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Abstract

This paper presents the idea of mutually adaptive trust calibration in Human-Al Teams (HATSs). Mutually
adaptive trust calibration in HATs is established when both the human agent and the machine agents
continuously adapt to one another, in terms of beliefs, attitudes and behaviors, to optimize trust and
team performance. This goal requires new concepts, definitions, models, and measures. We highlight
our past and recent studies that advance this important objective.
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1. Introduction

Much current work with regards to establishing “common ground” in relation to trust has been
to either 1) enhance the human’s understanding of the machine or 2) enhance the machine’s
understanding of the human [1,2]. The first approach, to create human-readable machines,
encompasses efforts to enhance the transparency of the machine and the explainability of its
actions to the human by enhancing interface design and training materials, amongst other
methods. The second approach, to create machine-readable humans, attempts to measure the
intent of a human to then provide adaptive feedback and adjustments to enhance overall
understanding and collaboration (see Figure 1). Yet, these methods overlook an important factor
that is naturally evident in human-human communication: flexible real-time and fluent
coordination. For example, real-time communication is naturally messy and requires quick
adjustments, adaptation to errors, and recognition of mutual understanding. A more flexible and
dynamic approach is needed that can account for errors, can adjust on the fly and can calibrate in
real-time. The ultimate version of success with these approaches is to establish bi-directional and
adaptive mutual trust calibration.
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Figure 1: Approach for human-autonomy collaboration
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2. Mutually Adaptive Trust Calibration
2.1. Trust Calibration Definitions

Mutual trust is a fundamental property and predictor of good performing teams. We define
trust as “the continuous process of setting and updating a discrete interaction policy towards
another agent in risky situations.” Some people trust Al a lot which can lead to over-trusting,
leading to misuse and potentially disastrous outcomes. Others distrust Al which can cause under-
trust, leading to disuse and unnecessary additional workload [3]. For instance, people tend to
apply broad heuristics to trusting other agents such as the system-wide strategy, which occurs
when one faulty system “bleeds over” negatively into the perception of similar, but well
performing systems [4]. Ideally, people have calibrated trust, an optimized state when the
perceived trust matches actual machine trustworthiness (see Figure 2). Early on, we identified
and studied teams composed of people and unmanned vehicles and found that trust increased
with experience even though the robot made many mistakes [5]. Over-trust can be adjusted
downwards by dampening expectations and under-trust can be adjusted upwards through trust
repair strategies [6,7].
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Figure 2: Trust calibration for over- and under trust with Artificial Intelligence

2.2.A Model for Mutually Adaptive Trust Calibration

Recently, we have established a model for mutually adaptive trust calibration in HATs [8]. This
work presents a new model explaining the role and process of establishing mutually adaptive
longitudinal social trust calibration throughout the life cycle of a HAT (see Figure 3). The HAT
Trust Model describes the development and role of trust calibration in HAT collaboration. HAT
consists of four parts including 1) Relationship Equity, 2) Social Collaborative Processes, 3)
Perceptions of Team Partner, and 4) Perceptions of Self. Central to our model is the idea of
relationship equity which describes the cumulative result of the cost and benefit relationship acts
that are exchanged during repeated collaborative experiences (including social and/or emotional
interactions) between two actors. The middle part of the model describes the collaborative task
performance between the teammates. Together, they perform a joint activity with the purpose of
achieving a common goal. Collaboration is risky: actions may fail and circumstances may change.
Therefore, the individual actors monitor the behavior and collaboration of themselves and their
teammates. Based on their observations, actors aim to establish appropriate trust stances
towards one another (A in B and B in A) to mitigate the potential risks involved in accomplishing
the joint task. One part of the model includes passive trust calibration process: Based on team



members’ perceptions of one another, actors predict one another’s trustworthiness. Taking into
account their current formal work agreements and informal way of collaboration, they then
(sub)consciously assess the risk involved in the collaboration as it currently is, and decide upon
a trust stance towards one another. Another process of the model is the active trust calibration
process: This process is based on an actor’s awareness concerning their involvement in team trust
calibration. This awareness enables both actors to engage in deliberate attempts to influence, aid,
or hamper the trust calibration process.
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Figure 3: The human-Al team (HAT) trust model

3. Measurement of Trust in Human-Autonomy Teams

To validate models of mutually adaptive trust calibration, it is essential to develop and empirically
assess trust building, development and repair in human-autonomy teams. Essential in this
endeavor is good measures of trust and trustworthiness [9-12]. Recently, we have catalogued the
state of the art of trust measurement [13] and we have mapped this to Mayer’s original trust
model [14]. We divide measures of trust into self-report, behavioral and physiological measures
and show some examples of how these measures are used in the next sections.

3.1. Trusting the Moral Judgments of a GPT-Enabled Robot

We explored how a machine agent trained to respond to moral queries is perceived and
trusted by human questioners [15]. Participants were tasked with querying the human-like agent
with the goal of figuring out whether the agent, presented as a humanlike robot or a web client,
was morally competent and could be trusted. Participants rated the moral competence and
perceived morality of both agents as high yet found it lacking because it could not provide
justifications for its moral judgments. While both agents were also rated highly on
trustworthiness, participants had little intention to rely on such an agent in the future. This work
presents an important evaluation of a morally competent algorithm integrated with a human-like
platform that could advance how moral robot advisors are trusted in the future [16-18].



3.2.System-wide Trust Effects in Human-Autonomy Teams

To demonstrate the effectiveness of interventions on trust calibration we provide an example
of a recent UAV supervisory control study that countered a bias known as the system-wide trust
effect [4]. This bias is the tendency for operators to apply trust broadly rather than exhibiting
specific trust in each component of the system when one of these systems is faulty. Our study
assessed the effectiveness of two trust calibration interventions to counter this bias including
transparency feedback and scenario-based training. Results showed that by providing both
system transparency feedback and training resulted in the most optimal verification rates and
response times (see Figure 4). This finding affects how HATs should be designed and trained [19-
20].
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Figure 4: Verification rates (left) and subjective trust (right) monitoring automation
recommendations in a UAV supervisory setting. The Faulty UAV1 is indicated by a red asterisk.
By providing transparency feedback (informed condition), participants were more calibrated
but showed the system-wide trust effect.

3.3.Neural Correlates of Automated Agents

We also investigated the neural underpinnings and mechanisms of trust in automated agents
[21]. We used two event-related potentials measured by electroencephalography as an indicator
of trustworthiness (see Figure 5). We demonstrated that this marker could distinguish between
high and low reliability.
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Figure 5: Observed error related negativity (0ERN) and observed positivity (oPE) as indicators
of trustworthiness of an automated agent.

4. Future Directions



New efforts are under way to realize the vision of mutually adaptive trust calibrating HATs. New
developments in generative Al will enable novel types of communication that can allow us to
improve human-AI teaming, which is not as good as human-human teaming [22]. We are also
investigating how trust calibration efforts trade-off with situation awareness and workload to
improve teaming performance. Other efforts are focusing on quantifying the relationship equity
construct that some have found useful for the prediction of cross-task and long-term Al teaming
[23]. Furthermore, recent reviews have found trust repair, dampening and explanation efforts
are not always effective and determined there is a need to develop better, predictive models to
enhance such interventions [24, 25]. Lastly, we are examining how Al teammates can align with
human decision-makers in terms of values and decision styles, which focuses on the integrity
(process) and benevolence (purpose/intent) aspects of trustworthiness (as opposed to the ability
/ performance dimension of trustworthiness). Combined, these efforts may help to further
advance and improve trust calibration in human-AI teams.
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