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Abstract
Computational algebraic geometry has already shown its great potential as the underlying tool for
implementing automated reasoning algorithms in elementary geometry, in a complex numbers frame-
work, currently available, and quite performant, at GeoGebra and GeoGebra Discovery. Although this
complex-field approach is often fully operative for addressing geometry statements, not involving in-
equalities, over the real numbers, in our presentation we will describe our recent work concerning the
specific treatement of geometry theorems over the reals, including those involving inequalities. On
the one hand, we think that real quantifier elimination (RQE) is a robust tool for proving geometric
statements, especially for proofs of inequalities. Thus, by combining RQE with a dynamic geometry
system, a convenient user interface can be used to study non-trivial geometric inequalities in the plane.
We present an updated implementation of the ProveDetails command in GeoGebra Discovery which
exploits the free availability and competitive speed of the Tarski software system (based on QEPCAD
B and Minisat). On the other hand, we will compare this approach with an alternate one, that tries to
mimic, over the reals, the complex-geometry approach, focusing on the relevance of the truth over the
real irreducible components of the hypotheses variety. This allows us to consider not just the proof of
truth or falsity, but to address if a more delicate classification of truth can be obtained, similarly to the
notion of “truth on parts” or “truth on components” in complex algebraic geometry.
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1. Introduction

The first complete study on proving geometric statements by using real quantifier elimination
(RQE) is perhaps [1], being published more than 25 years ago. Even if several improvements
were contributed since then, there are still hardly publicly available software tools with a simple
user interface to study and prove geometry theorems via RQE. To fill the gap, we present
some recent improvements of the tool GeoGebra Discovery which makes it possible to prove
non-trivial geometric statements that way.
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Utilizing RQE can be unavoidable in some cases. Well-known techniques like Gröbner bases,
may give an incomplete translation of the geometric setup into an algebraic system because
they cannot handle inequalities.

In this research first we point to some former work [2, 3]. In addition, in this contribution we
propose a protocol via RQE. Assume we are given a plane geometric construction in GeoGebra
Discovery. The user types the input ProveDetails(𝑆) where 𝑆 is a statement to be proven.
Now, the software mechanically sets up a hypothesis formula 𝐻 and a thesis 𝑇 (as sets of logical
connectives of semi-algebraic formulas) that contain the free variables 𝑢1, 𝑢2, . . . , 𝑢𝑛 and
dependent variables 𝑥1, 𝑥2, . . . , 𝑥𝑚. At this point the quantified formula ∀𝑥1∀𝑥2 . . . ∀𝑥𝑚(𝐻 ⇒
𝑇 ) is considered. It can be negated into the form ∃𝑥1∃𝑥2 . . . ∃𝑥𝑚(𝐻 ∧ ¬𝑇 ). Now a query
will be formulated for the Tarski subsystem. It optimizes the input formula by using linear
substitutions and other reductions, and applies cylindrical algebraic decomposition to find a
quantifier-free formula 𝐹 in the variables 𝑢1, 𝑢2, . . . , 𝑢𝑛.

If 𝐹 is false, then 𝑆 is always true. If 𝐹 is true, then 𝑆 is false. But, in several cases, 𝐹 forms
connectives of semi-algebraic expressions in the variables 𝑢1, 𝑢2, . . . , 𝑢𝑛 and the situation needs
to be analyzed further. In some simple cases, 𝐹 is a conjunction of not-equal relations: this
means that the statement is true on a disjunction of equalities which has a smaller dimension
than 𝑛, so we conclude that 𝑆 is false in the overwhelming majority of cases (that is, “false”). In
another simple case, ¬𝐹 is a disjunction of some relations that contain at least one inequality:
this means that the statement is true on an 𝑛-dimensional subset of R𝑛 (if there are no other
restrictions), so we conclude that 𝑆 is true in a significant proportion of cases (that is, “true”).

A more detailed study of such questions is related to partial truth in complex algebraic
geometry (see [4]), and is planned for future work.

2. Examples

In the following examples we discuss how our new protocol identifies the geometric problem,
how it is translated to an algebraic setup, how dimension is read off, and how the RQE compu-
tations are performed. Also, a comparison with a former technique, based on Gröbner bases, is
presented.

2.1. A segment is usually longer than zero

Consider the user query ProveDetails(𝑓 > 0) in GeoGebra Discovery, as shown in Fig. 1.
We consider a segment 𝑓 with two endpoints, 𝐴(𝑣1, 𝑣2), 𝐵(𝑣3, 𝑣4), in the plane. The length

of 𝑓 will be denoted by 𝑣5, that is, ℎ1 : 𝑣25 = (𝑣1 − 𝑣3)
2 + (𝑣2 − 𝑣4)

2 and ℎ2 : 𝑣5 ≥ 0 hold.
These are our hypotheses: 𝐻 = ℎ1 ∧ ℎ2. Our thesis is 𝑇 : 𝑣5 > 0.

Without loss of generality, we can, however, assume that 𝐴 = (0, 0) and 𝐵 = (0, 1). The
reason for this is that the left hand side of the thesis is a homogeneous polynomial of degree 1,
therefore, if the statement holds for all 𝑣1, 𝑣2, 𝑣3, 𝑣4, except eventually for (𝑣1, 𝑣2) = (𝑣3, 𝑣4),
then a similarity transformation of (𝑣1, 𝑣2, 𝑣3, 𝑣4) ↦→ (𝑣′1, 𝑣

′
2, 𝑣

′
3, 𝑣

′
4) = (0, 0, 0, 1) keeps all

ratios of all the appearing lengths in the construction. (See also [5].) That is, a 𝑣5 ↦→ 𝑣′5 mapping
keeps the same ratio, and since it is still a positive number, the case 𝑣′5 > 0 is equivalent to
𝑣5 > 0.
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Figure 1: GeoGebra construction of two arbitrary points 𝐴 and 𝐵 and the segment 𝑓 connecting them.

This approach, of course, skips the analysis of the case (𝑣1, 𝑣2) = (𝑣3, 𝑣4), but this can
be ignored as “skipped on purpose”. In fact, it is implicitly assumed that points 𝐴 and 𝐵
are different, if the user creates them as two arbitrary points. That is, our new protocol just
acknowledges the intuitive purpose of the user.

Now, after substituting the assumption 𝐴 = (0, 0) and 𝐵 = (0, 1) into the hypothesis, we
get the statement 𝑆: ∀𝑣5(𝑣25 = 1 ∧ 𝑣5 ≥ 0 ⇒ 𝑣5 > 0) whose negation has the form

∃𝑣5(𝑣25 = 1 ∧ 𝑣5 ≥ 0 ∧ 𝑣5 ≤ 0) (1)

which is clearly false. That is, 𝑆 is always true. We have to be, however, careful, because we
implicitly assumed that 𝐴 ̸= 𝐵. That is, the correct communication of the protocol is the
following statement: “If 𝐴 ̸= 𝐵, then 𝑓 > 0.”

Technically, after the user constructs 𝐴, 𝐵 and 𝑓 , and issues the command
ProveDetails(𝑓 > 0), GeoGebra Discovery sets up (1) and asks Tarski to perform RQE
by issuing a command like (qepcad-api-call [ex v5 [(v5^2-1=0) /\ (v5>=0)
/\ (~(v5>0))]). This returns false, so GeoGebra Discovery outputs the result {true,
{"AreEqual(A,B)"}}. This is to be interpreted: “If 𝐴 and 𝐵 differ, then the statement is true.”

2.2. A segment is usually longer than another one

We continue our first example: Consider the user query ProveDetails(𝑓 > 𝑔) as shown
if Fig. 2. We forget the substitutions for the coordinates 𝑣1, 𝑣2, 𝑣3, 𝑣4 at the first sight. Let us
add a new point 𝐶(𝑣6, 𝑣7) and another segment 𝑔 = 𝐵𝐶 . Also, we introduce 𝑣8 to express the
length 𝑔: ℎ3 : 𝑣28 = (𝑣3 − 𝑣6)

2 + (𝑣4 − 𝑣7)
2, ℎ4 : 𝑣8 ≥ 0. To express that 𝐴, 𝐵 and 𝐶 form a

non-degenerate triangle, we assume that

ℎ5 : 𝑣9 · det

⎛⎝𝑣1 𝑣2 1
𝑣3 𝑣4 1
𝑣6 𝑣7 1

⎞⎠− 1 = 0
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Figure 2: GeoGebra construction of three arbitrary points𝐴,𝐵,𝐶 and the segments 𝑓 and 𝑔 connecting
them.

by using Rabinowitsch’s trick1 for a negation. (This could be avoided in real geometry, but
at this point of our research, we chose to use this method which was borrowed from the old
protocol.)

These are our hypotheses: 𝐻 = ℎ1 ∧ ℎ2 ∧ ℎ3 ∧ ℎ4. Our thesis is 𝑇 : 𝑣5 > 𝑣8, or equivalently,
𝑣5 − 𝑣8 > 0.

Again, we are allowed to set up some substitutions. 𝐴 = (0, 0) and 𝐵 = (0, 1) are considered
again, for the same reason as above. (Here we confirm that the expression 𝑣5 − 𝑣8 from 𝑇 is a
degree 1 homogeneous polynomial.) On the other hand, 𝐶 cannot be specialized. At the end of
the day, our statement 𝑆 has the form ∀𝑣5, 𝑣8, 𝑣9(𝑣25 = 1∧𝑣5 ≥ 0∧𝑣28 = 𝑣26 +(1−𝑣7)

2∧𝑣8 ≥
0 ∧ −𝑣6𝑣9 − 1 = 0 ⇒ 𝑣5 > 𝑣8) – here we note that for the free point 𝐶 we removed both of
its variables 𝑣6, 𝑣7 from the list of quantified variables because we want to learn a condition for
the truth. Now, the last formula has the negated form

∃𝑣5, 𝑣8, 𝑣9
(𝑣25 = 1 ∧ 𝑣5 ≥ 0 ∧ 𝑣28 = 𝑣26 + (1− 𝑣7)

2 ∧ 𝑣8 ≥ 0 ∧ −𝑣6𝑣9 − 1 = 0 ∧ 𝑣5 ≤ 𝑣8) (2)

which is equivalent to

𝑣6 ̸= 0 ∧ 𝑣26 − 2𝑣7 + 𝑣27 ≥ 0 (3)

after performing RQE.
Geometrically, this problem is a two-dimensional one, in the variables 𝑣6, 𝑣7 of point 𝐶 .

Therefore, to learn the truth about statement 𝑆 we should analyze (3): how much part of R2 is
covered by the non-solutions? Is it possible that (3) is a zero-dimensional set? If yes, we can say,
that 𝑆 is false on a “small” subset of R2. But, we should keep in mind, that such analysis should
1Let 𝑝 ∈ Q[𝑣1, 𝑣2, . . . , 𝑣𝑛]. To express 𝑝 ̸= 0, we can use the equivalent formula 𝑣𝑛+1 · 𝑝− 1 = 0. See [6].
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Figure 3: Where to put 𝐶 = (𝑣6, 𝑣7) = (𝑥, 𝑦) to ensure 𝑓 > 𝑔?

be performed automatically and quickly enough. So, without answering this question at the
moment, we also consider the positive variant of 𝑆 and compute the negation of (3), by hoping
that the other formulation will be simpler to study. We get

𝑣6 = 0 ∨ 𝑣27 − 2𝑣7 + 𝑣26 < 0. (4)

Now we hope for the best about the RQE implementation and assume that all parts of the (4) is
in its simplest form, that is, for example, the quadratic inequality part is a two-dimensional set2.
(See Fig. 3 for a visualization of (4): (𝑣6, 𝑣7) ↦→ (𝑥, 𝑦).) Here, by using a very simple algorithm,
we can conclude that there is a two-dimensional subset of R2 on which 𝑆 holds, because (4) is a
disjunction of sets, and one of them is an inequality of type <, ≤, ≥ or >.

Note that it is inconvenient to see 𝑣6 = 0 in (4) because we excluded it in hypothesis ℎ5. But
we note that ℎ5 is a one-dimensional restriction for the possible set of points 𝐶 in statement 𝑆,
so we are still on the safe side when ignoring that one-dimensional “noise” in the output.

Actually, the obtained circle meets our expectations because it exactly describes those points
𝐶 such that 𝑓 > 𝑔 is implied.

Technically, after the user constructs 𝐶 and 𝑔, and issues the command ProveDetails(𝑓 >
𝑔), GeoGebra Discovery sets up (2) and asks Tarski to perform RQE by issuing a command like
(qepcad-api-call [ex v5,v8,v9 [v5^2=1 /\ v5>=0 /\ v8^2=v6^2+(1-v7)^2 /\
v8>=0 /\ -v6 v9-1=0 /\ v5<=v8]]). This returns 𝑣6 ̸= 0∧𝑣27−2𝑣7+𝑣26 ≥ 0which requires
further investigation, so Tarski’s (t-neg %) command is used to get 𝑣6 = 0∨𝑣27−2𝑣7+𝑣26 < 0.
Finally, GeoGebra Discovery outputs the result {true, {"..."}, {"c"}} which means that
the statement is true on a remarkable subset of all possible values of 𝐶 , but it is too difficult for
the program to give a more precise explanation. (Here c recalls the abbreviation of “component”
from the old protocol.)
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Figure 4: GeoGebra construction of three arbitrary points 𝐴, 𝐵, 𝐶 and the segments 𝑓 , 𝑔 and ℎ
connecting them.

2.3. The Triangle Inequality and a generalization of the Pythagorean Theorem

Let us continue our example by adding segment ℎ = 𝐵𝐶 (see Fig. 4). This requires the addition
of two further hypotheses: ℎ6 : 𝑣210 = (𝑣1− 𝑣6)

2+(𝑣2− 𝑣7)
2, ℎ7 : 𝑣10 ≥ 0. W.l.o.g. we assume

again that 𝐴 = (0, 0) and 𝐵 = (0, 1). This turns ℎ6 into 𝑣210 = 𝑣26 + 𝑣27 .
When performing our protocol given above, the following Tarski command studies if the

Triangle Inequality 𝑓+𝑔 > ℎ holds: (qepcad-api-call [ex v5,v8,v9,v10 [v5^2=1 /\
v5>=0 /\ v8^2=v6^2+(1-v7)^2 /\ v8>=0 /\ -v6 v9-1=0 /\ v10^2 = v6^2+v7^2 /\
v10 >=0 /\ ~(v5+v8>v10)]]), and it returns false, this means that the statement always
holds (under the non-degeneracy conditions 𝐴 ̸= 𝐵 and that △𝐴𝐵𝐶 is non-degenerate, this is
communicated by GeoGebra Discovery with the output {true, {"AreCollinear(A,B,C)",
"AreEqual(A,B)"}}).

Similarly, we can study some different statements. Alternatively, when checking if 𝑓 + 𝑔 < ℎ
holds, we get 𝑣6 ̸= 0 for the negated condition and therefore 𝑣6 = 0 for the positive condition.
That is, this statement can be true at most on a zero-dimensional subset of R2, thus it is
considered false.

Let us study some variants of the Pythagorean Theorem. As well-known, in a right triangle
𝑓2+ 𝑔2 = ℎ2 holds. But here we do not assume a right triangle, so we are interested, in general,
in what prerequisities are required for 𝑓2+𝑔2 = ℎ2. By following our protocol, we only have to
change the negated thesis to ~(v5^2+v8^2=v10^2) and we obtain 𝑣6 ̸= 0∧ 𝑣7− 1 ̸= 0 which
can be studied better in its positive form: 𝑣6 = 0∨ 𝑣7 − 1 = 0. This clearly means that △𝐴𝐵𝐶
must be degenerate (which is disallowed) or the second coordinate of 𝐶 must be 1 (which is

2For example, a form like 𝑣26+𝑣27 ≤ 0 would be deceptive. It is an inequality and seems to describe a two-dimensional
subset of R2, but in fact it is equivalent to (𝑣6, 𝑣7) = (0, 0) which defines a zero-dimensional set. That is, we
assume that the RQE implementation communicates such a subset in the “simplest” form 𝑣6 = 0 ∧ 𝑣7 = 0 and not
like 𝑣26 + 𝑣27 ≤ 0.
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exactly the expected prerequisite that at vertex 𝐵 the angle is right). Since both parts of the
disjunction are one-dimensional, they cannot be considered as a “large enough” subset of R2.
Therefore, the Pythagorean Theorem without its well-known assumption has to be considered
false.

Here we remark, that the above mentioned negative form 𝑣6 ̸= 0∧𝑣7−1 ̸= 0 is a conjunction
of ̸= relations. In all such cases the statement is clearly false. From an algorithmic perspective
means that the computation of the positive form can be skipped.

One might also be interested in whether 𝑓2 + 𝑔2 > ℎ2 holds in general. By modifying the
input accordingly, we obtain the negative form 𝑣6 ̸= 0 ∧ 𝑣7 − 1 ≥ 0 which has the positive
form 𝑣6 = 0 ∨ 𝑣7 − 1 < 0. This is clearly a two-dimensional subset of R2 because of the
inequality part. By contrast, 𝑓2 + 𝑔2 ≤ ℎ2 also holds in general, because its positive form,
𝑣6 = 0 ∨ 𝑣7 − 1 >= 0 is also a two-dimensional subset of R2. This leads to the interesting fact
that, in some sense, a thesis 𝑇 and also its negation ¬𝑇 can be true at the same time.

3. Comparison of the old and the new protocol

We give an example to compare the old and new protocols. The old approach computes an
elimination ideal to learn the required prerequisities for a statement to be true.

Let us consider a simplified, degenerate version of the Triangle Inequality. Let us assume that
𝐴 = (0, 0), 𝐵 = (0, 1), and 𝐶 = (0, 𝑣7), moreover let ℎ1 : 𝑣28 = (1− 𝑣7)

2 and ℎ2 : 𝑣210 = 𝑣27 .
We would like to prove that 𝑇 : 𝑣8 + 𝑣10 = 1.

The old protocol [4] is based on elimination over the field of coefficients (usually Q) and
gets geometric conclusions over the complex numbers. Since it deals with polynomials and not
equations, we consider the hypotheses and the thesis as polynomials, that is, ℎ1 = 𝑣28−(1−𝑣7)

2,
ℎ2 = 𝑣210 − 𝑣27 , 𝑇 = 𝑣8 + 𝑣10 − 1. The old protocol performs the following steps:

1. We identify a maximum-size set of independent variables. Here it is {𝑣7}.
2. The elimination ideal 𝐼1 = ⟨ℎ1, ℎ2, 𝑣11 · 𝑇 − 1⟩ ∩Q[𝑣7] is computed (here 𝑣11 is a new

dummy variable, to support Rabinowitsch’s trick). If 𝐼1 differs from the zero ideal, then
the statement is generally true, possibly under certain conditions (that are contained in
𝐼1). In our case, 𝐼1 = ⟨0⟩, so we continue.

3. Otherwise, the elimination ideal 𝐼2 = ⟨ℎ1, ℎ2, 𝑇 ⟩ ∩Q[𝑣7] is computed. If 𝐼2 differs from
the zero ideal, then the statement is generally false. In our case, 𝐼2 = ⟨0⟩, so we continue.

4. Otherwise, the statement is true on components. To identify the components, for example,
Maple’s command PrimaryDecomposition can be helpful, by using the hypotheses as
input. Here, the primary decomposition of ℎ1, ℎ2 gives the output ⟨𝑣10± 𝑣7, 𝑣7± 𝑣8− 1⟩,
that is, it consists of 4 components, and it can be interpreted that on some components
|𝑣8 − 𝑣10| = 1 holds.

In fact, from the geometrical point of view, these components belong over the reals to the cases
𝑣7 < 0, 0 ≤ 𝑣7 ≤ 1 and 1 < 𝑣7. Algebraically, however, there is a 4th, “invisible” case. This can
be checked when 𝑇 is changed to the thesis 𝑇 ′ : (𝑣8 + 𝑣10 − 1) · (𝑣8 + 𝑣10 + 1) · (𝑣8 − 𝑣10 −
1) · (𝑣8 − 𝑣10 + 1) = 0, and here the second factor does not have a geometrical meaning (but
all other three factors do, see also [7]).

By contrast, the new protocol performs the following steps:

50



1. We determine the “naive dimension” 𝑑 of the independent variables. Here the only
independent variable is {𝑣7}, so 𝑑 = 1.

2. We collect all dependent variables. Here they are 𝑣8 and 𝑣10.
3. Perform RQE on 𝐻 ∧ ¬𝑇 where the dependent variables are existentially quantified.
4. If the result is “false”, then the statement is always true under the hypotheses. If it is

“true”, then the statement is false under the hypotheses. In our case, the RQE is computed
with the Tarski command (qepcad-api-call [ex v8,v10 [v8^2=(1-v7)^2 /\
v10^2=v7^2 /\ v8>=0 /\ v10>=0 /\ ~(v8+v10-1=0)]]) which yields

𝑣7 ̸= 0 ∧ 𝑣7 − 1 ̸= 0 ∧ (𝑣7 < 0 ∨ 𝑣7 − 1 > 0). (5)

So we continue.
5. We determine the dimension 𝑑𝑛 of the result of the RQE. If 𝑑𝑛 < 𝑑, then the statement

is true under the negation (that is, the positive form) of the result of the RQE. In our
case, 𝑑𝑛 = 1 (see below), so we continue. If 𝑑𝑛 cannot be determined for some reason,
continue.

6. Otherwise, that is, if 𝑑𝑛 = 𝑑, we compute the dimension 𝑑𝑝 of the positive form of the
result of the RQE. If 𝑑𝑝 = 𝑑, then the statement is true under the positive form of the
result of the RQE. In our case, this holds.

7. Otherwise, that is, if 𝑑𝑝 < 𝑑, the statement is false.
8. Otherwise, that is, if 𝑑𝑝 cannot be determined for some reason, the statement is undecided.

In our case, it is not completely straightforward how to determine 𝑑𝑛. For some reason,
Tarski’s output in (5) is not the simplest possible formulation, but it is equivalent to 𝑣7 ̸∈ [0, 1],
and this can be confirmed by using some further basic operations in Tarski. That is, 𝑑𝑛 = 1,
because (5) is a union of two intervals.

Finally, 𝑑𝑝 = 1 can be identified by negating (5) which is clearly 0 ≤ 𝑣7 ≤ 1, so we learn
that the statement is true under the condition 𝑣7 ∈ [0, 1]. Geometrically, this means that the
statement is true if point 𝐶 is an element of the segment 𝐴𝐵.

In fact, the dimension of a the result of the RQE could already be obtained with some minor
programming work in the Tarski subsystem. It is an on-going work to read off the dimension
in such a way, and conclude truth or falsity simply and reliably.

4. Conclusion

We introduced a new protocol on proving geometric inequalities by using RQE in the educational
software package GeoGebra Discovery. Our method uses the Tarski computer algebra system.

The provided examples are not completely trivial, however, using more free or dependent
variables may quickly change the computational complexity infeasible. Therefore, we continue
our research to automatically reduce the number of variables for a large set of possible inputs.
Also, exact detection of the dimension of the RQE output is subject of future research.

Some further examples, including Viviani’s theorem and Clough’s conjecture [8] (they
are, in some sense, further generalizations of the Triangle Inequality), can be found on the
release announcement of GeoGebra Discovery version 2023Apr07, see https://github.com/
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Figure 5: GeoGebra Discovery proves Viviani’s theorem on a Lenovo ThinkPad i7 (2018), in 6 seconds,
when adding command line option --prover=timeout:10. Point 𝐷 is attached to regular triangle
𝐴𝐵𝐶 . Lines 𝑗, 𝑘 and 𝑙 are perpendicular to the appropriate sides of △𝐴𝐵𝐶 .

kovzol/geogebra/releases/tag/v5.0.641.0-2023Apr07. (See also Fig. 5 that shows a successful
proof of Viviani’s theorem after computing (epc [ex sqrt3, v10, v11, v12, v13,
v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26,
v5, v6, v7, v8, v9 [(v23>=0) /\ (v24>=0) /\ (v25>=0) /\ (v26>=0) /\
(sqrt3>=0) /\ (v5=-1/2) /\ (v7=1/2) /\ (v22=0) /\ (v23=1) /\ (v6=v8)
/\ (v16=v10+1) /\ (v15=v9) /\ (v21=v9) /\ (v11=-v8+v9) /\ (v13=v8+v9)
/\ (((v10>0) /\ ((-v9 v8+v10/2-v10+v8)>0) /\ ((v9 v8-v10/2)>0)) \/
((0>v10) /\ (0>(-v9 v8+v10/2-v10+v8)) /\ (0>(v9 v8-v10/2)))) /\ (v8>0)
/\ (sqrt3^2=3) /\ (~((-sqrt3+2 v24+2 v25+2 v26)/2=0)) /\ (4 v8^2-3=0)
/\ (2 v10-2 v12-1=0) /\ (2 v10-2 v14-1=0) /\ (-v10 v17-v10 v8+v10
v9+v17 v12+v8 v18-v9 v12=0) /\ (-2 v17 v8+2 v8-v18=0) /\ (-v10
v19+v10 v8+v10 v9+v19 v14-v8 v20-v9 v14=0) /\ (2 v19 v8-v20=0) /\
(-v10^2+2 v10 v18-v18^2-v17^2+2 v17 v9-v9^2+v24^2=0) /\ (-v10^2+2 v10
v20-v20^2-v19^2+2 v19 v9-v9^2+v25^2=0) /\ (-v10^2+v26^2=0)]]) via Tarski,
here the epc script is an efficient “black-box” method to compute RQE for non-trivial inputs.
The epc script is maintained at https://github.com/chriswestbrown/epcx.) They contain some
references to border cases when the old protocol is triggered by the program. We highlight here
that in some cases the old protocol is still preferred because of substantially better speed. On
the other hand, some problem settings require using real geometry, therefore the new protocol
fits much better.
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Our research is made even more topical by the fact that the SC2 project has a particular
focus on automated reasoning in the classroom (see [9]). Indeed, all our examples can be of
educational interest, since GeoGebra Discovery offers a familiar look and intuitive use for young
learners in many languages for free of charge.
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