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Abstract	
This	paper	presents	the	idea	of	mutually	adaptive	trust	calibration	in	Human-AI	Teams	(HATs).	Mutually	
adaptive	trust	calibration	in	HATs	is	established	when	both	the	human	agent	and	the	machine	agents	
continuously	adapt	to	one	another,	in	terms	of	beliefs,	attitudes	and	behaviors,	to	optimize	trust	and	
team	performance.	This	goal	requires	new	concepts,	definitions,	models,	and	measures.	We	highlight	
our	past	and	recent	studies	that	advance	this	important	objective.			
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1. Introduction	
Much	current	work	with	regards	to	establishing	“common	ground”	in	relation	to	trust	has	been	
to	 either	1)	 enhance	 the	human’s	understanding	of	 the	machine	or	2)	 enhance	 the	machine’s	
understanding	 of	 the	 human	 [1,2].	 The	 first	 approach,	 to	 create	 human-readable	 machines,	
encompasses	 efforts	 to	 enhance	 the	 transparency	of	 the	machine	and	 the	explainability	of	 its	
actions	 to	 the	 human	 by	 enhancing	 interface	 design	 and	 training	 materials,	 amongst	 other	
methods.	The	 second	approach,	 to	 create	machine-readable	 humans,	 attempts	 to	measure	 the	
intent	 of	 a	 human	 to	 then	 provide	 adaptive	 feedback	 and	 adjustments	 to	 enhance	 overall	
understanding	and	collaboration	(see	Figure	1).	Yet,	these	methods	overlook	an	important	factor	
that	 is	 naturally	 evident	 in	 human-human	 communication:	 flexible	 real-time	 and	 fluent	
coordination.	 For	 example,	 real-time	 communication	 is	 naturally	 messy	 and	 requires	 quick	
adjustments,	adaptation	to	errors,	and	recognition	of	mutual	understanding.	A	more	flexible	and	
dynamic	approach	is	needed	that	can	account	for	errors,	can	adjust	on	the	fly	and	can	calibrate	in	
real-time.	The	ultimate	version	of	success	with	these	approaches	is	to	establish	bi-directional	and	
adaptive	mutual	trust	calibration.		

	
Figure	1:	Approach	for	human-autonomy	collaboration	
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2. Mutually	Adaptive	Trust	Calibration	

2.1. Trust	Calibration	Definitions	

Mutual	trust	is	a	fundamental	property	and	predictor	of	good	performing	teams.	We	define	
trust	 as	 “the	 continuous	 process	 of	 setting	 and	 updating	 a	 discrete	 interaction	 policy	 towards	
another	 agent	 in	 risky	 situations.”	 Some	people	 trust	AI	 a	 lot	which	 can	 lead	 to	 over-trusting,	
leading	to	misuse	and	potentially	disastrous	outcomes.	Others	distrust	AI	which	can	cause	under-
trust,	 leading	to	disuse	and	unnecessary	additional	workload	[3].	For	 instance,	people	 tend	to	
apply	broad	heuristics	to	trusting	other	agents	such	as	the	system-wide	strategy,	which	occurs	
when	 one	 faulty	 system	 “bleeds	 over”	 negatively	 into	 the	 perception	 of	 similar,	 but	 well	
performing	 systems	 [4].	 Ideally,	 people	 have	 calibrated	 trust,	 an	 optimized	 state	 when	 the	
perceived	trust	matches	actual	machine	trustworthiness	(see	Figure	2).	Early	on,	we	identified	
and	studied	teams	composed	of	people	and	unmanned	vehicles	and	found	that	trust	increased	
with	 experience	 even	 though	 the	 robot	made	many	mistakes	 [5].	 Over-trust	 can	 be	 adjusted	
downwards	by	dampening	expectations	and	under-trust	can	be	adjusted	upwards	through	trust	
repair	strategies	[6,7].		

	
Figure	2:	Trust	calibration	for	over-	and	under	trust	with	Artificial	Intelligence	

2.2. A	Model	for	Mutually	Adaptive	Trust	Calibration	

Recently,	we	have	established	a	model	for	mutually	adaptive	trust	calibration	in	HATs	[8].	This	
work	presents	a	new	model	explaining	 the	role	and	process	of	establishing	mutually	adaptive	
longitudinal	social	trust	calibration	throughout	the	life	cycle	of	a	HAT	(see	Figure	3).	The	HAT	
Trust	Model	describes	the	development	and	role	of	trust	calibration	in	HAT	collaboration.	HAT	
consists	 of	 four	 parts	 including	 1)	 Relationship	 Equity,	 2)	 Social	 Collaborative	 Processes,	 3)	
Perceptions	 of	 Team	 Partner,	 and	 4)	 Perceptions	 of	 Self.	 Central	 to	 our	model	 is	 the	 idea	 of	
relationship	equity	which	describes	the	cumulative	result	of	the	cost	and	benefit	relationship	acts	
that	are	exchanged	during	repeated	collaborative	experiences	(including	social	and/or	emotional	
interactions)	between	two	actors.	The	middle	part	of	the	model	describes	the	collaborative	task	
performance	between	the	teammates.	Together,	they	perform	a	joint	activity	with	the	purpose	of	
achieving	a	common	goal.	Collaboration	is	risky:	actions	may	fail	and	circumstances	may	change.	
Therefore,	the	individual	actors	monitor	the	behavior	and	collaboration	of	themselves	and	their	
teammates.	 Based	 on	 their	 observations,	 actors	 aim	 to	 establish	 appropriate	 trust	 stances	
towards	one	another	(A	in	B	and	B	in	A)	to	mitigate	the	potential	risks	involved	in	accomplishing	
the	 joint	 task.	One	part	of	 the	model	 includes	passive	 trust	calibration	process:	Based	on	 team	
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members’	perceptions	of	one	another,	actors	predict	one	another’s	trustworthiness.	Taking	into	
account	 their	 current	 formal	 work	 agreements	 and	 informal	 way	 of	 collaboration,	 they	 then	
(sub)consciously	assess	the	risk	involved	in	the	collaboration	as	it	currently	is,	and	decide	upon	
a	trust	stance	towards	one	another.	Another	process	of	the	model	is	the	active	trust	calibration	
process:	This	process	is	based	on	an	actor’s	awareness	concerning	their	involvement	in	team	trust	
calibration.	This	awareness	enables	both	actors	to	engage	in	deliberate	attempts	to	influence,	aid,	
or	hamper	the	trust	calibration	process.		
	

	
	

Figure	3:	The	human-AI	team	(HAT)	trust	model	

3. Measurement	of	Trust	in	Human-Autonomy	Teams	
To	validate	models	of	mutually	adaptive	trust	calibration,	it	is	essential	to	develop	and	empirically	
assess	 trust	 building,	 development	 and	 repair	 in	 human-autonomy	 teams.	 Essential	 in	 this	
endeavor	is	good	measures	of	trust	and	trustworthiness	[9-12].	Recently,	we	have	catalogued	the	
state	of	 the	art	of	 trust	measurement	 [13]	and	we	have	mapped	 this	 to	Mayer’s	original	 trust	
model	[14].	We	divide	measures	of	trust	into	self-report,	behavioral	and	physiological	measures	
and	show	some	examples	of	how	these	measures	are	used	in	the	next	sections.			

3.1. Trusting	the	Moral	Judgments	of	a	GPT-Enabled	Robot	

We	 explored	 how	 a	machine	 agent	 trained	 to	 respond	 to	moral	 queries	 is	 perceived	 and	
trusted	by	human	questioners	[15].	Participants	were	tasked	with	querying	the	human-like	agent	
with	the	goal	of	figuring	out	whether	the	agent,	presented	as	a	humanlike	robot	or	a	web	client,	
was	 morally	 competent	 and	 could	 be	 trusted.	 Participants	 rated	 the	 moral	 competence	 and	
perceived	 morality	 of	 both	 agents	 as	 high	 yet	 found	 it	 lacking	 because	 it	 could	 not	 provide	
justifications	 for	 its	 moral	 judgments.	 While	 both	 agents	 were	 also	 rated	 highly	 on	
trustworthiness,	participants	had	little	intention	to	rely	on	such	an	agent	in	the	future.	This	work	
presents	an	important	evaluation	of	a	morally	competent	algorithm	integrated	with	a	human-like	
platform	that	could	advance	how	moral	robot	advisors	are	trusted	in	the	future	[16-18].	
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Fig. 2 The Human–robot team (HRT) trust model. The collaboration
itself is represented in the middle of the figure, describing how each
action from either of the team members adds to or takes from the rela-
tionship equity bank, and how the level of this bank influences the

preferred way of collaboration, i.e. through informal and implicit agree-
ments, or through formal and explicit agreements. The blue-grey boxes
represent the passive trust calibration process, whereas the yellow boxes
describe the active trust calibration process

limitations, coordinating parallel activities, or communicat-
ing information relevant to the team [20,21,84,92,150].

2.3 Perceptions of Team Partner (Grey)

The blue-grey boxes indicate the passive trust calibration
process:Basedon teammembers’ perceptions of one another,
actors predict one another’s trustworthiness. Taking into
account their current formal work agreements and infor-
mal way of collaboration, they then (sub)consciously assess
the risk involved in the collaboration as it currently is, and
decide upon a trust stance towards one another [16,90]. They
then may decide to adjust their collaboration to mitigate
the assessed risks, for example by proposing formal work
agreements or by relaxing the existing work agreements.
During the next collaborative occasion, the actors obtain
additional information concerning their teammember’s trust-
worthiness. This information may deviate from the original
prediction, resulting in a prediction error, or miscalibration.

Adequately calibrated trust stances among the teammem-
bers lead to more effective collaboration: Overtrust can

condition team members into complacent states and mis-
use, whereas undertrust can cause inefficient monitoring and
unbalanced workload. In other words, trust calibration is cru-
cial for optimal team performance. Through the feedback
loops described in the model, the HRT trust process leads
to continuous incremental updates of the team members’
trust stances towards one another and an overall reduction of
miscalibrations. We assume that, for team members that are
benevolent and sincere, the development of appropriate trust
stances will benefit their collaborative efforts; teammembers
can compensate for each others’ flaws, while relying on each
others’ strengths.

2.4 Perceptions of Self (Yellow)

The yellow boxes indicate the active trust calibration pro-
cess: This process is based on an actor’s awareness concern-
ing their involvement in team trust calibration. This aware-
ness enables both actors to engage in deliberate attempts to
influence, aid, or hamper the trust calibration process. This
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3.2. System-wide	Trust	Effects	in	Human-Autonomy	Teams	

To	demonstrate	the	effectiveness	of	interventions	on	trust	calibration	we	provide	an	example	
of	a	recent	UAV	supervisory	control	study	that	countered	a	bias	known	as	the	system-wide	trust	
effect	 [4].	This	bias	is	the	tendency	for	operators	to	apply	trust	broadly	rather	than	exhibiting	
specific	trust	 in	each	component	of	the	system	when	one	of	these	systems	is	faulty.	Our	study	
assessed	the	effectiveness	of	 two	trust	calibration	 interventions	 to	counter	 this	bias	 including	
transparency	 feedback	 and	 scenario-based	 training.	 Results	 showed	 that	 by	 providing	 both	
system	transparency	feedback	and	training	resulted	in	the	most	optimal	verification	rates	and	
response	times	(see	Figure	4).	This	finding	affects	how	HATs	should	be	designed	and	trained	[19-
20].	

	
	
Figure	4:	Verification	rates	(left)	and	subjective	trust	(right)	monitoring	automation	
recommendations	in	a	UAV	supervisory	setting.	The	Faulty	UAV1	is	indicated	by	a	red	asterisk.	
By	providing	transparency	feedback	(informed	condition),	participants	were	more	calibrated	
but	showed	the	system-wide	trust	effect.	

3.3. Neural	Correlates	of	Automated	Agents	

We	also	investigated	the	neural	underpinnings	and	mechanisms	of	trust	in	automated	agents	
[21].	We	used	two	event-related	potentials	measured	by	electroencephalography	as	an	indicator	
of	trustworthiness	(see	Figure	5).	We	demonstrated	that	this	marker	could	distinguish	between	
high	and	low	reliability.		
	

	
	

Figure	5:	Observed	error	related	negativity	(oERN)	and	observed	positivity	(oPE)	as	indicators	
of	trustworthiness	of	an	automated	agent.	

4. Future	Directions	
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2.2. Results 

2.2.1. Reschu performance 
Response accuracy was analyzed with a 4 (Agent Number) x 2 (In-

formation Condition) x 2 (Reliability) ANOVA with agent number as a 
within-subjects variable. The analysis produced a significant main effect 
for agent number F(3, 471) = 78.30, p < .001, η2 = 0.33, as well as a 
significant main effect for the Performance Information Condition (F(1, 
157) = 36.30, p < .001, η2 = 0.19). There was also a main effect for the 
Reliability Condition, (F(1, 157) = 41.00, p < .001, η2 = 0.21). These 
main effects were qualified by two significant interactions, and these 
effects can be viewed graphically in Fig. 3. The first significant inter-
action was between Agent Number and Reliability Condition, F(3, 471) 
= 68.20, p < .001, η2 = 0.30. System accuracy was lower for the 70% 
condition, but this effect was restricted only to the unreliable agent (i.e. 
agent 1). The second interaction took place between the Information and 
Reliability Conditions, F(1, 157) = 5.25, p < .05, η2 = 0.03). The driver 
of this interaction is that when participants were informed of system 
accuracy in the 70% condition, they outperformed participants in the 

70% uninformed condition. 

2.2.2. Verification behavior 
Another variable of interest was verification behavior. Verification 

behavior was defined by a participant’s decision to review the image 
prior to making a decision about the correctness of the ATR. Two 
measures of verification behavior were used in this study. The first 
measures the rate at which participants elected to review images (i.e. 
verification rate). The second measure was the time spent reviewing an 
image once a participant had elected to do so (i.e. image review response 
time). Verification behavior was analyzed with a 4 (Agent Number) x 2 
(Information Condition) x 2 (Reliability) ANOVA with Agent Number as 
a within-subjects variable. The analysis produced a significant main 
effect for Agent Number (F(3, 471) = 11.02, p < .001, η2 = 0.07), as well 
as a main effect for Information Condition (F(1, 157) = 36.20, p < .001, 
η2 = 0.19). The Reliability Condition also produced a significant main 
effect (F(1, 157) = 4.76, p < .05, η2 = 0.03). These main effects were 
qualified by an interaction between Information and Reliability Condi-
tions, F(1, 157) = 11.60, p < .001, η2 = 0.07). This interaction can be 
viewed graphically in Fig. 4. Generally, verification rates were higher 

Fig. 2. Reschu interface.  

Fig. 3. Percent accuracy as a function for Agent number for the information 
and reliability conditions. Error bars are standard error. 

Fig. 4. Percent verification rate as a function for Agent number for the infor-
mation and reliability conditions. Error bars are standard error. 
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when participants were uninformed about system performance. How-
ever, it can be seen in the figure that when participants were informed 
that a single agent was faulty in the 70% condition, this increased their 
propensity to verify for the other agents that performed at 100% accu-
racy. This finding is consistent with the hypothesized “pull-down” effect 
associated with SWT, which for this verification measure actually results 
in a “pull-up” effect. The reason for a pull-up effect instead of a pull- 
down effect is that the direction of detrimental performance is 
reversed for this measure when compared to verification behavior with 
all agents operating at 100% (a higher rate of unnecessary verification is 
a worse outcome in this paradigm). 

The analysis also revealed a three-way interaction between Agent 
Number, Information Condition and Reliability, F(3, 471) = 14.90, p <
.001, η2 = 0.09. Follow-on analyses showed stark differences in the 
pattern of results between the 100% accurate and the 70% accurate 
conditions. In the 100% accurate condition, there was large main effect 
for Information such that verification rates were much lower for 
informed participants, F(1, 78) = 39.30, p < .001, η2 = 0.335, but, 
notably, there was no interaction between Agent Number and Infor-
mation, F(3, 234) = 0.10, p = .96, η2 = 0.001. In contrast, in the 70% 
accurate condition, there was an interaction between Agent Number and 
Information, F(3, 237) = 16.40, p < .001, η2 = 0.17, such that partici-
pants were significantly less likely to verify ATR determinations with the 
perfectly reliable agents (#2–4) than with the unreliable agent (p < .05, 
p < .01, and p < .001 respectively). Furthermore, in the informed con-
dition, an interaction between Agent Number and Reliability shows that 
verification rates were higher for the perfectly reliable agents in the 70% 
reliability condition compared to verifications for the perfectly reliable 
agents in the 100% reliability condition, F(3, 234) = 16.30, p < .001, η2 

= 0.17, signifying the system-wide trust effect. Lastly, verification rates 
for all agents in the uninformed conditions across reliability did not 
differ significantly, F(3, 237) = 0.50, p = .68, η2 = 0.01. 

Image verification response time provided an indication of the de-
gree of scrutiny given to images when reviewed. Verification response 
time was analyzed with a 4 (Agent Number) x 2 (Information Condition) 
x 2 (Reliability) ANOVA with Agent Number as a within-subjects vari-
able (Fig. 5). The analysis produced a significant main effect for Agent 
Number (F(3, 444) = 18.10, p < .001, η2 = 0.09) and also a main effect 
for Information Condition (F(1, 148) = 46.80, p < .001, η2 = 0.23). The 
Reliability Condition (F(1, 148) = 0.60, p = .44, η2 = 0.00) did not 
produce a significant main effect. However, there was an interaction 
between Information and Reliability Conditions, F(1, 148) = 15.60, p <
.001, η2 = 0.07) as well as a three-way interaction between Agent 
Number, Information Condition and Reliability, F(3, 444) = 8.71, p <
.001, η2 = 0.06. Follow-on analyses showed that, in the informed con-
dition, there was an interaction between Agent Number and Reliability 

such that verification response times were higher for the perfectly reli-
able agents in the 70% reliability condition compared to verification 
response times for the perfectly reliable agents in the 100% reliability 
condition, F(3, 213) = 15.20, p < .001, η2 = 0.18, again signifying the 
system-wide trust effect. In the uninformed condition, the only signifi-
cant effect was for Reliability, such that verification response times were 
slower with agents in the 100% reliability compared to response times in 
the 70% condition, F(1, 77) = 4.69, p < .05, η2 = 0.06. Further analyses 
showed differences in the pattern of results between the 100% reliability 
and the 70% accurate conditions. In the 100% reliability condition, 
there was a main effect for Information such that verification response 
times were much slower for informed participants, F(1, 71) = 45.60, p <
.001, η2 = 0.39, but, notably, there was no interaction between Agent 
Number and Information, F(3, 213) = 0.32, p = .81, η2 = 0.01. In 
contrast, in the 70% accurate condition, there was an interaction be-
tween Agent Number and Information, F(3, 231) = 10.70, p < .001, η2 =
0.12, such that participants were significantly faster to verify ATR de-
terminations with the perfectly reliable agents (#2–4) than with the 
unreliable agent (p < .001 for all comparisons). 

2.2.3. Subjective trust 
Post-task subjective trust ratings were analyzed with a 4 (Agent 

Number) x 2 (Information Condition) x 2 (Reliability) ANOVA with 
Agent Number as a within-subjects variable (Fig. 6). The analysis pro-
duced a significant main effect for Agent Number (F(3, 471) = 41.90, p 
< .001, η2 = 0.21) as well as a main effect for Information Condition (F 
(1, 157) = 82.50, p < .001, η2 = 0.34). The analysis also revealed a main 
effect for Reliability Condition (F(1, 157) = 16.00, p < .001, η2 = 0.09). 
There was also an interaction between Information and Reliability 
Conditions, F(1,157) = 11.60, p < .001, η2 = 0.07) (see Fig. 6). 

A significant 3-way interaction occurred between Agent Number, 
Information and Reliability, F(3, 471) = 25.60, p < .001, η2 = 0.14). 
Follow-on analyses showed that, in the informed condition, there was a 
main effect for Agent Number such that the unreliable agent was trusted 
much less than the other agents, F(3, 234) = 62.00, p < .001, η2 = 0.44. 
There was also an interaction between Agent Number and Reliability 
such that trust was lower for the perfectly reliable agents in the 70% 
reliability condition compared to trust for the perfectly reliable agents in 
the 100% reliability condition, F(3, 234) = 56.10, p < .001, η2 = 0.42, 
again signifying the system-wide trust effect. There were no significant 
effects for trust in the uninformed condition. Further analyses showed 
differences in the pattern of results between the 100% accurate and the 
70% accurate conditions. In the 100% accurate condition, there was a 
large main effect for Information such that trust was much higher for 
informed participants compared to informed participants, F(1, 78) =
64.40, p < .001, η2 = 0.45, but, notably, there was no interaction 

Fig. 5. Post-Image Verification Response Time as a function for Agent number 
for the information and reliability conditions. Error bars are standard error. 

Fig. 6. Post Task Subjective Trust Ratings as a function for Agent number for 
the information and reliability conditions. Error bars are standard error. 
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FIGURE 5 | Observation ERPs. The graph displays the oERN and oPe, which were time-locked to each algorithm’s “response.” The participants did not perform the
task themselves – they just evaluated the reliability of the algorithm. The gray boxes indicate the analysis window for each component.

(see Table 1). All other e�ects failed to reach significance
(p > 0.44).

The scalp topographies for the oERN and oPe are very
similar to those of the ERN and Pe, although the Pe has
a more central distribution than the oPe. We also note
that the waveforms of both the performance and observation
ERPs are strikingly similar. Although it is not possible to
infer neural sources based on scalp topographies, the similar
spatial distribution and time course of the performance and
observation ERPs suggests that they likely reflect comparable
neural processes.

Analysis of Algorithm Trust Ratings
Between-block ratings with regard to the participant’s ability
to perform the task themselves (examined post-performance
blocks) as well as between block ratings with regard to the
participant’s trust in the algorithm to perform the task (examined
post-observation blocks) were recorded. Although the ratings
with regard to the performance blocks are not discussed here,
a 4 ⇥ 5 (algorithm by time-point) repeated measures ANOVA
on the observation ratings revealed a main e�ect of algorithm
[F(1,18) = 34.024, p < 0.001, !2

P = 0.654], as well as an
algorithm by time-point interaction [F(1,18) = 8.944, p < 0.001,
!2
P = 0.332].
However, the main e�ect of time-point failed to reach

significance (p = 0.731). Interestingly, the only di�erence in

pattern for rating the algorithms over time occurred after the
participants’ first interaction with each algorithm (Figure 6).
This indicates that, although the cover-stories were successful
in establishing the expert and novice algorithm credibility
initially, the participants very quickly reached the end-state with
regard to determining the true objective performance of each
algorithm.

Mixed-Linear Effects Analyses of ERP
Component Magnitude and Trust Ratings
To investigate the relationships between ERP amplitudes
and subjective ratings, we used a linear mixed model to
test if subjective trust ratings were related to oERN and
oPe amplitudes and if the ERP-trust ratings relationships
were modulated as a function of algorithm observation
sequence.

Results of the first model that predicted oPe amplitudes
accounted for 65% of the variance (R2 = 0.65) and revealed
that trust ratings was a significant predictor of oPe [b = 1.01,
b = 0.18, SE = 0.41, t(211.5) = 2.41, p = 0.01], which suggests
that oPe amplitudes increased as trust ratings increased (see
Figure 7). The dummy coded variable of sequence showed a
significant mean di�erence between the sequence 1 and sequence
2 [MSequence 1 = 5.56 uV, MSequence 2 = 4.37 uV, SE = 0.54,
t(204) = �2.17, p = 0.03], which suggests that the mean
amplitudes were lower overall for sequence 2 compared to
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New	efforts	are	under	way	to	realize	the	vision	of	mutually	adaptive	trust	calibrating	HATs.	New	
developments	 in	generative	AI	will	enable	novel	 types	of	 communication	 that	can	allow	us	 to	
improve	human-AI	teaming,	which	 is	not	as	good	as	human-human	teaming	[22].	We	are	also	
investigating	how	trust	calibration	efforts	 trade-off	with	situation	awareness	and	workload	to	
improve	teaming	performance.	Other	efforts	are	focusing	on	quantifying	the	relationship	equity	
construct	that	some	have	found	useful	for	the	prediction	of	cross-task	and	long-term	AI	teaming	
[23].	Furthermore,	recent	reviews	have	found	trust	repair,	dampening	and	explanation	efforts	
are	not	always	effective	and	determined	there	is	a	need	to	develop	better,	predictive	models	to	
enhance	such	interventions	[24,	25].		Lastly,	we	are	examining	how	AI	teammates	can	align	with	
human	decision-makers	 in	 terms	of	values	and	decision	styles,	which	 focuses	on	 the	 integrity	
(process)	and	benevolence	(purpose/intent)	aspects	of	trustworthiness	(as	opposed	to	the	ability	
/	 performance	 dimension	 of	 trustworthiness).	 Combined,	 these	 efforts	 may	 help	 to	 further	
advance	and	improve	trust	calibration	in	human-AI	teams.		
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