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Abstract
In response to the breakout of the CoViD-19 pandemic and the resulting face mask mandates, interest has
surged in the development of face mask detection algorithms for automatic checking of the compliance
with these mandates. Despite the large amount of software and publications connected to this topic,
little interest has been paid to ethical facets that the deployment of these systems poses. Face detection
models have been noted in the past for showing widely different performances across some demographic
attributes, potentially amplifying discrimination which may already exist in certain societies. While a
minority of publications raised similar concerns for face mask detection systems, no practical analyses
have been carried out to investigate the fairness of these algorithms. In the present work, we aim at filling
this gap. After surveying the literature on face mask detection, we uncover a small set of 6 open-source
algorithms. We assess their fairness by comparing their performance across demographics such as sex,
race, and age. In contrast to the aforementioned concerns, we do not uncover consistent and substantial
bias over these attributes but in one model. We, though, find that some algorithms generalize very
poorly to new datasets, thus raising concerns over their application to real-life scenarios. We conclude
by highlighting that the small number of publicly-available implementations is concerning, as it creates
a lack of transparency, which could potentially conceal from the end users issues like biases or poor
generalization. The shortcomings which we found in the implementations we were able to test, further
emphasize the need for more transparency in the development of these algorithms.
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1. Introduction

The CoViD-19 pandemic has left a strong mark on societies all over the world. In addition
to strict lockdown policies, many governments implemented social distancing and face mask
mandates, rendering mandatory the use of face masks to cover mouth and nose in indoor (and
sometimes also outdoor) spaces and requiring that people keep a minimum distance between
each other [1]. As a result, facilities with a large attendance, such as shops, supermarkets,
hospitals, etc., had to dedicate staff to verify the compliance of these rules by the public. In turn,
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this has sparked the necessity for having automatic systems to relieve human staff from these
tasks.

While automatic face mask detectors can greatly help public facilities in monitoring the
compliance of CoViD-19 mandates, the speed with which these many researches were published
calls for additional analyses concerning ethical aspects; these concerns can be, by and large, the
same of face detection algorithms, which have been around as early as the ’70s [2], and that, by
the start of the new millennium, already had a very large number of works surveyed [3]. These
concerns can be linked to algorithmic bias, whereas due to design flaws in the algorithm or in the
data the algorithm is trained on, the detector commits substantially different error rates across
attributes such as gender, race, and age [4]. This can be particularly concerning when these
algorithms are connected to, e.g., police control systems [5]. Despite these concerns being cited
also in the literature on face mask detection [6, 7], to the best of our knowledge, there does not
seem to be a work testing in practice whether these bias are present also in these algorithms. A
development of face mask detection systems which does not encompass possible considerations
on fairness might have negative consequences: in case these systems were to be deployed
without human supervision, people could be, for instance, denied entrance to shops because
these models might be inaccurate on faces of a specific age group or ethnicity. In the ill-advised
situation in which one of these model might be employed by police forces for enforcement of
face mask mandates, people might even incur in fines for errors attributable to unfair algorithms.
In the present work, we aim at assessing the fairness of face mask detectors, thus addressing
the aforementioned unsupported claims of bias. Via the aid of recently published reviews,
we survey the literature in search for publications presenting open-source freely-accessible
implementations of face mask detection algorithms, finding 6 of them. We then make use of
two publicly-accessible datasets which are designed to boast a variability in race, sex, or age, to
test the performance of these algorithms across different demographics. We find that claims
of unfairness are generally unsupported except for one model. We do however notice that
some of these algorithms showcase very poor generalization, thus making their deployment
in the wild potentially hazardous. In conclusion, we provide a consideration regarding the
issue that, despite there being a very large number of works implementing face mask detection
system—more than 150—published in the last few years, only a very small minority of these
release an open-source and functioning implementation of their system. This greatly hampers
reproducibility, a hot topic in the Artificial Intelligence community [8], and renders extremely
hard—if not impossible—the assessment by independent researchers of aspects such as fairness
of these algorithms.

Contributions Summarizing, the main contribution of the present work is the following: we
provide a thorough and reproducible statistical analysis on fairness in open-source face mask
detectors, which was not previously conducted in the literature. While previous claims of bias
in face mask detectors have been made in the literature, this paper adds empirical evidence to
the discussion.

The code for reproducing our analyses is available at the link https://github.com/
face-mask-detection-algos/.

https://github.com/face-mask-detection-algos/
https://github.com/face-mask-detection-algos/


2. Related work

The matter of fairness in face detection algorithms is a topic which has been debated as early as
2002: Furl et al. [9] already identified differences in performance of these tools with respect
to ethnicity. Klare et al. [10] showed that face recognition algorithms available in 2012 were
consistently underperforming when evaluated on images of young black females. More recently,
the GenderShades project [11] benchmarked a face detection algorithm on two popular datasets,
concluding that the algorithm showcased substantially higher error rates for dark-skinned
women than other demographic groups. In a popular media case from 2015, Google Photo’s
recognition algorithms erroneously classified two black-skinned men as “gorillas”1, a problem
which apparently seems yet to be fixed2.

For what concerns the specific task of face mask detection, there exist works [6, 7] claiming
that these biases are present also in face mask detection algorithms, although these claims are
not backed by relevant experiments. Rather, the authors use these assertions to introduce two
different datasets focused on high variability across race/ethnicity. We incorporate the one
by Kantarcı et al. [7] in our analysis, while the one proposed by Yu et al. [6] seems not to be
publicly available.

3. Methods for Face Mask Detection

The problem of face mask detection is a specialization of object detection (OD), a popular
Computer Vision (CV) task. Given a number of categories to recognize, OD works by identifying
and coarsely localizing instances of said objects in images. In the case of face mask detection,
usually there are two categories: mask not worn and mask worn. In some instances [12, 13],
datasets are designed using more than two categories, e.g., mask not worn, mask correctly worn,
mask incorrectly worn.

The earliest approaches for OD use feature engineering for finding instances of known objects
within images. This is the case, for instance, with the Viola-Jones algorithm for face detection
[14], which combines the responses of multiple weak feature detectors, based on the intensity
differences in small rectangular areas of images, to identify instances of frontal faces. This
approach has also been adopted in face mask detection, as in the work by Dewantara et al. [15].
Nonetheless, these “classical” CV approaches have recently fallen into disuse in favor of more
effective techniques based on DNNs, which all the algorithms used in our analysis make use of.
DNN-based OD systems can be further split in two classes, one-shot and two-shot detectors
[16].

One-shot detectors: these algorithm employ DNNs to perform identification and localization
of objects in one shot. Thus, their output will contain information for both the categories of the
objects and their localization within the image. One-shot detectors are usually fast, but tend to
be less accurate than their two-shot counterparts. Examples of these techniques include You
Only Look Once (YOLO) [17] and Single-Shot Detector (SSD) [18], used extensively for face
mask detection (e.g., [19, 20, 21] and many others).

1https://www.wsj.com/articles/BL-DGB-42522, retrieved on April 13th, 2023
2https://www.nytimes.com/2023/05/22/technology/ai-photo-labels-google-apple.html, retrieved on April 13th, 2023
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Two-shot detectors: these algorithms employ an initial phase of localization, where they
propose regions in which the objects are to be found; subsequently, another module performs
the classification on these regions. Due to their two-phase detection, they tend to be slower than
one-shot detectors, although they might enjoy a better accuracy. An example of this technology
is Faster-R-CNN [22], used, for instance, in [23, 13]. For face mask detection, another two-shot
approach is to use a face detector for identifying the relevant regions, then perform mask
classification on these regions [24, 25].

3.1. Frameworks for Implementing Face Mask Detectors

In addition to custom implementations, there exists a large number of frameworks for imple-
menting OD algorithms. The most common are PyTorch [26] and TensorFlow [27], two powerful
open-source frameworks for Deep Learning. A lesser used framework, yet worthy of mention,
is Darknet3, written in C. For instance, the original implementation of YOLO was released in
Darknet. The library Tensorflow-Lite (TFLite) [28], now part of TensorFlow, is a framework for
deploying neural networks onto low-end devices. It uses C as a destination language. Other
frameworks include the programming language Matlab4, the Caffe [29] platform, and many
others.

4. Background on Fairness

Fairness, when considering the act of decision-making, is defined as «absence of any prejudice
or favoritism toward an individual or group based on their inherent or acquired characteristics»
[30]. Fairness may be defined in terms of parity of treatment between individuals, regardless of
their differences in sensitive attributes. We suppose to have a model outputting a prediction �̂�,
the corresponding ground truth being identified as 𝑌. Let 𝐴 be a protected attribute on which
we want to calculate a possible bias. Without loss of generality, let us suppose this attribute can
assume only two values, 0 and 1. One possible definition of fairness (adapted from [31]) is the
following:

𝑃(�̂� = 𝑗|𝐴 = 0, 𝑌 = 𝑘) = 𝑃(�̂� = 𝑗|𝐴 = 1, 𝑌 = 𝑘), ∀𝑗 ∈ supp(�̂� ), 𝑘 ∈ supp(𝑌 ) (1)

This means that, fixing the ground truth, the model needs to behave similarly across the various
groups of the protected attribute (even in case of misclassification). In this sense, we will be
assessing for fairness by testing for statistical equality over the output of the models and the
corresponding ground truths. The variables on which we will assess fairness, along with the
statistical methodology employed, will be discussed in Section 6.

Biased behaviors in algorithms can arise due to flaws in the algorithms themselves or, when
these algorithms are data-driven, due to existing bias in the training datasets. The latter is often
the case of the data-driven Machine Learning algorithms which are experimented with in the
present work. A large bulk of face masks detection datasets were created during the early days
of the CoViD-19 pandemic by quickly aggregating existing resources scraped from the web,

3https://pjreddie.com/darknet/
4https://www.mathworks.com/products/matlab.html
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which is a clear indication of non-random sampling, which could result in bias. Kantarcı et
al. [7] claim that a large number of such datasets contain an overwhelming majority of Asian,
or otherwise light-skinned people, due to the availability of images of people wearing face
masks by the time of the creation of these datasets. This could be a source of unfairness, as
algorithms trained on these data may fail to recognize, e.g., darker-skinned people, due to
their under-representation within the dataset: a behavior which has already been noted in face
detection tasks [10, 32].

5. Selection of Algorithms for the Analysis

In order to select relevant algorithms for our analysis, we decided to explore the existing
literature on the topic of face mask detection and recognition. We mainly made use of three
surveys [33, 34, 20] for gathering the main bulk of the researches up to the first half of 2022.
For identifying works published after this period, we operated a research in a similar fashion
with respect to Hu et al. [20]: we queried Google Scholar, IEEE Xplore Digital Library, Web
of Science, and Springer Link with the search term (``face mask'' OR ``facemask'') AND
(``detection'' OR ``recognition''). In total, we identified more than 150 publications
treating the topic of automatic face mask detection from as early as 2017. As already mentioned
by Liberatori et al. [19], the number of works on the topic of face mask recognition with an
available implementation is very low: out of all the publications we surveyed, we were able to
identify only 15 of them claiming an open-source implementation.

We identified a set of desirable characteristics that these implementations should meet in
order to be ready-to-use for our analyses:

(i) A clear list of dependencies or requirements that are needed in order to run the code.

(ii) Availability of parameters for running pre-trained models without re-training phases.

(iii) Possibility of using the proposed models or methods in a plug-and-play fashion, without
time-consuming set-ups, like hyperparameter fine-tuning on specific datasets.

Following this analysis, we found that 10 of the 15 works which we originally identified
either (a) did not meet the aforementioned criteria, or (b) were linking to nonexistent or empty
repositories. In Appendix A we detail the list of these works, specifying the motivation behind
their rejection. As a consequence, only 5 works passed this initial scrutiny and were ready for
use in our study. Moreover, we included an additional work [24], which is not part of a scientific
publication, but is an open-source software cited in other relevant papers in the field of face
mask detection (such as [35, 36]) and which has other times been employed as a benchmark for
comparing performances with respect to other face mask detection algorithms. Table 1 shows
the final list of implementations that we use in our analysis. As an additional note for what
concerns MOXA [23]: the authors present four different architectures with different sets of
weights. We made use of YOLOv3, which, according to the authors, is the model which recorded
the best performance.



Table 1
List of relevant works with publicly accessible code and model parameters which we identified and used
in the present work. (*) indicates that a work is not part of a scientific publication, but it is released solely
as a GitHub repository. (**) for MOXA, we make use of the YOLOv3 implementation. For additional
information on the implementation details, see Section 3.1.

Name Implementation details Language/library

Face-Mask-Detection
(FMD)(*) [24]

CNN using pre-trained face detector TensorFlow

Maskd [25] CNN using pre-trained face detector TensorFlow
Modified-Yolov4Tiny-
RaspberryPi (MYTR) [19]

YOLOv4-tiny adapted for low-end device PyTorch + TFLite

MOXA(**) [23] YOLOv3, YOLOv3-tiny, SSD, Faster-RCNN Darknet
RHF [13] Faster-RCNN PyTorch
waittim-mask-detector
(waittim) [37]

custom YOLO PyTorch

5.1. Datasets

In order to evaluate the fairness of the selected algorithms, we made use of two datasets, which
were recently published in an attempt to mitigate algorithmic bias in (face) mask detection
systems:

• FairFace [38]: a dataset for face classification composed of 108 501 pictures containing
one face, centered with respect to the image frame. The labels contain information on
age group (0-2, 3-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, and 70+ years of age), gender
(female, male), and race (Black, East Asian, Indian, Latino/Hispanic, Middle Eastern,
Southeast Asian, White). We ran our experiments on the validation split, which contains
10 954 images. The dataset is not specific for face mask detection and contain only images
of faces without a face mask. This means that we could use it only for checking true
negatives and false positives in our analyses.

• Bias Aware Face Mask Detection Dataset (BAFMD) [7]: a dataset for face mask detection
having more than 13 000 images containing faces with or without face masks. The labels
are provided only for the presence/absence of a face mask, thus, to make it usable for our
purpose, we manually annotated two attributes, skin color (dark, light) and sex (female,
male), on a subset of 319 pictures (695 total faces) extracted from the validation set.

Figure 1 showcases some sample images from the datasets. In Appendix B we provide additional
details on the datasets, including a summary of the numerosity for each of the variables of
interest in our study.

In addition to these two datasets, we identified a third one, Fair Face Localization with
Attributes (F2LA) [32]. Despite submitting a request to access it, the owners never replied to us;
we were thus unable to use it in our analysis.



Skin color = Dark

Sex = Male

Skin color = Dark

Sex = Female

Skin color = Dark

Sex = Male

Skin color = Light

Sex = Male

(a) BAFMD

Age = 3-9

Race = Southeast Asian

Sex = Male

Age = 20-29

Race = Black

Sex = Female

Age = 60-69

Race = Middle Eastern

Sex = Male

Age = 30-39

Race = White

Sex = Feale

(b) FairFace

Figure 1: Examples of images from the datasets introduced in Section 5.1.

6. Fairness assessment

As previously talked about in Section 4, we assess fairness of the models by testing for equality
of outputs given the value of ground truth and the value of the protected attribute(s). We
identify two variables on which we will evaluate the fairness of the models: localization and
classification.

Localization In the problem of object detection, we can assess a model over multiple factors,
the first one being the localization of an object, regardless of the correctness of the class
predicted. We can quantify the overlap between predicted bounding box and ground truth with
the Intersection-over-Union (IoU), a metric, commonly used in OD benchmarks, for assessing
the quality of localization of predicted bounding boxes [39]. Given a predicted bounding box
𝐵pred and the corresponding ground truth 𝐵gt:

IoU(𝐵pred, 𝐵gt) ≐
Area(𝐵pred) ∩ Area(𝐵gt)
Area(𝐵pred) ∪ Area(𝐵gt)

(2)

As standard in the literature, an IoU larger than 0.5 is considered a match between ground truth
and prediction, thus indicating a good localization [40]. Having characterized what constitutes
a good localization, we can then define the localization rate:

Localization rate =
Faces correctly identified

Total faces in image

For the problem of localization, we can then assess fairness by requesting the localization rate
of the models to be similar across the support of the protected attribute(s).



Figure 2: Sample of images from the dataset FairFace: some images have more than one face per
picture, thus possibly inducing the models in predicting more than one bounding box.

Classification By considering only cases of correct localization, we can assess the classification
accuracy by checking whether a model correctly predicts the presence/absence of the face mask
within the predicted bounding boxes. By recalling Equation (1), we will then check for fairness
in the cases in which the model correctly predicts the presence of a face mask (true positives),
or correctly predicts the absence of a face mask (true negatives). The check on false positives or
negatives is redundant as the proportions are complementary with respect to the true negatives
and positives, respectively.

Statistical tests In order to evaluate in a statistical fashion the significance of a difference,
we will use an unpaired binomial test. Let �̂�𝑖 be the rate attained by a model (i.e., localization
rate, true positive rate, or true negative rate) on a dataset over all instances having protected
attribute 𝐴 = 𝑖. We define �̂�⧵𝑖 the rate attained over all the other instances in the dataset. We
can see the rates as observed realizations of two binomial distributions with unobserved true
rates 𝜋𝑖 and 𝜋⧵𝑖. We use the unpaired binomial test for the null hypothesis 𝐻0 ∶ 𝜋𝑖 = 𝜋⧵𝑖 with
a level of significance 𝛼 of 0.05. We accompany each p-value with an estimate of the effect
size—namely, Cohen’s ℎ [41]—to quantify the magnitude of the difference between each pair of
ratios. According to Cohen’s guidelines, an effect size larger than 0.2 can be considered small.
We will use this threshold for labeling significant biases as severe. We provide additional details
on this topic in Appendix C.

Application to the Two Datasets FairFace does not have ground truth encompassing local-
ization of the face within the image. For this dataset, thus, we have to make some assumptions
and simplifications to conduct the assessments. We simplify the localization part in this way:
if the model predicts at least one bounding box (regardless of the predicted category) then
we consider the localization correct. Incorrect localizations are, then, cases where the model
does not output any bounding box. Since the examples in this dataset are all negatives (i.e.,
people not wearing face masks), we can only check the fairness in the case of true negatives.
We consider true negatives those cases in which the model predicts at least one bounding box
where a mask is not worn. These simplifications are also motivated by the presence within the
dataset of some images depicting more than one face (see Figure 2) which might pollute the
final results.

For the other dataset, BAFMD, we are able to provide the whole picture (i.e., fairness assess-
ment for localization, true positives, and true negatives) since the dataset has (a) information
concerning the localization in the ground truth, and (b) images belonging to the positive class,
i.e., masked faces, both of which are lacking in FairFace.



Table 2
Rates attained by the models subject of our study. “Loc.” = localization rate, “TP” = true positive rate,
“TN” = true negative rate. As per Section 7, waittim was excluded due to very poor performance on both
datasets. Additionally, as per Section 7.1, FMD and Maskd were not able to produce a valid output on
FairFace, hence no results are shown in the relevant fields. On FairFace, the true positive rates cannot
be computed due to the nature of the dataset, as mentioned in Section 6.

Dataset FMD Maskd MYTR MOXA RHF
Loc. TP TN Loc. TP TN Loc. TP TN Loc. TP TN Loc. TP TN

FairFace 0.9888 0.2158 0.9855 0.9923 0.8442 0.9992
BAFMD 0.5108 0.9690 0.9278 0.5914 0.9804 0.8773 0.1539 0.7000 1.0000 0.8374 0.9917 0.8416 0.9453 0.8266 0.9783

7. Results

As indicated in Section 6, we assess fairness over localization rate, true positive rate, and true
negative rate, on the datasets FairFace and BAFMD. Although these metrics can be employed to
measure the performance, in terms of accuracy, of the algorithms, it is important to remark that
they are not the centerpiece of our analysis, this being more directed towards fairness.



Table 3
Results concerning the localization rate on the dataset FairFace. �̂�𝑖 is the rate achieved by the model
on a specific group, 𝑛𝑖 indicates the size of the group in the dataset, while 𝑝 is the p-value corresponding
to the unpaired binomial test; ℎ refers to the Cohen’s ℎ, measuring the effect size. p-values and effect
sizes are shown only once per attribute since they all have binary support, and are hence the same for
both groups. p-values smaller than 0.5 are shown in boldface—they indicate a significant difference
with respect to the other groups of the same attribute. The effect size is also indicated in bold when
the difference is significant and the ℎ-number is larger than 0.2, denoting a severe bias (ref. Section 6).
As introduced in Section 7 and Section 7.1, the models FMD, Maskd, and waittim fail to produce valid
outputs on FairFace, and hence do not appear in this table.

MYTR MOXA RHF
Sex �̂�𝑖 𝑛𝑖 𝑝 ℎ �̂�𝑖 𝑛𝑖 𝑝 ℎ �̂�𝑖 𝑛𝑖 𝑝 ℎ

Female 0.9922 5162 0.0011 0.0629 0.9872 5162 0.1531 0.0275 0.8807 5162 0.0000 0.1924
Male 0.9857 5792 0.9839 5792 0.8116 5792

Race �̂�𝑖 𝑛𝑖 𝑝 ℎ �̂�𝑖 𝑛𝑖 𝑝 ℎ �̂�𝑖 𝑛𝑖 𝑝 ℎ

Black 0.9826 1556 0.0133 0.0616 0.9826 1556 0.3124 0.0266 0.7584 1556 0.0000 0.2561
East Asian 0.9910 1550 0.3757 0.0255 0.9903 1550 0.0857 0.0511 0.8865 1550 0.0000 0.1433
Indian 0.9855 1516 0.1912 0.0342 0.9875 1516 0.4869 0.0198 0.8127 1516 0.0003 0.0977

Latino/Hispanic 0.9975 1623 0.0003 0.1271 0.9889 1623 0.2113 0.0355 0.8823 1623 0.0000 0.1294
Middle Eastern 0.9917 1209 0.3008 0.0337 0.9793 1209 0.0575 0.0535 0.8528 1209 0.3818 0.0269
Southeast Asian 0.9866 1415 0.4003 0.0230 0.9894 1415 0.1871 0.0401 0.8848 1415 0.0000 0.1355

White 0.9871 2085 0.4072 0.0195 0.9808 2085 0.0476 0.0457 0.8374 2085 0.3445 0.0229

Age �̂�𝑖 𝑛𝑖 𝑝 ℎ �̂�𝑖 𝑛𝑖 𝑝 ℎ �̂�𝑖 𝑛𝑖 𝑝 ℎ

0-2 0.9849 199 0.6033 0.0345 1.0000 199 0.0840 0.2438 0.9347 199 0.0004 0.2993
3-9 0.9904 1356 0.5399 0.0185 0.9956 1356 0.0009 0.1201 0.8990 1356 0.0000 0.1858
10-19 0.9924 1181 0.2128 0.0417 0.9865 1181 0.7685 0.0092 0.8704 1181 0.0084 0.0839
20-29 0.9885 3300 0.8518 0.0038 0.9867 3300 0.4971 0.0143 0.8479 3300 0.4818 0.0147
30-39 0.9854 2330 0.0825 0.0386 0.9850 2330 0.8179 0.0053 0.8283 2330 0.0175 0.0547
40-49 0.9882 1353 0.8239 0.0063 0.9800 1353 0.0739 0.0484 0.8012 1353 0.0000 0.1296
50-59 0.9912 796 0.4984 0.0264 0.9799 796 0.1713 0.0467 0.8204 796 0.0544 0.0689
60-69 0.9938 321 0.3884 0.0558 0.9688 321 0.0114 0.1176 0.7913 321 0.0080 0.1417
70+ 0.9915 118 0.7753 0.0283 0.9576 118 0.0110 0.1757 0.8051 118 0.2393 0.1041

7.1. FairFace

Three algorithms seem completely unable to correctly identify faces in this dataset: FMD, Maskd,
and waittim. In the first two cases, the models predict the presence of faces lying completely
outside of the image frame, while waittim does not predict bounding boxes for almost all the
images in the dataset. This leaves us with only three algorithms for this task: MYTR, MOXA,
and RHF.

The results concerning the two rates for these models are presented in Table 2. All models
seem to behave well (> 80%) on both rates, the only exception being MYTR, which posts an
abysmal 21.58% on true negative rate, which means that it very often predicts the presence
of a face mask when the subject in the picture is wearing none. The results concerning the



Table 4
Results concerning the true negative rate on the dataset FairFace. �̂�𝑖 is the rate achieved by the model
on a specific group, 𝑛𝑖 indicates the size of the group in the dataset, while 𝑝 is the p-value corresponding
to the unpaired binomial test; ℎ refers to the Cohen’s ℎ, measuring the effect size. p-values and effect
sizes are shown only once per attribute since they all have binary support, and are hence the same for
both groups. p-values smaller than 0.05 are shown in boldface—they indicate a significant difference
with respect to the other groups of the same attribute. The effect size is also indicated in bold when the
difference is significant and the ℎ-number is larger than 0.2, denoting a severe bias (ref. Section 6). As
introduced in Section 7, the model waittim fails to produce valid outputs on BAFMD, and hence does
not appear in this table.

MYTR MOXA RHF
Sex �̂�𝑖 𝑛𝑖 𝑝 ℎ �̂�𝑖 𝑛𝑖 𝑝 ℎ �̂�𝑖 𝑛𝑖 𝑝 ℎ

Female 0.2087 5122 0.0906 0.0326 0.9939 5096 0.0709 0.0352 0.9996 4546 0.2757 0.0233
Male 0.2221 5709 0.9909 5699 0.9989 4701

Race �̂�𝑖 𝑛𝑖 𝑝 ℎ �̂�𝑖 𝑛𝑖 𝑝 ℎ �̂�𝑖 𝑛𝑖 𝑝 ℎ

Black 0.2276 1529 0.2250 0.0332 0.9908 1529 0.4783 0.0189 0.9992 1180 0.9037 0.0037
East Asian 0.1816 1536 0.0004 0.0992 0.9935 1535 0.5696 0.0162 1.0000 1374 0.2689 0.0596
Indian 0.2430 1494 0.0059 0.0753 0.9953 1497 0.1505 0.0442 0.9992 1232 0.9402 0.0023

Latino/Hispanic 0.2508 1619 0.0002 0.0979 0.9913 1605 0.6073 0.0135 1.0000 1432 0.2572 0.0599
Middle Eastern 0.1910 1199 0.0270 0.0691 0.9907 1184 0.5037 0.0198 0.9990 1031 0.7920 0.0082
Southeast Asian 0.2249 1396 0.3728 0.0254 0.9943 1400 0.3646 0.0276 0.9992 1252 0.9540 0.0017

White 0.1934 2058 0.0061 0.0682 0.9907 2045 0.3569 0.0218 0.9983 1746 0.1049 0.0367

Age �̂�𝑖 𝑛𝑖 𝑝 ℎ �̂�𝑖 𝑛𝑖 𝑝 ℎ �̂�𝑖 𝑛𝑖 𝑝 ℎ

0-2 0.1633 196 0.0713 0.1366 0.9799 199 0.0430 0.1116 1.0000 186 0.7045 0.0556
3-9 0.1906 1343 0.0167 0.0712 0.9919 1350 0.8363 0.0059 0.9992 1219 0.9312 0.0026
10-19 0.2048 1172 0.3327 0.0302 0.9914 1165 0.7112 0.0112 1.0000 1028 0.3492 0.0584
20-29 0.2220 3262 0.3047 0.0214 0.9920 3256 0.8167 0.0048 0.9996 2798 0.3574 0.0232
30-39 0.2121 2296 0.6309 0.0113 0.9939 2295 0.3262 0.0241 0.9990 1930 0.6160 0.0121
40-49 0.2117 1337 0.6970 0.0114 0.9940 1326 0.4612 0.0227 0.9982 1084 0.1657 0.0364
50-59 0.2522 789 0.0097 0.0931 0.9923 780 0.9991 0.0000 0.9985 653 0.4555 0.0254
60-69 0.2539 319 0.0927 0.0929 0.9871 311 0.2892 0.0535 1.0000 254 0.6565 0.0558
70+ 0.2991 117 0.0275 0.1935 1.0000 113 0.3469 0.1765 1.0000 95 0.7874 0.0553

analysis of fairness are instead presented in Table 3 for the localization rate and in Table 4 for
the true negative rate. We notice that RHF struggles a lot with localization, as it records several
significant differences across almost all demographic groups. Specifically, it also records a
severe bias by apparently discriminating against black people (rate of 75.84% against an average
of 85.84% for the other races—a Cohen’s ℎ of 0.2561). MYTR commits several biases in the true
negative rate, although none are severe and the results are quite meaningless considering its
very low performance across all demographics.
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7.2. BAFMD

On BAFMD, we can provide an additional analysis of true positive rates, since this dataset
encompasses also cases of people wearing face masks. Again, waittim is unable to recognize
faces on this dataset. This greatly undermines its credibility, as it seems to be overtrained on its
training dataset distribution, being completely unable to generalize to other situations. Now,
FMD and Maskd showcase decent results, and thus we include them in this analysis.

The results concerning the three rates are presented in Table 2, while the fairness analysis is
detailed in Table 5. For the localization task, performances range wildly, from the terrible 15.39%
of MYTR to the 94.51% of RHF. We also have to note the poor performance of FMD and Maskd
(51.05% and 59.14% respectively). On this task, though, only RHF records a severe bias, possibly
discriminating men. On the analysis of positive and negative rates, all the models showcase
decent performances, although again RHF commits a severe bias, possibly discriminating on
dark-skinned people. This behavior was already noticed in the localization task for FairFace,
thus creating a strong evidence that RHF could be consistently biased towards specific races or
ethnicities. An additional notice on the false negative rates: there is no significant difference to
report, although the small sample size—due to the low number of people without face masks in
the dataset—does not help in getting robust results; in this sense, a more complete dataset could
help in getting clearer results.

7.3. Summary

We can wrap up the results by stating that the performances we observed are quite varied, with
two models showcasing good or very good results on both datasets and four performing quite
poorly, thus possibly hinting at bad generalization outside of the distribution of the training
data. A couple of models were notable for showcasing unfair behavior in many instances—
MYTR and RHF. The latter, specifically, despite consistently showing good performance across
all rates, recorded a total of four severe biases in separate occasions, with two notable cases
discriminating black/dark-skinned people. All in all, apart from this case, there do not seem
to be egregious cases of unfairness in the other four models, at least not with the magnitudes
reported in the GenderShades project [4].

8. Conclusion and Discussion

In the present paper, we provided an analysis on the fairness of a subset of 6 open-source,
ready-for-use face mask detection algorithms. Our work was prompted by the unproven claims
of unfairness of face mask detection algorithms [7, 42]. Out of more than 150 papers published
presenting face mask detection algorithms, we are able to single out only 6 open-source ready-
to-use implementations. We identified 2 datasets for the assessment of fairness over attributes
such as sex, age, and race/skin color. We assessed the fairness by testing these models on these
datasets over multiple performance indicators. Our analysis seem to suggest that only one
model records multiple severe cases of bias (twice on Black/dark-skinned people), that one
being RHF [13], while other models, like MYTR [19], commit several of them but of smaller
magnitude.



Deployment of Face Mask Detection Models in the Wild The results we obtained point
out quite clearly that the deployment of these models in the wild cannot happen without
extensive supplementary analyses on additional test data or on bias/fairness with respect
to protected attributes. Despite being mostly fair, we show that many of the models we
experimented with do not seem ready to be adopted as general-purpose face mask detectors
in the wild, as they mostly do not generalize well to real-life scenarios. Three of them (FMD,
Maskd, waittim) were unable to produce meaningful outputs on one or both datasets, while
another (MYTR) multiple times recorded rates lower than 25%. Analyses on the shortcomings
of FMD, Maskd, and MYTR are further displayed in Appendix D; for what concerns waittim,
we posit that the bad performances might be due to an extreme overfitting on the domain of
the training dataset (from which the test dataset was sampled). All models, though, even the
best-performing ones, do showcase either weak points or severe biases, and hence, our opinion
is that their deployment must be subject to human supervision to remedy their shortcomings.

Reproducibility of Results of Face Mask Detection Algorithm Another point of dis-
cussion is the unavailability of open-source code for more than 95% of the work we surveyed.
Reproducibility of the results claimed in a scientific publication is fundamental to verify the
reliability and transparency of these findings [8] and allows for the evaluation of aspects such
as bias and fairness of the proposed models [43], aspects which might have not been consid-
ered in the original researches, and that might, thus, remain concealed from the end users of
these applications. A need for transparency is further emphasized by some of the limitations
demonstrated by the models tested by us, which raises the question on whether the unavailable
implementations might exhibit similar issues.

Limitations and Future Work The analysis we conducted is limited due to the very low
number of implementations in the field of face mask detection we were able to attain to.
Moreover, our study could greatly benefit by adding more datasets, like the aforementioned
F2LA [32]. Additionally, the “MaskTheFace” tool [44] could be used to increase the number of
positives in some datasets by artificially drawing face masks on top of faces. For what concerns
the fairness study, a future work could encompass a combination of multiple attributes, instead
of considering single attributes in isolation, as we did in our analysis, to allow for a fine-grained
investigation. In addition, our notion of fairness is limited to the definition given in Equation (1),
which has been termed “Equal Opportunity” in a recent survey by Mehrabi et al. [30]. They also
include several alternative definitions of fairness which could yield different results if applied
in the context of our analysis. Nevertheless, we hope that our work helps in shedding light to
the claims of bias towards race, age, or sex, of these algorithms, by showing that the situation is
not as bad as other works had discovered for face detection systems [9, 10, 4].
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A. Implementations Discarded from Our Analysis

In Table 6 we present works claiming an open-source implementation that we were unable to
use in our analysis. The causes for this were either an unreachable or empty repository or a
non-compliance with the criteria which we identified in Section 5.

Table 6
List of works claiming accessible implementation of face mask detection algorithms, but with issues
that prevented us from using them in our analysis.

Ref. Issue(s)

[45] Does not meet criterion (iii) (requires additional setup)
[46] Does not meet criterion (ii) (parameters not provided)
[47] Does not meet criterion (iii) (requires tuning on specific datasets before usage)
[48] Repository linked in paper is empty
[49] Claim code is accessible via contact, but did not reply to email
[50] Repository linked in paper leads to dead page
[51] Does not meet criterion (ii) (parameters not provided)
[52] Does not meet criterion (i) (dependencies not specified)
[35] Repository linked in paper leads to dead page
[53] Does not meet criterion (ii) (parameters not provided)

B. Additional Information on the Datasets Used

In this appendix, we provide additional details on the datasets used in our analysis, FairFace
[38] and BAFMD [7]. Table 7 summarizes relevant information on these two datasets, while
Figure 3 shows the composition of the datasets with respect to the labels (i.e., mask present or
absent) and the additional attributes on which we analyze the fairness. Notice that FairFace
only contains picture of people without face masks, being a face classification dataset.

C. Details on Statistical Testing

As mentioned in Section 6, we assess the significance of the difference in ratios between two
groups using an unpaired binomial test. The observed ratios, which we denote as �̂�1 and �̂�2,
can be seen as realizations of two Binomial random variables with number of trials 𝑛1 and 𝑛2
and unobserved success probabilities 𝜋1 and 𝜋2. The numbers of trials coincide with the sizes of
the two groups. We can test for the difference between these true unobserved ratios of the two
populations using the unpaired binomial test with the following set of hypotheses:

{
𝐻0 ∶ 𝜋1 = 𝜋2
𝐻1 ∶ 𝜋1 ≠ 𝜋2



Table 7
Summary of the datasets used for assessing the fairness of the identified face mask detection models
and introduced in Section 5.1. “Num. labels” refers to the number of faces labelled with a bounding box
within the dataset. “N/A” = “not applicable”.

Dataset name Task Num. images Image size Num. labels Attributes (Support)

BAFMD Face mask detection 318 variable 695 Sex (Female, Male)
Skin color (Dark, Light)

FairFace Face classification 10 954 224 × 224 N/A

Age (0-2, 3-9, 10-19,
20-29, 30-39, 40-49,
50-59, 60-69, 70+)
Race (Black, East
Asian, Latino/His-
panic, Southeast
Asian, White)
Sex (Female, Male)

554

141

With face mask Without face mask

Face Mask

346 349

Female Male

Sex

250

445

Dark Light

Skin Color

(a) BAFMD

199

1356 1181

3300

2330

1353
796

321 118

Age

1556 1550 1516 1623
1209 1415

2085

Race
5162

5792

Female Male

Sex

(b) FairFace

Figure 3: Composition of the two datasets, BAFMD 3a and FairFace 3b, with respect to the attributes
subject of our analysis, which we introduced in Section 5.1.

Let �̂� ≐ 𝑛1�̂�1+𝑛2�̂�2
𝑛1+𝑛2

. The test quantity is defined as:

𝑧⋆ ≐
�̂�1 − �̂�2

√
�̂�(1 − �̂�)( 1

𝑛1
+ 1

𝑛2
)
.



The corresponding p-value is computed as 𝑃(|𝑍 | > 𝑧⋆), 𝑍 being a Gaussian random variable with
mean 0 and variance 1. We accompany the p-value with an evaluation on the effect size using
Cohen’s ℎ [41]. The effect size can complement a statistical test by quantifying the magnitude
of a difference between two populations’ aggregates. Cohen’s ℎ was designed to introduce a
notion of dissimilarity between two ratios or proportions. It is calculated as

ℎ = |2 ⋅ arcsin√ ̂𝜋1 − 2 ⋅ arcsin√ ̂𝜋2|.

Cohen introduced a rule of thumb for the interpretation of ℎ, indicating cutoffs at 0.2, 0.5 and
0.8 as reference values for denoting the difference as small, medium, large.

D. Additional Insights on Models and Results

Hereby we offer supplementary insights on three of the six models we made use of.

FMD andMaskd: similarities and invalid outputs on FairFace FMD and Maskd are quite
similar in concept: they both make use of a two-stage detector composed of (i) a face detector
for identifying a region of interest, and (ii) a mask classifier which acts on one specific region
of interest. The usage of a face detector for recognizing masked faces does not seem a good
strategy, as indicated by Groher et al. [54]. They noted that these algorithms, despite showing
good performance at generically recognizing faces, often failed (around 50% higher error rate)
when evaluating images of masked faces. This could motivate the very subpar performance on
localization attained on BAFMD of these two models. The connections do not end here: there
are obvious similarities in the implementations. In both cases the face detector is the same
pre-trained ResNet-10 [55]; the face mask classifier, on the other hand, is a custom Convolutional
Neural Network in Maskd and a MobileNetV2 [56] in FMD. Both the works use TensorFlow for
training and OpenCV for deployment; in addition, some code looks extremely similar, included
the readme file in the GitHub repositories. Given the fact that Face-Mask-Detector is released
in an older repository than Maskd, and the latter does not cite the former in any form, we have
notified the authors of Face-Mask-Detector on the matter, citing a potential case of plagiarism.
The similarities are not limited to the code and architecture; both models showcase the exact
same behavior on the dataset FairFace, whereas they consistently output bounding boxes which
lie completely outside the image frames. It is unclear to us what is causing this pathological
behavior, although we assume that the problem is caused by the ResNet-10 composing the first
stage of the detection. We do not know whether the issue lies in the architecture itself or in the
pre-processing which is applied on the data before being fed into the model. We did however
assume that one problem could be the small size of the images of the dataset (224 × 224). We
tried upscaling the images by a factor of 2 and feed them into the models, but the results did not
change. We operated no further analysis on the malfunctioning on the two implementations.

MYTR: poor localization on BAFMD and fairness concerns Continuing with another
underperforming model, MYTR, we have a motivation for the very poor performance on the
localization rate on BAFMD (around 15%). We did expect to record lower results across all the
three rates with respect to the other models, since MYTR was heavily pruned and quantized to



Figure 4: Comparison between the bounding box predicted by MYTR (in red) and the corresponding
ground truth (in purple). This case is considered a missed localization as the area of the red box is more
than double than the one of the purple box, causing the Intersection-over-Union to be smaller than 0.5,
thus determining the miss.

be run on low-end devices; however, the outcomes were quite underwhelming. By analyzing
the output produced by the model, we realized that the bounding boxes produced by it were
much larger than the ones in the ground truth. This deflated the localization rate, as in many
cases the Intersection-over-Union between prediction and ground truth was lower than the
recognition threshold of 0.5. We can see an example of this in behavior in Figure 4. The
reason for this difference in size of bounding boxes can be attributable to (at least) two aspects:
(a) large differences in the labeling process for BAFMD and the training dataset of MYTR, or
(b) inaccurate set of anchor boxes, which are the system used by YOLO (up to version 4) for
outputting a fixed dimension of bounding boxes. This issue is not present in FairFace, as there
we are missing bounding boxes for the ground truth, thus we used other proxies for determining
a good localization (as indicated in Section 6). To check for possible improvements, we tried
experimentally lowering the threshold to 0.25 to observe possible changes in the localization
rate of MYTR. We did indeed observe an increase in the rate (to around 50%, still a poor result).
Despite the better rate, though, we did notice important hints of possible bias in localization,
with the rate for light-skinned people at around 55% and for dark-skinned people at around
45% (an effect size of 20.03). This further reinforces our findings that MYTR seems generally
to do a poor job in both localization and classification by adding additional fairness concerns.
The presence of such biases, in addition to those already mentioned in Section 7.2, are probably
to be expected since MYTR is a dataset which has undergone pruning and quantization, both
of which have been observed to increase bias towards minority groups [57, 58, 59, 60]. There
are several works introducing bias-aware model compression techniques (e.g., [61, 62]) which
could be employed to mitigate the biases on this model.
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