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Abstract
The abstract interpretation approach to program verification involves symbolically calculating fixpoints
over lattices. Integral to these fixpoint calculations is an operation called widening, which discards
information in order to move up the lattice so as to ensure termination, as well as potentially aiding
efficiency. Abstract interpretation often uses lattices of numeric constraints where the number of variables
allowed in a constraint is restricted, called weakly relational domains. This paper is concerned with
the application of widening with weakly relational domains. One particular point of interest is the
problematic interaction between widening and the maintenance of a closed form for weakly relational
domains. The solution to this problem uses entailment, which essentially involves satisfiability checking
for numeric constraints.
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1. Introduction

Abstract interpretation [1, 2] is an approach to formal program verification. A program is
abstracted, with respect to a property of interest, into a mathematical representation. The
underlying structure is called an abstract domain taking the form of a partially ordered set,
typically a lattice. Each program point can be represented as a point in the lattice. The abstract
program is executed, updating the representation at each program point until a fixpoint is
reached. This fixpoint will (potentially) be an over-approximation of the least fixpoint. This
fixpoint can then be interpreted back into the language of the program allowing verification
conditions to be checked.

The abstract domain might be based on one of many things: sets, Boolean functions, numeric
constraints, etc. In many cases, it is possible that the lattice for the abstract domain contains
infinite ascending chains, hence termination of the fixpoint calculation is not guaranteed. Even
if termination is guaranteed, long chains might means that termination doesn’t occur in practice.
Abstract interpretation comes equipped with the concept of widening, where information is
discarded during the calculation of a fixpoint. This “jumps” up the lattice and accelerates the
termination of the abstract execution, potentially at the cost of precision of the resulting fixpoint.

Abstract interpretation has proved to be one of the most scalable approaches to program
verification. Key to this is being able to disregard connections between variables and treat them
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as independent. This is manifested in the representation, that is, the choice of abstract domain,
then reflected in the way computations are modelled as transformers, as well as the use of
widening in handling loops. Not tracking relationships in the abstract domain gives scalability
but at the cost of precision; the results are over-approximate, hence the results are safe, but
possibly giving false alarms. Too many false alarms makes the verification process unusable.

Abstract domains based on polyhedra have been considered since the introduction of abstract
interpretation [3], however, the domain operations for polyhedra are prohibitively expensive
for practical analysis tools. This has led to interest in subclasses of polyhedra, called weakly
relation domains. These restrict the constraints in the abstract domain in some way, typically
allowing at most two variables in each equality [4] and often also restricting the coefficients of
the variables in the inequalities, for example to +1,0,-1 to give Octagons [5].

Weakly relational domains usually maintain their representations in a closed form [5, 6], where
implied inequalities are made explicit, allowing join, entailment and satisfiability operations to be
reduced to planar calculations. This approach is potentially problematic when considered with
widening. Widening typically throws away inequalities that are in some way unstable across
iterations, moving the abstraction up the lattice with the hope of quickly reaching a fixpoint.
However, it is possible that an inequality discarded was one introduced when calculating the
closed form. This would then be immediately re-introduced, and no progress is made.

This paper is about widening, and especially about the geometric challenges arising when
working with a (weakly) relational numeric domain to handle some of the relationships that
occur between variables.

The paper makes the following contributions:

• provides a review of widening techniques for numeric domains and illustrates their
application;

• gives case studies to illustrate problems with the application of widening;
• proposes a new way of treating widening for weakly relational domains maintained in a

closed form.

The rest of the paper is structured as follows: Section 2 surveys related work and introduces
relevant notation, Section 3 contains a worked example demonstrating the application of weakly
relational domains and widening in a program verification context, Section 4 gives problems
illustrating points of interest, and provides some tentative solutions, Section 5 concludes.

2. Background and Related Work

This work is concerned with widening and abstract domains consisting of sets of linear inequal-
ities, or polyhedral domains. This section gives background on polyhedra and their subclasses,
a brief history of widening, details on weakly relational domains and closure, before illustrating
the problematic interaction between closure and widening.

2.1. Polyhedra and Weakly Relational Domains

The abstract domains of interest in this paper are lattices over sets of inequalities. Several
domains are considered, varying in the form of inequalities that are allowed. The first of these
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is Polyhedra, Poly𝑋 , the set of all linear inequalities over a set of variables 𝑋 . Here (and
throughout this paper), coefficients and constants are rationals, but other choices are available.

Definition 1. Poly𝑋 = {𝑎1𝑥1 + ...+ 𝑎𝑛𝑥𝑛 ≤ 𝑒 | 𝑥1, ..., 𝑥𝑛 ∈ 𝑋 ∧ 𝑎1, ..., 𝑎𝑛, 𝑒 ∈ Q}

Then ⟨𝒫(Poly𝑋),⊑,⊔,⊓⟩ is a complete lattice, that is, sets of polyhedral constraints (im-
plicitly quotiented by equivalence), or rather the solutions to those constraints, are ordered
by inclusion (⊑), with greatest lower bound (meet) being geometric intersection (⊓) and least
upper bound (join) being convex hull (⊔). Observe that this lattice has infinite ascending chains.
The sets of inequalities below lift to lattices in the same way. As well as the lattice operations
above, the projection of a set of constraints onto a set of constraints over a subset of variables is
an important operation in abstract interpretation.

Abstract interpretation using the Poly𝑋 domain is seen as impractical beyond small programs
as the size of the representation and the cost of performing operations such as convex hull might
become prohibitively large. Therefore abstract domains based on restricted forms of linear
inequalities have been investigated; that is, the relationships between variables that can be
expressed have been restricted. Hence, these are referred to as weakly relational domains. Many
weakly relational domains have been investigated, and those covered below are not intended to
be a complete list. These (typically) restrict inequalities so that they have at most two variables
in them. This then means that operations such as least upper bound can be calculated by a series
of planar operations; since these planar operations have good computational complexity the
intractability of full polyhedra is avoided. The most general version is then the two variables
per inequality (TVPI) abstract domain [4, 6].

Definition 2. TVPI𝑋 = {𝑎𝑥+ 𝑏𝑦 ≤ 𝑒 | 𝑥, 𝑦 ∈ 𝑋 ∧ 𝑎, 𝑏, 𝑒 ∈ Q}

The domain of Logahedra [7] restricts coefficients to be powers of 2 (potentially with a
maximum power). Structures based on Logahedra have been used as atomic structures for
verification of embedded real-time systems [8].

Definition 3. Log𝑋 = {𝑎𝑥+ 𝑏𝑦 ≤ 𝑒 | 𝑥, 𝑦 ∈ 𝑋 ∧ 𝑎, 𝑏 ∈ {−2𝑛, 0, 2𝑛 |𝑛 ∈ Z} ∧ 𝑒 ∈ Q}

Octagons [5], where the inequalities have unit or zero coefficients, have received considerable
attention and have been widely used for abstract interpretation based formal verification. For
example, the Octagon abstract domain is an important component of the ASTRÉE static analyser,
developed to verify the absence of classes of run-time errors in embedded C code [9]. This
analyser has been used for avionics code by Airbus.

Definition 4. Oct𝑋 = {𝑎𝑥+ 𝑏𝑦 ≤ 𝑒 | 𝑥, 𝑦 ∈ 𝑋 ∧ 𝑎, 𝑏 ∈ {−1, 0, 1} ∧ 𝑒 ∈ Q}

Bounded differences (sometimes also called Zones) have also been popular [10, 11], partly
because the constraint systems can naturally be represented as weighted graphs, leading to
efficient algorithms (they are referred to as DBM for difference bounded matrices). Unary
inequalities for DBM are typically dealt with by introducing a dummy variable for 0.

Definition 5. DBM𝑋 = {𝑥− 𝑦 ≤ 𝑒 | 𝑥, 𝑦 ∈ 𝑋 ∧ 𝑒 ∈ Q}
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Finally, using intervals as an abstract domain loses all ability to track relations, but does
result in particularly scalable algorithms.

Definition 6. Int𝑋 = {𝑎𝑥 ≤ 𝑒 | 𝑥 ∈ 𝑋 ∧ 𝑎 ∈ {−1, 1} ∧ 𝑒 ∈ Q}

When considering intervals, 𝑥 ∈ [𝑎, 𝑏] is shorthand for {−𝑥 ≤ −𝑎, 𝑥 ≤ 𝑏}, whilst 𝑥 ∈ [𝑎,∞]
is shorthand for {−𝑥 ≤ −𝑎}.

This paper primarily considers TVPI𝑋 inequalities. Following [6], the intention is that
algorithms developed for this domain will be inherited by abstract domains using subclasses of
two variable inequalities, in particular Octagons.

2.2. Widening

Widening [1, 12] is an operation that forces the iterations of an abstract interpretation to reach
a fixpoint, that is, for the analysis to terminate. This is formalised in the following definition.

Definition 7. Where 𝐿 is a lattice, a widening is then a function ▽ : 𝐿× 𝐿 → 𝐿 such that:

i) ∀𝑥, 𝑦 ∈ 𝐿.𝑥 ⊑ 𝑥▽𝑦

ii) ∀𝑥, 𝑦 ∈ 𝐿.𝑦 ⊑ 𝑥▽𝑦

iii) for all increasing chains 𝑥0 ⊑ 𝑥1 ⊑ ..., the chain given by 𝑦0 = 𝑥0, 𝑦𝑖+1 = 𝑦𝑖▽𝑥𝑖+1 is not
strictly increasing.

Widening is about sequences of iterates, that is, it is about how the possible values of variables
change at a given program point as control returns to it (for example, in a loop). It is usual to
merge the original abstraction at a widening point with the new value before applying widening
(the definition hints that this is sensible), so 𝑥▽𝑦 is really 𝑥▽(𝑥 ⊔ 𝑦). Notice that widening is
about more than controlled loss of precision within the representation, it is about enforcing
termination. A particularly crude widening would then be to return the top point of the lattice.
One point of interest is that by considering the topological structure of the abstract program
(in particular strongly closed components), widening need only been applied, and termination
checked, at certain nodes in the call graph [13].

For polyhedral analysis, widening as first introduced [3] allows the fixpoint calculation to
iterate through a point twice then on the third pass inequalities that are stable are retained and
others are discarded, this allows a fixpoint to be reached. The paper uses the double description
representation (which contains an implicit assumption of non-redundancy), but variations
on this approach, whatever the representation, remain the classic approach. A number of
heuristics as to how and when to widen are available and have been combined and refined in
[14]. These include refraining from widening if it can be determined that a chain is finite, and
more sophisticated delays of the application of widening.

The danger with the classic approach is that it widens too aggressively, jumping past more
subtle fixpoints leading to an over-approximation that can’t verify a correctness condition.
Various alternatives have been investigated. This includes widening with thresholds [15], where
the user supplies, before analysis, a series of thresholds to widen to. So, for example, in the
classic approach [1, 4]▽[1, 5] = [1,∞], but if the user has supplied some threshold 𝑛, then
[1, 4]▽[1, 5] = [1, 𝑛]. If the interval continues to expand, then once all thresholds are passed
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the classic widening applies and analysis will terminate; but, with some wisdom in the up front
choice of threshold it might be that the [1, 𝑛] interval is a fixpoint, improving the calculated
fixpoint and associated analysis.

This relies, to some extent, on the expertise and insight of the person conducting the analysis.
In addition, the technique is typically limited to intervals, that is, bounds on single variables,
and not capturing relational constraints. Another approach is to automate the selection of
thresholds, as suggested in the widening with landmarks approach of [16, 17]. The lookahead
widening of [18] is another attempt to find good values to widen to. Work on widening
continues, with [19] considering how it can be used when analysing programs containing
non-linear transformations, [20] tackling loops and how their analysis can be used to aid the
successful application of widening, whilst [21] provides a more general framework where
abstract interpretation can interact with bounded model checking and k-induction.

2.3. Weakly Relational Domains and Closure

When using weakly relational domains based on classes of inequalities such asTVPI or Octagons
for abstract interpretation, some consideration is required as to how to represent and maintain
the sets of inequalities. The choice of representation impacts on the cost of the domain operations,
with the choice made as a trade off between the complexity of the operations. Weakly relational
domains often use a closed form, where some redundant inequalities are made explicit. After
finding a closed system all non-redundant inequalities relating any pair of variables are made
explicit. For example, suppose that {𝑥− 𝑦 ≤ 1, 2𝑦 − 3𝑧 ≤ 2} is a system of inequalities, then
the closed system also includes the redundant inequality 2𝑥−3𝑧 ≤ 4. The relationship between
variables 𝑥, 𝑧 has been made explicit.

A closed system means that a variable can be projected out of a system in constant time by
simply dropping all constraints involving that variable. It also means that least upper bound
computation can be reduced to two dimensional convex hull problems, likewise satisfiability can
be computed at a planar level (plus entailment and equality are straightforward linear operations
with the closed form). These good operations are traded off against the cost of maintaining
the closed form. A typical program analysis step is to consider how a line of (abstracted) code
updates the representation. This is done incrementally, so there is interest in how to update a
closed representation upon the addition of a single new inequality (repeated applications of
this step can be used to find a closed system from an initially unclosed system). Incremental
closure for TVPI has been closely investigated in [6] where it is proved that any inequality
made explicit is the result of at most two computation steps.

The following reiterates some key definitions from [6]. Firstly, the set of variables that occur
in inequality 𝑐 is denoted vars(𝑐) and is defined:

Definition 8.

vars(𝑎𝑥+ 𝑏𝑦 ≤ 𝑒) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∅ if 𝑥 = 𝑦 ∧ 𝑎 = −𝑏
∅ else if 𝑎 = 𝑏 = 0
{𝑦} else if 𝑎 = 0
{𝑥} else if 𝑏 = 0
{𝑥, 𝑦} otherwise
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This allows the definition of syntactic projection of a system of inequalities onto a given set
of variables: simply select those inequalities including those variables.

Definition 9. The syntactic projection, denoted 𝜋𝑌 for some 𝑌 ⊆ 𝑋 , of system of inequalities
𝑆 ⊆ TVPI𝑋 is defined as 𝜋𝑌 (𝑆) = {𝑐 ∈ 𝑆 | vars(𝑐) ⊆ 𝑌 }.

This is used in a formal definition of a closed system of inequalities. Notice that a closed system
may include inequalities that are redundant even in a given projection (unary constraints). The
entailment operation, |=, is geometric inclusion. If 𝐶1 |= 𝐶2 and 𝐶2 |= 𝐶1, then 𝐶1 ≡ 𝐶2. The
definition of closed states that syntactic and semantic projection coincide:

Definition 10. A system 𝐶 ⊆ TVPI𝑋 is closed if the following predicate holds:

closed(𝐶) ⇐⇒ ∀𝑐 ∈ TVPI𝑋 . (𝐶 |= 𝑐 ⇒ 𝜋vars(𝑐)(𝐶) |= 𝑐)

Some inequalities in a projection might not be wanted, since they are redundant with respect
to all projections. The filter operation will be used to remove these, giving a set of inequalities
that is a minimal representation equivalent to the projection (noting that unary constraints are
retained, and that points and lines might have many such representations):

Definition 11. The mapping filter : 𝒫(TVPI𝑋) → 𝒫(TVPI𝑋) is defined:

filter(𝐶) = ∪{filter𝑌 (𝜋𝑌 (𝐶))|𝑌 ⊆ 𝑋 ∧ |𝑌 | ≤ 2}

where:

• filter𝑌 (𝐶) ⊆ 𝐶

• filter𝑌 (𝐶) ≡ 𝜋𝑌 (𝐶)

• for every 𝐶 ′ ⊂ filter𝑌 (𝐶), 𝐶 ′ ̸≡ 𝐶 .

The process of generating implied inequalities is based on the result operator that eliminates
a shared variable from a pair of inequalities. In the definition of complete below, result will be
lifting to sets of inequalities, referring to all pairwise applications of result.

Definition 12. If 𝑐1 ≡ 𝑎1𝑥+ 𝑏1𝑦 ≤ 𝑒1, 𝑐2 ≡ 𝑎2𝑥+ 𝑏2𝑧 ≤ 𝑒2 and 𝑎1𝑎2 < 0 then

𝑐 = result(𝑐1, 𝑐2, 𝑥) = |𝑎2|𝑏1𝑦 + |𝑎1|𝑏2𝑧 ≤ |𝑎2|𝑒1 + |𝑎1|𝑒2

otherwise result(𝑐1, 𝑐2, 𝑥) = ⊥.

At this point the function complete can be defined, that results in a minimal set of inequalities
which is closed.

Definition 13. 𝐼 ∼= 𝐼 ′ iff for all 𝑌 ⊆ 𝑋 such that |𝑌 | ≤ 2, 𝜋𝑌 (𝐼) ≡ 𝜋𝑌 (𝐼
′).

Definition 14. Let 𝐼 ⊆ TVPI𝑋 . Put 𝐼0 = filter(𝐼) and 𝐼𝑖+1 = filter(𝐼𝑖 ∪ result(𝐼𝑖, 𝐼𝑖)). Then
complete : 𝒫(TVPI𝑋) → 𝒫(TVPI𝑋) is defined

complete(𝐼) = 𝐼𝑛 where 𝐼𝑛+1
∼= 𝐼𝑛 and for every 0 ≤ 𝑚 < 𝑛, 𝐼𝑚+1 ̸∼= 𝐼𝑚.
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The following result (proved in [6]) states that when adding a single new inequality to a
complete system (a system whose completion is itself) at most two result steps are needed to
generate a new complete system.

Theorem 1. Consider adding 𝑐0 ∈ TVPI𝑋 to 𝐼 ⊆ TVPI𝑋 where complete(𝐼) = 𝐼 . If 𝑐 ∈
complete(𝐼 ∪ {𝑐0}) and 𝑐 ̸= false, then one of the following holds:

1. 𝑐 ∈ 𝐼 ∪ {𝑐0}
2. 𝑐 = result(𝑐0, 𝑐1) where 𝑐1 ∈ 𝐼

3. 𝑐 = result(result(𝑐0, 𝑐1), 𝑐2) where 𝑐1, 𝑐2 ∈ 𝐼

2.4. Widening and Closure: A Problem

There is a problem when using widening whilst calculating a fixpoint over weakly relational
domains. Widening attempt to weaken a system of inequalities by discarding inequalities
that are not displaying stability. This is syntactically calculated: consider 𝑥 and 𝑦 as sets of
inequalities, then 𝑥▽𝑦 = 𝑥 ∩ 𝑦. By maintaining a closed representation, weakly relational
domains are introducing redundant inequalities into the representation. The interaction of these
two is unclear, but an infinite loop of discarding an inequality that is immediately reintroduced
by closure is possible.

This problem is illustrated for Octagons by Miné [5], and has been reiterated in [22]. Consider
the following inequalities over Oct{𝑥,𝑦,𝑧}, where iterations are increments of 𝑖.

𝐶𝑖 = {𝑦 − 𝑥 ≤ 𝑖+ 1, 𝑥− 𝑦 ≤ 𝑖+ 1, 𝑧 − 𝑥 ≤ 𝑖+ 1, 𝑥− 𝑧 ≤ 𝑖+ 1, 𝑦 − 𝑧 ≤ 1, 𝑧 − 𝑦 ≤ 1}

Suppose an initial abstraction is:

𝐴 = {𝑦 − 𝑥 ≤ 1, 𝑥− 𝑦 ≤ 1, 𝑦 − 𝑧 ≤ 1, 𝑧 − 𝑦 ≤ 1}

then

𝐴0 = complete(𝐴) = {𝑦 − 𝑥 ≤ 1, 𝑥− 𝑦 ≤ 1, 𝑧 − 𝑥 ≤ 2, 𝑥− 𝑧 ≤ 2, 𝑦 − 𝑧 ≤ 1, 𝑧 − 𝑦 ≤ 1}

Now consider the first iteration without using widening:

𝐴1 = 𝐴0 ⊔ 𝐶0 = {𝑦 − 𝑥 ≤ 1, 𝑥− 𝑦 ≤ 1, 𝑧 − 𝑥 ≤ 2, 𝑥− 𝑧 ≤ 2, 𝑦 − 𝑧 ≤ 1, 𝑧 − 𝑦 ≤ 1}

The next iteration is calculated with widening, where widening drops the unstable constraints
on 𝑥, 𝑧, but closure using the complete function immediately introduces new constraints on
these variables:

𝐴1 ⊔ 𝐶1 = {𝑦 − 𝑥 ≤ 2, 𝑥− 𝑦 ≤ 2, 𝑧 − 𝑥 ≤ 2, 𝑥− 𝑧 ≤ 2, 𝑦 − 𝑧 ≤ 1, 𝑧 − 𝑦 ≤ 1}

𝐴1▽𝐶1 = {𝑧 − 𝑥 ≤ 2, 𝑥− 𝑧 ≤ 2, 𝑦 − 𝑧 ≤ 1, 𝑧 − 𝑦 ≤ 1}

𝐴2 = complete(𝐴1▽𝐶1) = {𝑦−𝑥 ≤ 3, 𝑥−𝑦 ≤ 3, 𝑧−𝑥 ≤ 2, 𝑥−𝑧 ≤ 2, 𝑦−𝑧 ≤ 1, 𝑧−𝑦 ≤ 1}
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The next iterate is then the below, noting that this time it is the constraints on 𝑥, 𝑧 that are
unstable:

𝐴3 = complete(𝐴2▽𝐶2) = {𝑦−𝑥 ≤ 3, 𝑥−𝑦 ≤ 3, 𝑧−𝑥 ≤ 4, 𝑥−𝑧 ≤ 4, 𝑦−𝑧 ≤ 1, 𝑧−𝑦 ≤ 1}

And so on. Closure hasn’t been accounted for in the use of stability in this definition of a
widening, and this isn’t a terminating sequence. Therefore, ▽ isn’t a widening in this context.
The solution proposed is simple [5]. At the widening point retain the widened (𝐴𝑖▽𝐶𝑖, not
closed) version of the Octagon and use this as the first argument of the classic widening in the
next iteration. A closed version of this may be used for continuing the abstract computation.

Gange, et al [22] isolate the problem: lattices are semantic, classic widening is syntactic,
and closure has no semantic effect (at least when considering the system as a whole). But this
representation dependence of the correct behaviour is “not fully satisfactory” [5].

The solution presented in [22, 11], introduces a new concept of isolated widening operating
on an alternative structure. In [23] elements of weakly relational domains are considered purely
geometrically [24], allowed the classic approach to widening to be retained, sidestepping the
syntactic problems of closure. Their work also leads to a closure algorithm for Octagons, so
that other domain operations can still use this form.

2.5. Relaxation

A final point of consideration is relaxation of systems of constraints. System of constraints
𝑦 is said to be a relaxation of 𝑥 if 𝑥 ⊏ 𝑦. Noting again that widening is about enforcing
termination, it should also be noted that changing an element from an abstract domain might
have another motivation, that is, to maintain a tractable size of representation in order that
a fixpoint computation does not grind to a halt. The more expressive the set of constraints
underlying the abstract domain is, the more this becomes an issue. The concept of relaxation is
geometrical, but again interacts with the syntactic maintenance of a closed form.

3. Worked Example

This example works through the analysis of a small section of code to illustrate the use of
abstract interpretation using weakly relational domains for program verifcation. For a full
introduction to abstract interpretation see [2].

Consider the following implementation of a C standard library function, with line numbers:

( 1 ) char ∗ s t r d u p ( c o n s t char ∗ s ) {
( 2 ) s i z e _ t n = s t r l e n ( s ) ;
( 3 ) char ∗ r e s u l t = m a l l o c ( n + 1 ) ;
( 4 )
( 5 ) s i z e _ t i = 0 ;
( 6 ) s i z e _ t j = 0 ;
( 7 )
( 8 ) wh i l e ( i < n ) {
( 9 ) r e s u l t [ j ] = s [ i ] ;
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( 1 0 ) i = i + 1 ;
( 1 1 ) j = j + 1 ;
( 1 2 ) }
( 1 3 ) r e s u l t [ j ] = ’ \ 0 ’ ;
( 1 4 )
( 1 5 ) r e t u r n r e s u l t ;
( 1 6 ) }

If it is known that s points to a valid C string and strlen returns its length then this is
clearly memory-safe. When reading from s, 𝑖 ∈ [0, 𝑛 − 1] and when writing to 𝑗 ∈ [0, 𝑛].
Showing this via abstract interpretation is not as simple as it might appear.

First consider using the Int{𝑖,𝑗,𝑛} abstract domain, and assume no hidden dependencies. At
the start of the loop on line (8) observe that 𝑖 ∈ [0, 0], 𝑗 ∈ [0, 0], 𝑛 ∈ [0,∞], as in Figure 1 a).

Each instruction in the code has an abstract equivalent transforming the lattice point as
passed to that line. For example, on line (10) the increment on the program variable i will
correspondingly shift the polyhedron representing the program state at this point by one in the
i direction. At the end of the first iteration around the loop, at line (12) 𝑖 ∈ [1, 1], 𝑗 ∈ [1, 1].
Control returns to the start of line (8) and the new values for 𝑖, 𝑗 need to be merged with the
previous abstraction at this program point. The start of the loop on line (8) can be reached
either as control passes from line (6), or as control returns to the head of the loop from line (12).
The abstract domain value at this point needs to merge these two control paths, summarising
the values that can be taken. This is achieved by computing the least upper bound of the existing
abstract domain value with the values coming from the loop. The merge results in new intervals
for the variables, 𝑖 ∈ [0, 1], 𝑗 ∈ [0, 1]. Note that this region includes points like (0, 1, 0) which
are not possible and are only present because the over-approximation is unable to express the
relation between variables.

Repeating this will result in the intervals for the variables at line (8) increasing. However,
this process will not terminate, since the values will not stabilise at a fixpoint. This necessitates
widening. To accelerate (or indeed to reach) a fixpoint, information is discarded or generalised,
until the abstract domain value at the merge point is stable. The classic way to apply widening
is to execute the abstract loop two or three times, then to observe which constraints are stable
from one iteration to the next, retaining only these. The result is a fixpoint. Note that this is
often a syntactic observation, and that two semantically equivalent but syntactically different
points might well result in widening being applied.

Using interval domain Int{𝑖,𝑗,𝑛} , for 𝑖 and 𝑗 only the lower bounds are stable across iterations,
hence widening applies:

{𝑖 ∈ [0, 1], 𝑗 ∈ [0, 1], 𝑛 ∈ [0,∞]}▽{𝑖 ∈ [0, 2], 𝑗 ∈ [0, 2], 𝑛 ∈ [0,∞]}

= {𝑖 ∈ [0,∞], 𝑗 ∈ [0,∞], 𝑛 ∈ [0,∞]}

This is a fixpoint (indeed the least fixpoint for this choice of abstract domain), but this does not
verify memory safety at line (13). An analysis using this would throw a spurious warning to
the developer.

The Int abstract domain does not track relations between variables. The verification failure
above suggests a need to track (some) relations between variables. Equalities might make a
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Figure 1: Fixpoint interations over TVPI{𝑖,𝑗,𝑛}, with widening

tempting choice of abstract domain: 𝑖 = 𝑗 is a loop invariant at the head of the loop, however
it is not maintained during the loop; at the start of line (11) 𝑖 = 𝑗 + 1, so something more
expressive than equalities is needed.

Consider using the TVPI{𝑖,𝑗,𝑛} domain. At the first merge point considered above, the same
inequalities are merged. The least upper bound calculation results in {−𝑖 ≤ 0,−𝑗 ≤ 0, 𝑖 ≤
𝑛, 𝑖 − 𝑗 ≤ 0, 𝑗 − 𝑖 ≤ 0, 𝑖 ≤ 1, 𝑗 ≤ 1}. This represents a section of plane reaching through
𝑖 = 𝑗 (see Figure 1 b)). Repeating this will result in the plane section increasing in size (as in
Figure 1 c)). At the next iteration widening is applied, retaining only the stable inequalities
{−𝑖 ≤ 0,−𝑗 ≤ 0, 𝑖 ≤ 𝑛, 𝑖 − 𝑗 ≤ 0, 𝑗 − 𝑖 ≤ 0}. as illustrated in Figure 1 d). This fixpoint
implies that 𝑗 ≤ 𝑛 (indeed in the closed representation used this will be explicit) hence the
array access on line (13) can be verified. This would be the case if unrestricted polyhedra were
used, but also if a less expressive weakly relational domain such as Oct{𝑖,𝑗,𝑛}, or even bounded
differences, DBM{𝑖,𝑗,𝑛}, were used.

4. Results

This section works through three examples illustrating the use of widening in over-approximating
fixpoints within geometric structures. It discusses the related use of relaxation to throttle the
size of representation and in particular addresses the problems that can arise whilst applying
widening with weakly relational domains.
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Figure 2: A widening tribute to Zeno of Elea

4.1. Problem 1

Consider a transfer function for sets 𝐶𝑖. This translates a shape (approximation) by one unit in
the 𝑦-axis, and takes its join with a point half way between the top right hand corner of the
translated shape and 𝑥 = 2, and with the original 𝐶𝑖.

𝐶𝑖+1 = 𝐶𝑖 ∪ {(𝑥, 𝑦 + 1) | (𝑥, 𝑦) ∈ 𝐶𝑖} ∪ {(1 + max𝑥(𝐶𝑖)

2
,max𝑦(𝐶𝑖) + 1)}

With initial set 𝐶0 = {(𝑥, 𝑦) | −𝑥 ≤ 0, 𝑦 ≤ 1, 𝑥− 𝑦 ≤ 0}, this gives the monotonic sequence
of spaces illustrated in Figure 2.
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Consider applying widening to this sequence, with abstract domains Int{𝑥,𝑦}, Oct{𝑥,𝑦},
TVPI{𝑥,𝑦}.

In the first instance, each 𝐶𝑖 will be approximated by its bounding box. When classic widening
is applied the increasing upper bounds on 𝑥 and 𝑦 will be unstable and the fixpoint {−𝑥 ≤
0,−𝑦 ≤ 0} will be found. If widening with thresholds were applied and threshold 𝑡 = 2 were
supplied then a stronger over-approximation would be found, namely {−𝑥 ≤ 0, 𝑥 ≤ 𝑡,−𝑦 ≤ 0}.
Repeating with Octagons, with 𝐶𝑖 for 𝑖 ≥ 1, the space can’t be precisely described, and the
end result after widening would add the 𝑥− 𝑦 ≤ 0 constraint to the fixpoint calculated with
intervals (either with or without thresholds).

Analysing with TVPI, each space can be precisely described and the set of constraints will
grow as in the picture, {−𝑥 ≤ 0,−𝑦 ≤ 0, 𝑥−𝑦 ≤ 0, 𝑥−2𝑦 ≤ 0.5, 𝑥−4𝑦 ≤ 1, 𝑥−8𝑦 ≤ 1.5, ...}
(plus upper bounds on 𝑥 and 𝑦). In fact, these constraints are in Log{𝑥,𝑦}. When widening is
applied, all but the final constraint (and the upper bounds) will be stable. Again, a widening
with thresholds approach might add an upper bound on 𝑥.

The classic widening is typically applied after two or three iterations without widening. In
this example, there is an attraction in applying more iterations to get a better approximation.
This presents three problems to be addressed: i) the practical question of how many inequalities
to maintain, and how to relax the system to control the number of inequalities; ii) the practical
question of how to determine the number of iterations to apply before using widening; iii)
the theoretical question of how to recognise the bound being approached as the limit of the
sequence of inequalities, and add this without relying on up front thresholds.

4.2. Problem 2

Scientific programming often uses trigonometric functions. Analysis of these can be problematic.
Consider a transfer function for set of points 𝐶𝑖, parameterised by constant 𝑟, where 𝜃 is an
angle.

𝐶𝑖+1 = {(𝑟(𝑥.cos(𝜃)− 𝑦.sin(𝜃), 𝑟(𝑥.sin(𝜃) + 𝑦.cos(𝜃)) | (𝑥, 𝑦) ∈ 𝐶𝑖, 𝜃 ∈ [0, 2𝜋), 𝑟 ∈ Q} ⊔𝐶𝑖

This rotates the current iteration by 𝜃, scaling by 𝑟 and taking the least upper bound with the
previous iterate. Notice that if 𝑟 = 1 then vertices of the described space are points on the
circumference of a circle; if 𝑟 > 1 then points diverge; if 𝑟 < 1 then points become closer to
the centre of the circle. Figure 3 illustrates some possible iterations with 𝐶0 = {(4, 0)}, and
various choices for 𝜃 and 𝑟.

Case a) has 𝜃 = 𝜋
3 and 𝑟 = 1. Here, a fixpoint describing the space is a hexagon which can

be described with TVPI inequalities; this would be found assuming that the analysis was run
for a sufficient number of iterations without widening. Notice that if the abstract domain used
were intervals or Octagons then each iterate would over-approximate the space, this space
will diverge, and when widening is applied to enforce termination the result would be the top
element, the whole plane.

Case b) has 𝜃 = 3𝜋
10 and 𝑟 = 1. This is somewhat similar to case a), although the analysis needs

more iterations (and three times round the circle) to reach a fixpoint, which will be an icosagon.
The diagram illustrates the approximation after seven iterations, with the arrow pointing to the
point that will need to be incorporated when the next least upper bound is calculated. It isn’t
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Figure 3: Circle widening problem

too hard to see how 𝜃 can be chosen so that the fixpoint is arbitrarily complicated, or indeed
non-existent. This might motivate some kind of relaxation, however, such a relaxation will
always lead to an over-appoximation of the space including points from without the circle, and
the space diverges, as above. The desired fixpoint is the circle, but this can’t be represented
using polyhedral domains.

As noted above, if 𝑟 > 1 then the approximation will always diverges, hence the only fixpoint
is the whole plane.

Now suppose that 𝑟 < 1. There is a critical value for 𝑟 where fixpoint behaviour changes,
that is when 𝑟 =

√
2
2 . As can be seen in Figure 3 d) this is the value at which the iteration of

a bounding box is contained within itself; this will be discussed further below. In Figure 3 c),
𝜃 = 𝜋

4 and 𝑟 = 0.8 >
√
2
2 . The iterations are approximated by a spiral, leading to the fixpoint

illustrated. Again, this can be modelled with TVPI constraints. Suppose instead that this was
approximated using Int{𝑥,𝑦}. 𝐶1 would be overapproximated with the dashed box whose bottom
right corner is (4, 0). To calculate 𝐶2 this space is translated to give the dashed box tilted by
𝜋
4 and the least upper bound is calculated, resulting in the containing box. 𝐶2 contains points
outside of the circle and further iterations will diverge. Once widening is applied the result will
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again be the plane, the top element of the lattice of Int{𝑥,𝑦}.

Finally, consider the case illustrated in Figure 3 d). Here, 𝜃 = 𝜋
4 and 𝑟 =

√
2
2 . To illustrate

the point, a rather gross over-approximation of the space is given by the bounding box which
translates into a subspace of itself at the next iteration, and widening need not be considered. As
previously, this space can be described precisely in TVPI{𝑥,𝑦}, whilst (as shown by the dotted
lines) Oct{𝑥,𝑦} can also approximate this space, reaching a fixpoint.

This discussion has illustrated some of the issue arising when computing fixpoints of iterates
built using trigonometric functions. It poses several questions: i) what is the correct patience
to show before performing widening? ii) when and how can polyhedral approximations be
relaxed to given improved performance and fixpoints? iii) what is the right domain to use when
analysing code using trigonometric (as in this case, matrix) functions? One response to the
last question might be that polyhedral approximations are the wrong choice and a domain
capturing circles and ellipses, such as that in [25], might be a better choice. In this case, an
addition question is how do polyhedral abstract domains interact with non-polyhedral abstract
domains?

4.3. Problem 3

This section returns to the example from Section 2.4, which demonstrated problematic behaviour
when closure and widening interact. As noted there, the problem arises because widening is
essentially a semantic notion about how (for geometric systems) the space is allowed to expand,
but that it is often implemented syntactically by observing the form of constraints. To put it
another way, is the lattice of polyhedra a lattice of convex spaces, or is it a lattice of sets of
inequalities? Closure is a syntactic notion and the redundant inequalities introduced interfere
with the straightforward correspondence, that the classic approach to widening relies upon,
between stability of inequalities and the way in which they are removed.

A widening is given below that injects some semantics into the procedure, using entailment
checking to determine whether or not apparently stable inequalities should be retained.

Suppose that 𝐴𝑖 is a closed system of TVPI inequalities, and that 𝐶𝑖 are the inequalities
being merged at a widening point. As usual, widening takes place between 𝐴𝑖 and 𝐴𝑖 ⊔ 𝐶𝑖.
The widening proposed performs the classic widening on these inputs, closes the system, then
uses entailment checking to remove inequalities whose apparently stability is an artefact of the
closed representation maintaining redundant inequalities.

Firstly, compute the classic widening (which of course isn’t a widening in this context), giving
a set of constraints 𝑐ℓ:

complete(𝐴𝑖▽(𝐴𝑖 ⊔ 𝐶𝑖)) = {𝑐1, ..., 𝑐𝑘, 𝑐𝑘+1, ..., 𝑐𝑛}

Here, 𝑐1, ..., 𝑐𝑘 /∈ 𝐴𝑖 (that is, are introduced by closure) and 𝑐𝑘+1, ..., 𝑐𝑛 ∈ 𝐴𝑖. Then the new
widening 𝐴𝑖+1 = 𝐴𝑖▽

′
𝐶𝑖 is given by:

𝐴𝑖+1 = {𝑐𝑗 | 𝑘+1 ≤ 𝑗 ≤ 𝑛,𝐴𝑖 ∖ {𝑐𝑗} ̸|= 𝑐𝑗 , or 𝐴𝑖 |= 𝑐𝑗 and 𝑐𝑘+1, ..., 𝑐𝑗−1, 𝑐𝑗+1, ..., 𝑐𝑛 |= 𝑐𝑗}

That is, stable inequalities are dropped if 𝐴𝑖 ∖ {𝑐𝑗} |= 𝑐𝑗 (they are redundant in 𝐴𝑖) and
𝑐𝑘+1, ..., 𝑐𝑗−1, 𝑐𝑗+1, ..., 𝑐𝑛 ̸|= 𝑐𝑗 (they are non-redundant in complete(𝐴𝑖 ⊔ 𝐶𝑖)).
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Lemma 1. Where 𝐴𝑖+1 = 𝐴𝑖▽
′
𝐶𝑖 for closed 𝐴𝑖, complete(𝐴𝑖+1) = 𝐴𝑖+1

Proof. Suppose some 𝑐ℓ ∈ complete(𝐴𝑖+1), but 𝑐ℓ /∈ 𝐴𝑖+1. Then 𝑐ℓ can be derived from
inequalities in 𝐴𝑖+1 using the result operation. Since 𝐴𝑖+1 ⊆ 𝐴𝑖, 𝑐ℓ can also be derived from
𝐴𝑖, hence 𝑐ℓ ∈ 𝐴𝑖+1 by definition.

Lemma 2. ▽′ is a widening.

Proof. Since ▽′ only retains inequalities explicit in the previous iterations, and all iterates are
finite sets, stability is reached for a set of constraints or the empty set.

Returning to the example from Section 2.4. 𝐴0 is as before:

𝐴0 = complete(𝐴) = {𝑦 − 𝑥 ≤ 1, 𝑥− 𝑦 ≤ 1, 𝑧 − 𝑥 ≤ 2, 𝑥− 𝑧 ≤ 2, 𝑦 − 𝑧 ≤ 1, 𝑧 − 𝑦 ≤ 1}

Next, 𝐴1 is again as before, with no widening applied:

𝐴1 = {𝑦 − 𝑥 ≤ 1, 𝑥− 𝑦 ≤ 1, 𝑧 − 𝑥 ≤ 2, 𝑥− 𝑧 ≤ 2, 𝑦 − 𝑧 ≤ 1, 𝑧 − 𝑦 ≤ 1}

Now compute the classic widening. Here, the constraints in 𝑥, 𝑦 are unstable, but new constraints
on these variables are introduced in closure.

𝐴1 ⊔ 𝐶1 = {𝑦 − 𝑥 ≤ 2, 𝑥− 𝑦 ≤ 2, 𝑧 − 𝑥 ≤ 2, 𝑥− 𝑧 ≤ 2, 𝑦 − 𝑧 ≤ 1, 𝑧 − 𝑦 ≤ 1}

complete(𝐴1▽(𝐴1⊔𝐶1)) = {𝑦−𝑥 ≤ 3, 𝑥−𝑦 ≤ 3, 𝑧−𝑥 ≤ 2, 𝑥−𝑧 ≤ 2, 𝑦−𝑧 ≤ 1, 𝑧−𝑦 ≤ 1}

Now compute 𝐴2 and observe that

𝐴2 = {𝑦 − 𝑧 ≤ 1, 𝑧 − 𝑦 ≤ 1}

The inequalities in 𝑥, 𝑦 are not stable, hence they are dropped. The inequalities in 𝑥, 𝑧 are
stable, but they were redundant in 𝐴1, and are not entailed by the other stable inequalities
in complete(𝐴1▽(𝐴1 ⊔ 𝐶1)), hence are dropped along with the unstable inequalities. Also
observe that complete(𝐴2) = 𝐴2, and that this is fixpoint.

Is this entirely satisfactory? Not necessarily, the extensive use of entailment checking might
make this widening particularly expensive to apply. However, it might be that a practical
implementation marks inequalities introduced by closure, which chimes with the observation
that maintaining the widening point as a non-closed system allows a fixpoint to be observed.

The tension between the semantic notion of widening and the syntactic might not be prob-
lematic when the convex space has a unique representation using the syntactic representation.
However, at least for constraint based systems, a potential problem exists even if a closed system
is not maintained: suppose that a point is to be represented as a polyhedron over multiple vari-
ables; which constraints are used to do this, there are infinitely many choices? Two successive
iterates need to choose the same representation for stability to be syntactically observed. It
might be hoped, indeeded expected, that this will be the case, but this needs to be enforced.

A final problem remains. The new widening results in a closed system, but part of the working
involves applying closure to the system resulting from the classic widening. This potentially
means calculating closure from scratch, which is an expensive operation; what refinements are
available to avoid the complete recalculation of closure?
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5. Conclusion

This paper has looked at widening for polyhedral constraints, with a focus on weakly relational
domains and TVPI in particular. It has illustrated the importance of capturing relations between
variables whilst performing program analysis for verification. The key role of widening in this
analysis has been highlighted. The application of widening is not always straightforward and
some difficult cases highlighting this have been presented. The interaction between widening
and the closed forms maintained in weakly relational domains has been investigated and a new
widening has been introduced that gives a new way to sidestep the problem. The paper also
contains a lot of questions, some of which require theoretical development of widening, others
of which require empirical investigation of the performance of widening. Future work is to
address these questions more fully by carrying out experimental work with real-life programs
to illuminate where problematic structures occur and where the performance of widening needs
to be improved.
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