
in big data environment. Our preliminary work in [12]
presents an indexing scheme for relational data in cloud
data lakes where indexes are stored inside the lake and
their creation is performed by parallel algorithms. This
scheme, however, limits the query model to simple selec-
tion/projection queries with a single-column predicate.

4. Our Approach
Finding the tight coverage set of a query might be too
costly (in can be proved that in worst-case scenario it
cannot be better than Ω(𝐹)). The main idea of our ap-
proach is, instead of looking for the tight coverage set
of the given query, to find some coverage set that will
result in an optimal total query execution time (i.e., we
are looking for the coverage set 𝑋 such that the sum of
the cost of finding 𝑋 and its size is minimized). We fo-

cus on the ”where” condition of the query and look at
each predicate clause separately. There may be many
coverage sets associated with each clause, and there may
be many ways to compute each of these coverage sets.
We assume that for each possible coverage execution plan
we can estimate (e.g., via statistics, caching, ML models,
etc.) what is the expected cost and expected result of
each plan. An important observation is that intersection
of coverage sets of any subset of the query clauses is a
coverage set of the original query. Based on this observa-
tion, our optimization scheme consists of the following
two steps:

1. Given a query and its estimated values, we find a
subset of clauses (and their corresponding cover-
age plans), such that the sum of their estimated
costs and the size of the intersection of the cover-
age sets is minimized.

2. Then, we execute each of the coverage plans, in-
tersect their results and execute the original query
on the files in the intersection only.

Step (1) can be formulated as an optimization problem
and we prove that it is NP-hard (by reduction from the
set covering problem); we suggest heuristic algorithms to
deal with the hardness of the problem. Our result estima-
tion scheme is based on the regular relational databases
selection size estimation [13], in which we can estimate
the number of records satisfying the predicate based on
the statistical information. Once we have the estimated
number of records (𝑅) for the given clause, we can esti-
mate the corresponding number of files as the number of
non-empty bins after randomly throwing 𝑅 balls into |𝐹 |
bins. Execution of coverage plans (step 2) is based on our
previous work on indexing in cloud data lakes [12, 14].
We built a prototype of our solution; the implemen-

tation is available online 2. We used Apache Spark as
the main compute engine and AWS as the cloud provider.
For the benchmark, we used the TPC-H dataset 3 with a
scale factor of 1 TB. We executed different queries with
and without our scheme and achieved up to x19 query
performance improvement.

5. Conclusions and Future
Research Directions

Data volumes keep growing, and new technologies are
being developed all the time to adjust to the constant
increase in data traffic. Cloud data lakes are one of the
most successful solutions to the big data challenge. They
provide great scalability, usability, and cost-efficiency,
but perform poorly with interactive queries.

2https://github.com/grishaw/data-lake-coverage
3https://www.tpc.org/tpch/



We analyze the problem of poor performance of inter-
active queries in cloud data lakes and identify the main
obstacles achieving better performance. We formally de-
fine the problem by introducing a new concept of the
query (tight) coverage set. We use our terminology to de-
fine an optimization problem that finds the best coverage
set for the given query. We show that the problem is NP-
hard and deal with its hardness by suggesting heuristic
algorithms. Our solution is based on ideas from relational
databases related to indexing and statistics management
adjusted to a cloud data lake architecture. The main idea
is that the storage resources are usually much cheaper
than the compute resources [4, 12], so if we could prov-
ably improve query performance by adding more storage
it probably would be very useful for many data lake users.
For future research, we are planning to focus on the

following directions:

• We can try improving our estimations scheme by
training ML models to ”guess” expected result of
a given query coverage plan.

• We want to extend our basic query model to more
complex types (e.g., joins and group by).

• An interesting caching technique can be based
on the tight coverage sets: 𝑇𝐶𝑜𝑣 function defines
an equivalence relation on a set of all possible
queries over the table. So, if for any query 𝑄 we
could tell for each equivalence class it belongs,
we would be able to cache tight coverage set per
equivalence class on the query engine side and
by that improve query performance even more
while using limited memory resources.

• We want to apply our optimization techniques in
real-world applications (we already have initial
results in a multidisciplinary project where we
analyze large-scale genomic data with cloud data
lakes[15, 16]).
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