
A Hybrid SAT and Lattice Reduction Approach for
Integer Factorization
Yameen Ajani

1
, Curtis Bright

1

1University of Windsor, Windsor, Ontario, Canada

Abstract
The difficulty of factoring large integers into primes is the basis for cryptosystems such as RSA. Due to

the immense popularity of RSA there have been many proposed attacks on the factorization problem such

as side-channel attacks where some bits of the prime factors are available. When enough bits of the prime

factors are known, two methods that are effective at solving the factorization problem are satisfiability

(SAT) solvers and Coppersmith’s method. The SAT approach reduces the factorization problem to a

Boolean satisfiability problem, while Coppersmith’s approach uses lattice basis reduction. Both methods

have their advantages, but they also have their limitations: Coppersmith’s method does not apply when

the known bit positions are randomized, while SAT-based methods can take advantage of known bits in

arbitrary locations but have no knowledge of the algebraic structure exploited by Coppersmith’s method.

This work is the first to explore the potential of using a hybrid SAT and computer algebra approach to

efficiently solve random leaked-bit factorization problems. Specifically, Coppersmith’s method is invoked

by a SAT solver to determine whether a partial bit assignment can be extended to a complete assignment.

Our preliminary results demonstrate that this augmentation improves the efficiency of the solver by

orders of magnitude.

Keywords
Factoring, SAT, Lattice Basis Reduction, Cryptography, RSA, Coppersmith’s Method

1. Introduction

Integer factorization is a fundamental problem in mathematics and computer science with

wide-ranging applications in cryptography, coding theory, and number theory. The difficulty of

factoring large integers is the basis for cryptosystems such as RSA [1], which relies on the fact

that it is hard to factor the product of two large prime numbers. As a result, integer factorization

has been the subject of intense research for decades. Many algorithms have been developed to

tackle this problem, some of which rely on additional information that may be leaked through

side-channel attacks.

Side-channel attacks are a class of attacks that aim to exploit information that is unintention-

ally leaked by a computer system or a device during its normal operation. Cold boot attacks

are a type of side-channel attack exploiting the information remaining in the random-access

memory (RAM) of a computer system even after it has been powered off and then back on

8th International Workshop on Satisfiability Checking and Symbolic Computation, July 28, 2023, Tromsø, Norway,
Collocated with ISSAC 2023
$ ajaniy@uwindsor.ca (Y. Ajani); cbright@uwindsor.ca (C. Bright)

� http://www.curtisbright.com/ (C. Bright)

� 0000-0002-0462-625X (C. Bright)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:ajaniy@uwindsor.ca
mailto:cbright@uwindsor.ca
http://www.curtisbright.com/
https://orcid.org/0000-0002-0462-625X
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


again. Halderman et al. [2] demonstrated that this remanence effect makes possible practical

and nondestructive attacks that recover some bits of secret keys stored in a computer’s memory.

In 2013, Patsakis [3] demonstrated that information obtained through cold boot attacks could

be utilized to reconstruct RSA private keys with partial key exposure via the usage of Boolean

satisfiability (SAT) solvers. The cold boot attack retrieves some bits of the two primes 𝑝 and 𝑞
and the decryption exponent used in RSA. With this information, he created SAT instances that

when solved would determine the bits of the factors 𝑝 and 𝑞.

A separate approach to the factorization problem, when partial information about the factors

is known, was proposed by Coppersmith [4]. Coppersmith’s method uses lattice basis reduction

to factor integers in polynomial time when enough bits of one of the factors is known and the

unknown bits are consecutive.

The SC2 Project. Combining SAT with computer algebra systems (CAS) was proposed in

2015 by E. Ábrahám [5, 6] and independently by Zulkoski et al. [7]. Soon afterwards, the “SC
2

project” [8] started with the aim of facilitating connections between the satisfiability checking

and symbolic computation communities. Many successful applications have arisen as a result of

this connection: in particular, see M. England’s summary [9] for an overview of progress up to

2021, and Bright et al.’s summary [10] of MathCheck, a system that queries a CAS from inside a

SAT solver. These works show the power of using SAT solvers in combination with symbolic

computation and inspire our SAT+CAS approach for the factorization problem. More precisely,

we explore the potential of a hybrid approach that combines SAT solvers with Coppersmith’s

method—the first attempt to investigate the effectiveness of such a hybrid approach.

2. Proposed Method

We focus on the RSA factoring problem in this work. Hence, we consider two primes, 𝑝 and 𝑞,

of the same bitlength. The task is to factor the semiprime 𝑁 = 𝑝 · 𝑞. We assume that a certain

percentage of bits of both the primes is known. This is a strong assumption, but in practice,

a cold boot attack may leak this extra information [2]. However, we do not presume that the

attack has the ability to control which bits are known and suppose the known bits are distributed

uniformly at random.

Our approach combines a SAT solver with Coppersmith’s method for integer factorization.

Coppersmith’s algorithm is an approach that uses lattice basis reduction for finding small

solutions to polynomials modulo an integer in polynomial time [4, 11]. In particular, it can

factorize 𝑁 when at least 50% of the most significant bits (MSBs) of 𝑝 is known. For example, 𝑝
can be written as 𝑝 = 𝑝̃+ 𝑥0 where 𝑝̃ is an integer that has at least 50% of the same MSBs as 𝑝
and 𝑥0 is an integer that encodes the unknown low bits of 𝑝. As an example (using decimal

digits instead of binary digits for simplicity), if 𝑝 = 2837 and 𝑝̃ = 2830 then 𝑥0 = 7.

Coppersmith’s method constructs a lattice where every vector in the lattice corresponds to a

polynomial having 𝑥0 as a root modulo 𝑁 , the number to factor. If the vector is short enough

then 𝑥0 will also be a root of its associated polynomial over the integers, not just modulo 𝑁 .

Since the integer roots of a polynomial can be computed in polynomial time [12] this reduces

the problem of finding 𝑥0 to the problem of finding a short vector in Coppersmith’s lattice. This

is accomplished with a lattice basis reduction algorithm such as Lenstra–Lenstra–Lovász’s LLL

40



Figure 1: A diagram of our SAT+CAS method for the factorization problem. Coppersmith’s method is
invoked whenever at least 60% of the high bits of 𝑝 are assigned. If the high bits of 𝑝 were set correctly
then Coppersmith’s method will reveal its low bits and the solver terminates. If the high bits were set
incorrectly, then Coppersmith’s method will fail and a “blocking clause” is learned telling the solver to
backtrack and try a new assignment of bits.

algorithm [13].

Because Coppersmith’s method requires the unknown bits of the prime 𝑝 to be consecutive,

it cannot directly be used in the case when the known bits of 𝑝 are randomly distributed. Thus,

our method starts with a SAT encoding of the factorization problem [14] allowing the leaked

bits to be given to the solver as unit clauses. However, the SAT solver alone will not exploit

the algebraic properties used by Coppersmith’s method. Thus, in order to achieve the best of

both worlds we call Coppersmith’s method from within the SAT solver whenever the solver’s

current partial assignment has assigned values to the top 60% of the bits of 𝑝. Even though

Coppersmith’s method works when 50% MSBs of 𝑝 are known, we call Coppersmith when 60%

MSBs are known to reduce the number of calls to Coppersmith. Figure 1 visually depicts how

the technique works.

3. Implementation and Results

The implementation uses a programmatic version of MapleSAT [15] developed for the Math-

Check project [16]. The conjunctive normal form (CNF) instances are generated using the CNF
Generator for Factoring Problems by P. Purdom and A. Sabry [17]. The version of Coppersmith’s

algorithm used is a custom implementation in C++ using the GMP [18], MPFR [19], fplll [20],

and FLINT [21] libraries.

Ten randomly generated instances encoding the factorization problem of a 256-bit

semiprime 𝑁 were generated and each instance was tested with known bit percentages ranging

from 40–90%. These preliminary tests show an orders-of-magnitude decrease in the running

41



90 85 80 75 70 65 60 55 50 45 40
% Known Bits

23

26

29

212

215

218

Ti
m

e 
(S

ec
on

ds
) -

 L
og

 sc
al

e
SAT+CAS vs SAT - Varying % Known Bits (256-bit N)

SAT+CAS
SAT

128 160 192 224 256 288 320 352 384 416 448 480 512 544 576
RSA Key Size (N) in Bits

21

24

27

210

213

216

Ti
m

e 
(S

ec
on

ds
) -

 L
og

 sc
al

e

SAT+CAS vs SAT - Varying N (75% Known Bits)
SAT+CAS
SAT

Figure 2: The left plot shows a comparison of the running time of the SAT and SAT+CAS approaches on
a 256-bit factorization problem using a varying percentage of known bits. The right plot compares the
running time for different sizes of 𝑁 and 75% known bits. Both plots show times on a logarithmic scale.

time when the hybrid SAT+CAS approach is compared with the SAT solver alone. For instance,

with 75% known bits the average runtime of the SAT solver by itself across the ten random

instances was 5019.8 seconds, while the average runtime of the SAT+CAS solver was 108.6

seconds. In these instances Coppersmith was called an average of 83,564 times with a mean

running time of 0.8 milliseconds in each execution. Plots of the running times we observed

are shown in Figure 2. The plot on the right shows how the running time varies with different

bit sizes of 𝑁 when 75% of bits of both the primes are randomly set. For example, a 512-bit 𝑁
can be factored in an average of about 30 minutes. This is significantly faster than the SAT

approach and brute-force guessing (even using Coppersmith to speed up the guessing process),

given that the upper-half of 𝑝 will contain around 32 unknown bits.

References

[1] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and

public-key cryptosystems, Communications of the ACM 21 (1978) 120–126. doi:10.1145/
359340.359342.

[2] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J.

Feldman, J. Appelbaum, E. W. Felten, Lest we remember: Cold-boot attacks on encryption

keys, Commun. ACM 52 (2009) 91–98. doi:10.1145/1506409.1506429.

[3] C. Patsakis, RSA private key reconstruction from random bits using SAT solvers, IACR

Cryptol. ePrint Arch. 2013 (2013) 26.

[4] D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnera-

bilities, J. Cryptology 10 (1997) 233–260. doi:10.1007/s001459900030.

[5] E. Ábrahám, Building bridges between symbolic computation and satisfiability checking,

in: K. Yokoyama, S. Linton, D. Robertz (Eds.), Proceedings of the 2015 ACM on International

Symposium on Symbolic and Algebraic Computation, ISSAC 2015, Bath, United Kingdom,

July 6–9, 2015, ACM, 2015, pp. 1–6. doi:10.1145/2755996.2756636.

42

http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/1506409.1506429
http://dx.doi.org/10.1007/s001459900030
http://dx.doi.org/10.1145/2755996.2756636


[6] E. Abraham, Symbolic computation techniques in satisfiability checking, in: 2016 18th

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), IEEE, 2016, pp. 3–10. doi:10.1109/synasc.2016.014.

[7] E. Zulkoski, V. Ganesh, K. Czarnecki, MathCheck: A math assistant via a combination of

computer algebra systems and SAT solvers, in: Automated Deduction - CADE-25, Springer

International Publishing, 2015, pp. 607–622. doi:10.1007/978-3-319-21401-6_41.

[8] E. Ábrahám, J. Abbott, B. Becker, A. M. Bigatti, M. Brain, B. Buchberger, A. Cimatti, J. H.

Davenport, M. England, P. Fontaine, S. Forrest, A. Griggio, D. Kroening, W. M. Seiler,

T. Sturm, Satisfiability checking and symbolic computation, ACM Communications in

Computer Algebra 50 (2017) 145–147. doi:10.1145/3055282.3055285.

[9] M. England, SC-Square: Overview to 2021, in: C. Bright, J. Davenport (Eds.), Proceedings

of the 6th SC-Square Workshop, 2022, pp. 1–6. URL: https://ceur-ws.org/Vol-3273/invited1.

pdf.

[10] C. Bright, I. Kotsireas, V. Ganesh, When satisfiability solving meets symbolic computation,

Communications of the ACM 65 (2022) 64–72. doi:10.1145/3500921.

[11] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited,

in: IMA Conference on Cryptography and Coding, 1997, pp. 131–142. doi:10.1007/
BFb0024458.

[12] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, Cambridge University Press,

2013. doi:10.1017/cbo9781139856065.

[13] A. K. Lenstra, H. W. Lenstra, L. Lovász, Factoring polynomials with rational coefficients,

Mathematische Annalen 261 (1982) 515–534. doi:10.1007/bf01457454.

[14] D. E. Knuth, The art of computer programming, Volume 4, Fascicle 6: Satisfiability, Addison-

Wesley Professional, 2015. URL: https://dl.acm.org/doi/abs/10.5555/2898950.

[15] J. H. Liang, V. Ganesh, P. Poupart, K. Czarnecki, Learning rate based branching heuristic

for SAT solvers, in: Theory and Applications of Satisfiability Testing - SAT 2016 - 19th

International Conference, Bordeaux, France, July 5–8, 2016, Proceedings, 2016, pp. 123–140.

doi:10.1007/978-3-319-40970-2_9.

[16] C. Bright, V. Ganesh, A. Heinle, I. Kotsireas, S. Nejati, K. Czarnecki, MathCheck2:

A SAT+CAS verifier for combinatorial conjectures, in: Computer Algebra in Scien-

tific Computing, Springer International Publishing, 2016, pp. 117–133. doi:10.1007/
978-3-319-45641-6_9.

[17] P. Purdom, A. Sabry, Cnf generator for factoring problems, 2003. https://cgi.luddy.indiana.

edu/~sabry/cnf.html.

[18] T. Granlund, the GMP development team, GNU MP: The GNU Multiple Precision Arith-

metic Library, 5.0.5 ed., 2012. http://gmplib.org/.

[19] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: A multiple-precision

binary floating-point library with correct rounding, ACM Trans. Math. Softw. 33 (2007)

13–es. doi:10.1145/1236463.1236468.

[20] The fplll development team, fplll, a lattice reduction library, Version: 5.4.4, 2023. Available

at https://github.com/fplll/fplll.

[21] W. Hart, F. Johansson, S. Pancratz, FLINT: Fast Library for Number Theory, 2013. Version

2.9.0, https://flintlib.org.

43

http://dx.doi.org/10.1109/synasc.2016.014
http://dx.doi.org/10.1007/978-3-319-21401-6_41
http://dx.doi.org/10.1145/3055282.3055285
https://ceur-ws.org/Vol-3273/invited1.pdf
https://ceur-ws.org/Vol-3273/invited1.pdf
http://dx.doi.org/10.1145/3500921
http://dx.doi.org/10.1007/BFb0024458
http://dx.doi.org/10.1007/BFb0024458
http://dx.doi.org/10.1017/cbo9781139856065
http://dx.doi.org/10.1007/bf01457454
https://dl.acm.org/doi/abs/10.5555/2898950
http://dx.doi.org/10.1007/978-3-319-40970-2_9
http://dx.doi.org/10.1007/978-3-319-45641-6_9
http://dx.doi.org/10.1007/978-3-319-45641-6_9
https://cgi.luddy.indiana.edu/~sabry/cnf.html
https://cgi.luddy.indiana.edu/~sabry/cnf.html
http://gmplib.org/
http://dx.doi.org/10.1145/1236463.1236468
https://github.com/fplll/fplll
https://flintlib.org

	1 Introduction
	2 Proposed Method
	3 Implementation and Results

