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Abstract
Bloom Filters (BFs) are typically employed to alleviate unnecessary disk accesses to facilitate point lookup in LSM trees. They
are particularly beneficial when there is a significant performance difference between probing a Bloom filter (hashing and
accessing memory) and accessing data (on secondary storage). However, this gap is decreasing as SSDs and NVMs have
increasingly lower latency, to the point that the cost of accessing data can be comparable to that of hashing and filter probing,
especially for large key sizes that results in high hashing cost. In addition, BFs are beneficial for empty queries while they are
a burden for positive queries (i.e., on existing keys). Also, with larger datasets, the total consumed memory also increases,
making it less feasible to keep all BFs in memory. Coupling this, with the increasing price of memory and the need to reduce
the memory-to-data ratio in many practical deployments, we are seeing an increased memory pressure. In this setting, fewer
BF blocks are cached, thus causing additional storage accesses, since they have to be fetched in memory to answer a query.

In this PhD work, we introduce SHaMBa (Shared Hash Modular Bloom Filter), a new LSM-based key-value engine that
addresses both (a) the increasing hashing overhead and (b) the sub-optimal performance when BFs do not fit in memory.
First, SHaMBa decouples the hashing cost from the data size by sharing a single hash digest across different levels. Second,
SHaMBa applies a workload-aware BF skipping policy based on Modular Bloom Filter (i.e., a set of mini-BFs that replace a
single large BF) to avoid accessing BFs when they are not useful. Our evaluation shows that SHaMBa reduces the CPU cost
for BF probing, and substantially outperforms the state of the art under memory pressure.

Keywords
LSM trees, Bloom Filter, compaction policy, storage, memory pressure

1. Introduction

LSM-based Key-Value Stores. Log-Structured Merge-
trees (LSM trees) [1] are widely adopted as one of the
core data structures in modern NoSQL storage engines
including LevelDB [2], RocksDB [3], and WiredTiger [4].
This is because LSM trees offer high write throughput by
employing out-of-place ingestion. In LSM trees, incoming
entries (inserts, updates, and deletes) are buffered within
main memory. Once the write buffer becomes full, the
contained entries are sorted and flushed to disk as a sorted
run. The disk-resident sorted runs are organized into a
number of levels of increasing sizes. In practice, a sorted
run may consist of one or more immutable Sorted-String
Tables (or SST files). To bound the number of files that
a point lookup needs to probe, runs of similar sizes in
the same level are sort-merged and pushed to the next
(deeper) level when the accumulated bytes of similarly
sized runs reach a predefined capacity. To avoid unnec-
essary accesses for point lookups, LSM trees typically
construct a Bloom Filter (BF) for every file that probabilis-
tically allows to skip a file if it does not contain the target
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key. In addition, every file is built with an index block
(also termed fence pointers) that maintains the min-max
range and the offset for each data block (or disk page),
which ensures that at most one data block (or disk page)
is retrieved when probing a file.
Problem 1: The Benefit of BFs Shrinks For Faster
Storage. Contrary to common perception, BFs are not
always beneficial. The rationale behind the ubiquitous
use of BFs in LSM trees is that there is a considerable
cost difference between accessing a BF (in memory) and
accessing data (on disk). As new storage devices like
SSDs and non-volatile memories (NVMs) emerge, the
latency gap between memory and storage narrows, and
thus the advantages of using BFs weaken. If the data is
already cached in main memory, BFs are even detrimental.
Experiments show that MurmurHash64 calculation (used
in production systems [3]) is ∼1.47× more expensive
than accessing a memory page, thereby, making the use
of a BF detrimental. The LSM hashing overhead is further
exacerbated as multiple BFs are queried per lookup (at
least one per level), and repeated hash calculations turn
querying over fast storage (or cached data) into a CPU-
intensive operation.
Problem 2: Read Performance in LSM trees De-
grades With Limited Memory. While computing,
memory, and storage prices decrease and allow us to
facilitate more data, in the last few years, the price drop
in memory has been slower than what has been for com-
puting and storage, making it hard to maintain the same
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memory-to-data ratio. For example, since 2010, the price
of SSDs has decreased by a factor of sixty, whereas the
price of memory has only decreased by a factor of ten [5].
As a result, BFs may not always be in memory when com-
peting for the resource with index blocks and data blocks,
and when there is a cache miss for BFs, a significant
number of I/Os may be spent on fetching them.
SHaMBa: Less Hashing on Modular Bloom Filters.
To address these challenges, we propose Shared Hash-
ing and skipping-based Modular Bloom Filters - two tech-
niques that reduce the BF overhead in LSM trees and we
integrate them into our system, SHaMBa. Specifically, we
first propose a shared hashing technique [6] that shares
a single hash digest across all the levels in an LSM tree
to alleviate the unnecessary cost of re-hashing for every
level. Shared hashing decouples the aggregated hashing
cost from data size. With SHaMBa, regardless of the num-
ber of LSM tree levels (which depends on the data size,
the size ratio, and the memory buffer size), the hashing
cost is constant. We then identify that not all the BFs
are equally important, and based on this observation, we
propose a skipping mechanism [7] based on the Modular
Bloom Filter (MBF) design that allows us to load part of
the filter to alleviate the memory pressure. Our evalu-
ation shows that hash sharing can lead to 20% higher
lookup performance when using a state-of-the-art PCIe
SSD, and the skipping mechanism in MBF increases read
throughput by more than 50% compared with the state of
the art when memory is constrained to 10% of the total
size of Bloom Filters.
Contributions. Our contributions are as follows:

• We identify that BFs dominate LSM query latency for
fast storage and high hashing cost, and we decouple
the amount of hashing from data size (height of LSM
tree) by shared hashing across different levels.

• We propose a skipping mechanism based on Modular
Bloom Filter (MBF) that reduces the memory footprint
without sacrificing performance.

• We integrate Shared Hashing and Modular Bloom Fil-
ters in the state-of-the-art LSM-engine RocksDB, and
we show through extensive experiments that our pro-
posed techniques reduce the hashing cost, and out-
perform the state of the art under memory pressure.

2. Shared Hashing
Classical BFs rely on 𝑘 independent hash functions,
which results in high CPU overhead when probing a
BF. Practical implementations [3] use a single hash di-
gest and generates 𝑘 − 1 indexes by bit rotation. This
optimization is based on the double hashing scheme [8],
for which it is shown that it can achieve nearly the same
accuracy obtained by independent 𝑘 hash functions. Such
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Figure 1: Hash sharing across BFs of different levels.
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Figure 2: Hash sharing reduces hashing overhead. The reduc-
tion is more pronounced for larger keys and skew workload.

an optimization reduces the CPU cost by a factor of 𝑘
when probing a single BF. Here, we apply a form of hash
sharing across multiple BFs from different LSM levels.
Hash Sharing Across Levels. The key observation is
that for a specific query, the same hash digest calculation
is repeated across levels when fence pointers cannot filter
the query. The BFs are different across levels (they have
indexed different elements), however, in order to probe
them for a given key, the same hash digest is calculated
for every level until the key is found or the tree is entirely
searched. To mitigate this overhead, we share the hash
digest calculation across levels by re-engineering the BF
implementation and allowing the BFs residing in different
levels to work collaboratively during the execution of a
single query (Fig. 1). As a result, the hashing cost remains
constant regardless of the number of levels.
Evaluation. We build an in-house LSM tree prototype,
which uses RocksDB’s fast local Bloom Filter and Mur-
murHash64. We bulk load our LSM tree with 22GB of
key-value pairs (entry size is fixed as 2KB), and report
the latency of empty point queries. The experiments are
running with a state-of-the-art PCIe SSD that offers 10𝜇s
latency for 4KB page access. As shown in Figure 2a, the
hashing cost increases for both approaches as the key
size grows, however, shared hashing has a performance
gain of up to 23% (blue line). The time breakdown shows
where this benefit is coming from. The time spent in BFs
(both hashing and probing) is drastically reduced for the
hash sharing approach, while the cost for accessing data,
as well as the other costs (e.g., binary search in fence
pointers), virtually remains the same. In addition, larger
key sizes have higher hashing cost, hence, hash sharing
is more beneficial for them. Besides, when the query
workload becomes skewed, we further observe the gain
steeply increases for 1KB keys to more than 60% in Fig-
ure 2b. This is because the skewed workload has fewer
data accesses due to fewer false positives, and as a result,
hashing becomes a bottleneck for skewed point queries.
More experiments can be found in our full paper [6].



3. Skipping-Based Modular BFs
In this section, we discuss how we achieve a lower mem-
ory footprint with our skipping mechanism [7] for MBFs,
and we show that, under memory pressure, our skipping
algorithm achieves higher read throughput compared to
the state of the art.
Modular Bloom Filters (MBFs). We first present Mod-
ular Bloom Filters (MBFs) that divide a normal Bloom
Filter into multiple modules. MBF is a generalized ver-
sion of ElasticBF [9] since MBF allows the size of each
module to be different. A Modular Bloom filter (MBF)
uses 𝑚 bits to index 𝑛 elements in each of 𝐷 modules.
Each module uses 𝑚𝑑 bits such that

∑︀𝐷
𝑑=1 𝑚𝑑 = 𝑚. Es-

sentially, an MBF is a collection of 𝐷 Bloom filters, and
every membership test tries to sequentially go through
all the modules before it concludes with a positive result.
A negative response at any module terminates the query
without further probing the remaining modules.
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(b) A modular Bloom filter with three modules of equal size.
Figure 3: Modular Bloom filters split the physical representa-
tion of a BF into multiple independent modules.

Figure 3 compares an MBF (using three modules) with a
standard BF. By design, a point lookup can use all or any
subset of the 𝐷 modules without re-indexing. Thus, MBF
can navigate the tradeoff between accuracy and memory
footprint without re-calculating the filter.
Skipping Modules. To fully exploit MBFs, we quantify
the utility of each module and design a module skipping
mechanism. We define the utility as follows.

𝑢𝑙,𝑖,𝑑 = 𝛽𝑙,𝑖 · (1− 𝛼𝑙,𝑖) ·
(︁
𝑓𝑑−1
𝑠𝑚 − 𝑓𝑑

𝑠𝑚

)︁
(1)

where 𝛽𝑙,𝑖 (𝛼𝑙,𝑖) represents the point lookup frequency
(the ratio of true positive point queries, respectively) of
the 𝑖𝑡ℎ file at level 𝑙, 𝑆𝑆𝑇𝑙,𝑖, and 𝑓𝑑

𝑠𝑚 is the false positive
rate when using the first 𝑑 modules. By definition, 𝑢𝑙,𝑖,𝑑

quantifies how many I/Os (on average) can be avoided
using the 𝑑𝑡ℎ module. Based on the utility, we propose
to skip probing modules if the utility is lower than a
certain threshold (threshold𝑑). Algorithm 1 shows how
to query an MBF. The core idea is to skip a module if it
does not lead to a reduction of I/Os. In other words, if we
anticipate that querying a module leads anyway to an I/O,
we will skip the rest of the MBF as an I/O is inevitable.

Note that since the modules are accessed sequentially,
the decision to skip the 𝑑-th module affects the remaining
modules. We also allow the algorithm to use a different
threshold per module slot for more flexibility.

QueryMBF (key 𝑘, 𝑆𝑆𝑇𝑙,𝑖)
for 𝑑 = 1, 𝑑 ≤number of modules, 𝑑++ do

𝑢𝑙,𝑖,𝑑 = 𝛽𝑙,𝑖 · (1− 𝛼𝑙,𝑖) · (𝑓𝑑−1
𝑠𝑚 − 𝑓𝑑

𝑠𝑚)
if 𝑠𝑘𝑖𝑝𝑑==true || 𝑢𝑙,𝑖,𝑑 < threshold𝑑 then

// skipping module by returning positive
return true;

else
// probe the module like a mini BF
// this may cause an I/O if it is not cached
if QueryModule(𝑘, module𝑙,𝑖,𝑑) == false then

return false;
end

end
end
return true;

end
Algorithm 1: MBF decides to skip a module based
on its utility (along with threshold𝑑).

Updates and Deletes. In an update-heavy or delete-
heavy setting, our skipping algorithm still works by ac-
tively maintaining 𝛼𝑙,𝑖, 𝛽𝑙,𝑖 for each SST file and inher-
iting these values when building new SST files during
compactions. For example, if point queries mainly target
frequently updated/deleted keys, these queries mostly
terminate in shallower levels, leading to fewer accesses
to the files in deeper levels that contain obsolete entries
(𝛽𝑙,𝑖 of the files in deeper levels decreases). Therefore,
according to the utility definition in Eq. (1), 𝑢𝑙,𝑖,𝑑 also de-
creases, which possibly leads to skipping modules when
other queries access these files. On the other hand, if
point queries concentrate on a few infrequently updat-
ed/deleted keys (in deeper levels), 𝛼𝑙,𝑖 of the files that
contain these keys may increase since other point queries
that target frequently updated/deleted keys terminate in
shallower levels, which again yields lower utility because
most of the queries for these SST files are likely to be non-
empty queries. As a result, for non-empty queries, BFs
can be skipped, and data blocks can be directly loaded,
thus saving memory space and I/Os for BFs.
Evaluation. We integrate our skipping algorithm
and MBF into RocksDB with two equal-size modules
(with thresholds, respectively, threshold1 = 0.02 and
threshold2 = 0.01) to showcase the benefit of our skip-
ping mechanism. We stress-test our approach with differ-
ent workloads: 1) vary the point query patterns to follow
a uniform or Zipfian distribution; 2) vary the proportion
of existing point lookups (𝛼). We report the average la-
tency per lookup, as shown in Figure 4. The experimental
results show that our skipping algorithm effectively re-
duces the lookup latency when there is memory pressure,
and the benefits persist for both empty (𝛼 = 0.0) and
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Figure 4: Our skipping algorithm reduces the lookup latency
of RocksDB under memory pressure where x-axis represents
the percentage of the total BF size (for example, 100% memory
budget is 20 MB when 224 keys are inserted).

non-empty queries (𝛼 = 1.0). More experiments (e.g.,
varying the number of modules, and allowing modules
to be different-sized) can be found in our full paper [7].

4. Research Plan
State-of-the-art LSM trees employ a static memory allo-
cation paradigm across levels and files, which leads to
all files having BFs with the same bits-per-key (BPK, the
ratio between BF size in bits and the number of keys). A
larger BPK indicates larger space to hash keys and thus
a lower false positive ratio. Notably, to achieve minimal
read cost without changing the overall memory space
of BFs, Monkey [10] proposes to allocate more BPK to
shallower levels. Our main goal moving forward is to use
detailed access pattern information of the workload to
decide the exact BPK at the file and the module level.
[Short-Term] Dynamic BPK Allocation. We are work-
ing towards a dynamic BPK allocation strategy for all
the BFs in LSM trees, which allows different files to have
different BPK (different false positive ratio). The deci-
sion of the BPK per file is implemented at compaction
time. Unlike prior work that assumes a predefined static
workload [10], we will employ machine learning tech-
niques (e.g., kernel density estimation) to estimate read
access statistics (empty and non-empty queries per level),
and this will allow us to identify the best BPK alloca-
tion strategy at compaction-time, thus generalizing prior
approaches. Our earlier work [11] has shown that the
average compaction latency is mostly affected by mov-
ing data, with the creation of BFs at compaction time
being a low-overhead process. In other words, we can
implement a better BPK re-allocation without any visible
increase in compaction latency. Notably, the dynamic
BPK re-allocation strategy can also be potentially applied
when other types of filters (e.g., Cuckoo Filter [12] and
XOR Filter [13]) are employed, by simply replacing the
false positive rate calculation in our cost function.
[Long-Term] Holistic Memory Tuning. In the long

term, we are targeting a set of holistic memory-tuning
algorithms that can navigate the entire design space of
MBF under limited memory. If we allow each module
to have a different BPK and allow each file to have a
varying number of modules, we create a more expansive
design continuum for MBF, and point queries can be
further accelerated in the following two ways: (a) By
allowing each module to have a different BPK without
changing the total memory size for BFs, files with more
empty point lookups can have larger BPK for their first
modules while smaller BPK are assigned for the first
modules of other files. In this way, most empty point
lookups can be blocked by the first modules due to a
lower false positive rate. (b) The above design requires
compaction to re-construct the MBF. If each file can have
three or more modules, we may have higher flexibility
when deciding how many modules are required when
answering point queries, even before compaction occurs.
However, more modules also indicate multiple BF probes
for non-empty queries. Our goal is to create a workload-
aware solution that leverages the above trade-off and
navigates the design space of MBF to achieve minimum
point query cost.

5. Conclusion
In this PhD work, we propose SHaMBa, a novel LSM-
based key-value engine that addresses two key challenges.
First, the fact that as we move to faster storage devices,
hashing for BFs in LSM trees becomes bottleneck, and,
second, the fact that the benefit of BFs diminishes under
memory pressure. Our evaluation shows that SHaMBa
can reduce the fraction of time spent on hashing during
lookups, and it can also exploit the available memory to
offer better performance than the state of the art under
memory pressure. The long-term goal of this PhD work is
to introduce hardware/workload-aware BF management
policy to facilitate point queries in LSM trees, and to
study data systems under memory pressure.
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