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Abstract
The increasing success of deep learning models in recent years comes with the drawback of increasing
model complexity. Due to the complexity, model insights are hard to obtain. However, understanding
the underlying reasoning for a proposed decision becomes crucial in critical settings. Counterfactual
explanations are among the most popular methods to interpret predictions of so-called black-box ma-
chine learning models. They provide a form of explanation intuitive to human thinking by building
”what-if” scenarios. Despite their popularity for interpreting tabular data, they find limited adaption
in the visual domain. Current approaches to image counterfactuals rely heavily on access to model
parameters, additional training data, or surrogate models. However, access to additional information
might not always be feasible. We, therefore, propose an evolutionary-based method for counterfactual
image generation with a custom mutation operator based on data augmentation to overcome these lim-
itations. We show that generating image counterfactuals solemnly on an input instance and access to
the prediction function is possible and performs on par with existing methods.
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1. Introduction

Deep Learning models are at the forefront of artificial development as they allow complex
decision-making and can sometimes even discover complex patterns in data that other algorithms
or humans can hardly find. Due to their complexity, those models are “black-boxes” with no
human-understandable explanations for their predictions. With the adaption of such algorithms
to critical areas like medical diagnosis, autonomous driving, or airport security, a human-
interpretable explanation becomes crucial to gain trust in these algorithms. However, most
machine learning systems lack ways to make decisions transparent to humans. Currently,
interest in model-agnostic techniques of explainable and interpretable machine learning is
growing [1, 2, 3, 4]. Most of those approaches determine how much each feature or which
feature combination contributes to a particular decision (e.g., [2, 5]). Nevertheless, those methods
fail to show how a different prediction could have been achieved. According to Miller [6], an
essential factor for human-understandable explanations, besides selectivity (i.e., only some
causes of the prediction are shown), sociability (i.e., interactiveness), and exclusion of probability,
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is contrastiveness. Contrastive explanations should not explain why an event 𝑍 happened but
rather why an event 𝑊 happened instead.

A specific class of algorithms that can provide contrastive explanations are counterfactuals.
Counterfactuals present a perturbation to the original input that leads to a change in the
prediction of an underlying machine learning model. The roots of counterfactuals lie in causal
reasoning and offer answers to the question "What if?" and "Why?". They are already in daily
use in scientific and ordinary language. Therefore, they provide an intuitive concept for humans
to understand. Despite many efforts to apply counterfactuals to improve the interpretability of
machine learning models (e.g., [7, 8, 9, 10, 11, 12, 4]), most approaches are restricted to specific
input data types (e.g., [7, 8, 13]), or the underlying model concepts (e.g., [7, 8]). Most work
focuses on tabular data (e.g., [7, 14, 13]). The small amount of work on images uses additional
information like surrogate models [15, 12], access to training data [15, 12], or model parameters
[8]. However, in the real world, this additional information is seldom available. In particular, in
industrial, medical, or privacy-sensitive applications, the user is often not the model developer
and, thus, has no access to model parameters or the expertise to evaluate those. Furthermore,
training data is often not available due to privacy-related issues. Nevertheless, validating and
explaining decisions is crucial for the user to understand the model’s quality, trustworthiness,
and decisions.

This work develops an approach to generating model-agnostic image counterfactuals in a
multi-class prediction problem. Our approach, based on NSGA-II [16], takes on an input image
and the prediction function of some black-box classifier to be explained. To summarise the main
contributions of this work, we show that:

1. the counterfactual optimization problem is applicable on images.
2. data augmentation mutation enables a better search space coverage compared

to uniform mutation.
3. our approach achieves state of the art results on par with the approaches of

Wachter et al. [4] and Van Looveren & Klaise [12].

2. Related Work

To obtain an in-depth understanding of black-box models and their predictions, the current
research focus shifts from classic explainable AI tools (e.g., LIME [2], GradCam [17], SHAP [1],
or Saliency Maps [18]) that visualize why a particular decision was taken, to counterfactuals.
Counterfactuals show why a different decision was taken via alternatives, thereby providing
contrastiveness.

The first steps to adapt counterfactuals from their roots in causal reasoning to a tool for un-
derstanding black-box models were taken by Wachter et al. [4]. They built on the fundamentals
of Pearl [19] to develop a basic stochastic counterfactual generation approach. They proposed
the following formulation:

𝑐 = 𝑎𝑟𝑔min
𝑥′

max
𝜆

𝜆(𝑓(𝑥′)− 𝑦′)2 + 𝑑(𝑥, 𝑥′) (1)



The first part pushes the models’ prediction 𝑓(𝑥′) on the counterfactual 𝑥′ to a new target
class 𝑦′ ̸= 𝑦 other than the original class 𝑦. In the second part, the distance measure 𝑑
keeps the counterfactual 𝑥′ close to the original instance 𝑥, 𝜆 balances the contributions of the
competing terms. Extending their work towards more realistic and interpretable counterfactuals,
multiple authors provide mechanisms like feature extractors [8, 15], constraints [14, 20, 10],
or prototypes [12]. Sharma et al. [21] built the first framework for counterfactuals applicable
to various black-box algorithms and data types without the need for extensive additional
information. They were able to show that their approach works for multiple data types but was
unable to produce human-interpretable counterfactuals on MNIST. Dandl et al. [7] created a
general framework for tabular data by formulating a multi-objective problem for counterfactuals
solved with the genetic algorithm NSGA-II.

While counterfactuals have already been widely explored for tabular data [7, 14, 22, 10, 21,
12, 4], less work can be found on images. Some of the model-agnostic approaches for table data
have been applied to images (e.g.,[21, 4]), resulting in more adversarial samples than counter-
factuals.1 Approaches to image-specific counterfactuals focus primarily on counterfactuals for
convolutional neural networks [8] and learning of surrogate models [15, 12].

In contrast, our approach directly operates on the input image and the classifier prediction,
eliminating the need for parameter access and training surrogate models.

3. Methodology and Model

Throughout, we consider a black-box machine learning classifier 𝑓 : 𝑋 → 𝑌 where 𝑥 ∈ 𝑋 is a
set of input features (𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}) from the feature domain 𝑋 and 𝑦 ∈ 𝑌 is a vector
of probability distribution (𝑦 = {𝑦0, 𝑦1, . . . , 𝑦|𝑦|} where

∑︀|𝑦|
𝑖=0 = 1) over the number of classes

|𝑦|. In this context, black-box denotes that only the model’s output 𝑦 is observable. The model’s
inner workings are unknown. The goal of counterfactual approaches is, given an input 𝑥 and a
classifier 𝑓 , to provide an explanation via counter-examples allowing a human to understand
why classifier 𝑓 chose class 𝑦 for data point 𝑥 and not a counterfactual class 𝑦′ [4].

Adapted to the image domain, it results in: Given a query image 𝑥 for which a classifier 𝑓
predicts the class 𝑦, a counterfactual image 𝑥′ identifies how 𝑥 could be changed in a proximate
(R1) [13], sparse (R2) [13] and plausible way (R3) [9] so that the classifier maximizes the
change in the predicted class (R4). Proximity refers to the distance between the original instance
𝑥 and the counterfactual instance 𝑥′, calculated as a distance. Sparsity is the number of feature
changes between 𝑥 and 𝑥′. A plausible adaption indicates that the resulting 𝑥′ is in distribution
with the data.

3.1. Objectives

Following the definition of a counterfactual and the resulting requirements (R1-R4), the
optimization problem minimizes the distance (R1) 𝑑(𝑥, 𝑥′) between the original data point 𝑥

1Adversarial samples are closely related to counterfactuals. However, in contrast to counterfactuals that aim for
small perceptible changes to provide useful explanations, adversarial samples aim to make the changes as small
and imperceptible as possible to detect flaws in the model [23].



and the newly generated counterfactual data point 𝑥′ to obtain a counterfactual that is close to
the original (𝑂1). Furthermore, to ensure sparse changes (R2) the optimization problem uses
the 𝐿0-norm to minimize the number of pixels subjected to change (𝑂2), referred to as sparsity.
The third optimization objective is the output distance (R4) which maximizes the classification
probability of the counterfactual into a target class 𝑡. Equation (2) shows the optimization
problem to be minimized.

min 𝑂(𝑥) := (𝑂1(𝑥, 𝑥
′), 𝑂2(𝑥, 𝑥

′), 𝑂3(𝑥
′)) (2)

𝑠.𝑡. 𝑓(𝑥) ̸= 𝑓(𝑥′)

𝑂1(𝑥, 𝑥
′) = 𝑑(𝑥, 𝑥′)

𝑂2(𝑥, 𝑥
′) =

𝑁∑︁
𝑛=1

1|𝑥𝑛−𝑥′
𝑛|

𝑂3(𝑥
′) = 1− 𝑓(𝑥′)𝑡

As distance measure 𝑑, most approaches to counterfactuals adapt the 𝑙1- or 𝑙2-norm [4, 14].
However, on images, traditional distance functions do not sufficiently account for image simi-
larity as it disregards the spatial relationships of images [24]. Therefore we compare the mean
absolute error (using 𝑙1-norm) and the root mean squared error (using 𝑙2-norm) with different
image-based similarity indices see Section 4.1 and appendix A2. R3 is addressed during the
algorithm design in Section 3.2.

3.2. Algorithm

Our algorithm combines a modified version of NSGA-II with Island Populations and an adaption
of the auto-tuning approach of Castelli et al. [25]. Deb et al. [16] developed NSGA-II already
in 2002. However, it is still a heavily used algorithm for Multi-Objective Optimization today,
as other algorithms like indicator-based methods (e.g., SMS-EMA [26], IBEA [27]) rely on the
additional computation of the indicator, and the results of decomposition-based methods (e.g.,
MOEA/D [28], NSGA-III [29]) highly depend on the shape of the Pareto front [30].3

As Equation 2 indicates, the only mandatory inputs for the algorithm are a black-box classifier
𝑓 and an input instance 𝑥. Our algorithm generates an island 𝐼𝑖 with a sub-population 𝑝𝑖 for
each class 𝑡 ∈ 𝑌 ∖{𝑓(𝑥)} that a classifier 𝑓 can classify. For each island 𝐼𝑖 the algorithm stated
in Algorithm 1 runs in parallel, allowing the creation of counterfactuals in multiple boundry
directions at once. In every generation 𝑔 each island 𝐼𝑖 generates new candidates 𝜆𝑖 by selecting,
crossing, and mutating high-performing individuals from the population 𝑝𝑖.

2 https://github.com/JHoelli/Evolutionary_Counterfactual_Visual_Explanations/blob/master/Supplementary_
Material.pdf.

3For full reasoning we refer to the supplementary material A2.
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Algorithm 1 Algorithm on island 𝐼𝑖
1: Input: Population Size 𝑃 , Generation 𝐺, Original Image 𝑥,
2: Output: Non-Dominated Set 𝑝𝑖

3: 𝑝𝑖 ← initializePopulation(x)
4: 𝑐𝑥𝑝𝑏𝑖 ← generateRandomNumber(𝑙𝑒𝑛(𝑝𝑖))
5: 𝑚𝑢𝑡𝑝𝑏𝑖 ← generateRandomNumber(𝑙𝑒𝑛(𝑝𝑖) )
6: 𝐺← maximal number of generations
7: evaluate(𝑝𝑖)
8: 𝑝𝑖 ← selectNSGA(𝑝𝑖)
9: for 𝑔 ∈ {0, 1, . . . , 𝐺} ∨ hypervolume(𝑝𝑖) > 𝜃 do

10: 𝜆𝑖 ← selTournament(𝑝𝑖)
11: for 𝑗 in 1,. . . ,(|𝜆𝑖| − 1)) do
12: 𝑐𝑥← 𝑐𝑥𝑝𝑏𝑖[𝑗−1]+𝑐𝑥𝑝𝑏𝑖[𝑗]

2
13: if 𝑟𝑎𝑛𝑑𝑜𝑚() < 𝑐𝑥 then
14: 𝜆𝑖[𝑗 − 1],𝜆𝑖[𝑗]← crossover(𝜆𝑖[𝑗 − 1],𝜆𝑖[𝑗])
15: 𝑐𝑥𝑝𝑏𝑖[𝑗 − 1], 𝑐𝑥𝑝𝑏𝑖[𝑗]← adapt_cxpb(𝜆𝑖[𝑗 − 1], 𝜆𝑖[𝑗])
16: end if
17: end for
18: for 𝑗 in 0,. . . ,(|𝜆𝑖| − 1) do
19: if 𝑟𝑎𝑛𝑑𝑜𝑚() < 𝑚𝑢𝑡𝑝𝑏𝑖[𝑗] then
20: 𝜆𝑖[𝑗]← mutate(𝜆𝑖[𝑗])
21: 𝑚𝑢𝑡𝑝𝑏𝑖[𝑗]← adapt_mutpb(𝜆𝑖[𝑗])
22: end if
23: end for
24: evaluate(𝜆𝑖 + 𝑝𝑖)
25: 𝑝𝑖 ← selectNSGA(𝜆𝑖 + 𝑝𝑖)
26: end for

The initial 𝑛 individuals of an island 𝐼𝑖 are randomly initialized with the length of the flattened
input image |𝑥| along with an individual crossover rate 𝑐𝑥𝑝𝑏𝑖 and mutation rate 𝑚𝑢𝑡𝑝𝑏𝑖. The
generated individuals are evaluated on each objective stated in Equation (2). After evaluating
the individual’s fitness, non-dominated sorting is applied, and the crowding distance is cal-
culated according to NSGA-II [16]. The assigned ranks are used as the primary criterion in
the tournament selection. Thereby, two individuals are compared according to their rank. If
they have the same rank, the crowding distance is used as a secondary criterion to retain the
individual lying in the less crowded region to maintain the population’s diversity. The selected
individuals 𝜆𝑖 are crossed by performing a uniform crossover [31]. The unified crossover modi-
fies two individuals 𝜆𝑖[𝑗] ∈ 𝜆𝑖 and 𝜆𝑖[𝑗 − 1] ∈ 𝜆𝑖 in place by swapping attributes according to
the averaged crossover probability 𝑐𝑥 of the individual. Based on the fitness of the resulting
offsprings 𝜆𝑖[𝑗 − 1] and 𝜆𝑖[𝑗], a new crossover probability 𝑐𝑥𝑝𝑏[𝑗 − 1] and 𝑐𝑥𝑝𝑏[𝑗]is assigned
to the corresponding offspring. The selected individuals 𝜆𝑖[𝑗] are mutated with a mutation
probability 𝑚𝑢𝑡𝑝𝑏𝑖[𝑗] by a random change of attribute. Based on the performance 𝑚𝑢𝑡𝑝𝑏𝑖[𝑗]



is adapted. The algorithm stops if it meets the desired number of generations or exceeds a
hypervolume [32, 33] threshold of 𝜃 on all islands (i.e., on all islands, the generated solutions
dominate a portion of 𝜃 of the objective space). The stopping criterion is applied to all islands
independently as the goal is to achieve a high-quality, non-dominated set for each of them.

3.3. Custom Operators

Some of the operators used by default in evolutionary programming are unsuitable for the
stated problem, as they do not account for spatial dependencies in images or enable images to
be out of distribution. In this section, we depict the adapted operators of NSGA-II.

Initialization By default, NSGA-II initializes the parent population 𝑝𝑖 randomly [16]. However,
initializing images with traditional stochastic techniques like Random Number Generators
leads to a vast search space (number candidate solutions for an image: (𝑤𝑖𝑑𝑡ℎ · ℎ𝑒𝑖𝑔ℎ𝑡 ·
𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠)!·255!), which slows down convergence and the probability of finding a suitable
solution.

To warmstart the algorithm by introducing relevant information and enable plausible
results (R3), we lean on the concepts of superpixels. The original image 𝑥 of size 𝐻×𝑊×
𝐶 , where 𝐻 is the height, 𝑊 the width, and 𝐶 the channels, is divided into 𝑙 patches of
size 𝐻

𝑙 ×
𝑊
𝑙 ×𝐶 by slicing. Therefore an image 𝑥 contains 𝑁 patches 𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑁 ],

where a patch 𝑥𝑖 is of size 𝐻
𝑙 ×

𝑊
𝑙 × 𝐶 . Each individual in a population is generated by

random shuffling the patch positions 𝑖.

Mutation Traditionally, individuals are mutated to produce new offsprings that are different
from their parents, thereby encouraging diversity. Using the crossover operator alone
leads to decreasing diversity and often results in local optima, as only the good parts of
the parents survive in each generation (premature convergence).[34]

The proposed mutation operator aims to prevent premature convergence and include
new relevant information in the population by applying data augmentation [35]. The
idea behind using data augmentation is to make sure that the changes are still plausi-
ble (𝑅3) by manipulating the image with basic augmentation techniques. Only basic
techniques are used, as we do not use additional data or model parameters. The data
augmentation pipeline consists of functions for Random Flip (horizontally or vertically),
Random Rotation (by factor 0.2, resulting in a counterclockwise rotation by 1.25 ), Ran-
dom Contrast (by factors between 0.1 and 1.3, resulting in each pixel being adjusted by
𝑓𝑎𝑐𝑡𝑜𝑟× (𝑥−𝑚𝑒𝑎𝑛 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙) ), and Zoom (with height factors between
-0.7 and -0.2, resulting in a zoom-in between [20%, 70%]).

Parameter Optimization According to Hassanat et al. [36], parameters of evolutionary algo-
rithms, especially the mutation and crossover rates, impact the obtainable results and
convergence speed. Tuning these parameters beforehand can result in several preliminary
experiments resulting in good values before the run. However, different values of param-
eters might be optimal at different stages of the evolutionary process. Mutation can be
good in the initial generations to quickly explore the search space, while crossover is more



useful once the search process is close to the optimal solution. The proposed algorithm
implements a self-adaptive parameter control on the individual level, according to Castelli
et al. [25]. Each individual 𝑝𝑖[𝑗] in a population has its own crossover probability 𝑐𝑥𝑝𝑏𝑖[𝑗]
and its own mutation probability 𝑚𝑢𝑡𝑝𝑏𝑖[𝑗]. Both are initialized with random values
between 0 and 1. During crossover, two selected individuals, 𝜆𝑖[𝑗] and 𝜆𝑖[𝑘], generate an
offspring with the probability 𝑐𝑥𝑝𝑏 = 1

2(𝑐𝑥𝑝𝑏𝑖(𝜆𝑖[𝑗])+𝑐𝑥𝑝𝑏𝑖(𝜆𝑖[𝑘])), where the resulting
offspring has the crossover probability 𝑐𝑥𝑝𝑏(𝜆𝑖[𝑗]) = 𝑐𝑥𝑝𝑏+ 𝑟. 𝑟 is a small positive num-
ber if the fitness of the generated offspring improved due to crossover and a small negative
number in any other case. During mutation, an individual mutates with its mutation
rate 𝑚𝑢𝑡𝑖[𝑗]. The resulting individual has a mutation rate of 𝑚𝑢𝑡𝑝𝑏(𝜆𝑖[𝑗]) = 𝑚𝑢𝑡𝑝𝑏+ 𝑟,
where 𝑟 is a small positive number if the fitness of the generated offspring improves due
to mutation and a small negative number in any other case.

4. Evaluation

In this section, we evaluate the performance of our counterfactual approach on the two broadly
research image datasets MNIST [37] and Fashion MNIST [38], to answer the following research
questions that aim to contribute to this work:

Q1 How does the proposed image similarity measure influence the performance of
our algorithm?→ Section 4.1

Q2 How does the proposed mutation mechanism influence the performance of our
algorithm?→ Section 4.2

Q3 How does the image counterfactual approach perform compared to other state-
of-the-art methods for image counterfactuals?→ Section 4.3

Both datasets include 60.000 training images and 10.000 test images divided into 10 classes.
An image is of size 28× 28 pixels. Both datasets were split into an 80/20 train/test split. The
train set was only used for training the classification model, while the following experiments
were run on the test set.

The classification model consists of two convolutional layers for both datasets, followed by
max-pooling. The output layer is flattened and fed into a two-layer feed-forward network with
ReLu activation and a softmax output layer. This model is trained for 30 epochs with a batch
size of 100 on the training set. For MNIST, the model achieves a test set accuracy of 0.9921; for
Fashion MNIST, an accuracy of 0.831. We run all experiments on an Intel(R) Xeon(R) Platinum
8180M CPU with 2.50GHz with 1.5 TB of RAM. The code to our evaluation is made publicly
available on github4.

4.1. Q1: Distance Function

A counterfactual optimization problem usually includes minimizing the distance to the original
data. However, on images, traditional distance measures like the root mean squared error or
4https://github.com/JHoelli/Evolutionary_Counterfactual_Visual_Explanations

https://github.com/JHoelli/Evolutionary_Counterfactual_Visual_Explanations


Figure 1: Q1: Averaged hypervolume and stan-
dard deviation of experiment 1.

Figure 2: Q2: Distribution of the hypervolume
after 100 generations.

mean absolute error do not sufficiently account for image similarity as they disregard images’
spatial relationships [24]. To validate our choice of distance function, we compare the mean
absolute error (𝑀𝐸) to other popular image similarity indexes: Information Based Statistic
Similarity Measure (𝐼𝑆𝑆𝑀 ) [39], Feature-Based similarity Index (𝐹𝑆𝐼𝑀 ) [40], Root Mean
Squared Error (𝑅𝑀𝑆𝐸), and the Structural Similarity Index (𝑆𝑆𝐼𝑀 ) [41]. All functions were
inversed and mapped to the range [0, 1]. Appendix B2 defines the distance measures and
transformations.

For each dataset, we randomly sample 15 instances. We run the algorithm without a target
direction 𝑡 on every distance 𝑑 ∈ {𝑆𝑆𝐼𝑀, 𝐼𝑆𝑆𝑀,𝐹𝑆𝐼𝑀,𝑅𝑀𝑆𝐸,𝑀𝐸} for the selected
images and set the number of epochs to 100, as we do not want the stopping criteria to interfere.
The population size was set to 1000. The evaluation criterion is the hypervolume (i.e. the search
space coverage). The goal is to cover a high fraction of the search space in a small number of
generations.

Figure 1 shows the development of the hypervolume averaged over all samples from both
datasets. Overall, ME has the highest search space coverage, indicating the highest likelihood
of achieving good results. After 100 epochs, the hypervolume of the algorithm optimizing ME
as distance reaches an average of 0.7023, the highest result for any tested distance. Further,
the superiority of 𝑀𝐸 over 𝑅𝑀𝑆𝐸 confirms Wachter et al. [4]. The sparsity introducing
property of the 𝑙1-norm used in ME as distance measure is desirable for human-understandable
counterfactuals, as only a small number of variables are changed. For image examples, we refer
the reader to section C in the appendix2.

4.2. Q2: Mutation Operator

This section evaluates the mutation operator described in Section 3.3. As a baseline, we use an
implementation of random mutation, replacing a pixel with a random number 𝑟 ∈ [0, 255] with
a probability of 0.1.

For both mutation types, the algorithm runs on 15 randomly chosen images per dataset. With
ME as distance, we run the algorithm for 100 epochs with a population size of 1000 and no



target direction. Again we evaluate the hypervolume to evaluate which mutation leads better
through the search space.

Figure 2 shows the distribution of the hypervolume for our mutation and the random mutation.
On average, our mutation leads to better search space coverage. It covers an, on average, over
10 % larger fraction of the search space than the random mutation baseline while having minor
performance fluctuations. For image examples, we refer the reader to section C in the appendix2.

4.3. Q3: Benchmarking

This section compares our approach to two widely used counterfactual benchmarks: the ap-
proach of Wachter et al. [4] and Van Looveren & Klaise [12]. The approach of Wachter et al.[4]
is a simple stochastic optimization between the distance of the original image and the counter-
factual image. Like our approach only the input image and the classification are necessary as
inputs. A more sophisticated approach regarding the data distribution was developed by Van
Looveren & Klaise [12] by training a surrogate model for counterfactual search. Therefore, Van
Looveren & Klaise [12] approach is a slightly harder benchmark for our algorithm to meet as
we do not use additional information regarding the data distribution.

For both datasets, a representative of each class is chosen, resulting in 10 images per dataset.
Our algorithm runs on each image in every possible target direction 𝑡 ̸∈ {𝑓(𝑥)} for 500 epochs
with a population size of 1000. We ran the benchmarks in two settings:

1. without a specific target class 𝑡, to get the overall best counterfactual image.
2. with every possible target direction 𝑡 ̸∈ {𝑓(𝑥)} to calculate the benchmark

metrics.

The metrics were adapted and fitted to this context from [11].

• Distances: We measure the distance between a counterfactual 𝑥′ and the original image
𝑥 with the 𝑙0- and the 𝑙1- norm. The 𝑙0 norm calculates the number of pixels changed
between original and counterfactual instance and is identical to the sparsity from the
optimization problem (R2). The 𝑙1 norm calculates the average change and is consistent
with ME (R1).

• Redundancy: Redundancy measures the unnecessary proposed feature changes in a
counterfactual, by successively flipping one value of 𝑥′ after another back to 𝑥 with the
goal of flipping the label back from 𝑓(𝑥′) to the original predicted outcome 𝑓(𝑥). If the
predicted outcome does not change, we increase the redundancy counter.

• yNN: yNN (Equation (3)) evaluates the data support (R3) of a counterfactual based on
instances from the trainings set. Ideally, a counterfactual should be close to a factual image
from the same target class 𝑡. yNN is calculated by measuring how different neighborhood
points around the counterfactual 𝑥′ are classified. knn are the k-nearest neighbors of the
original image 𝑥. We use a value of 𝑘 = 5.

𝑦𝑁𝑁 = 1− 1

𝑘

∑︁
𝑗∈𝑘𝑁𝑁(𝑥′)

1𝑓(𝑥′)=𝑓(𝑥𝑗) (3)



Figure 3: Evaluation of the 𝑙1- and 𝑙2-
distance distribution of counter-
factual explanations.

Table 1: Results on metrics yNN (higher is bet-
ter) and redundancy (lower is better).

Method yNN Redundancy

M
N

IS
T Our Approach 0.61± 0.24 80.17± 41.64

Wachter et al. 0.48± 0.26 150.59± 54.17
Van Looveren & Klaise 0.49± 0.25 158.06± 43.72

Fa
sh

io
n Our Approach 0.67± 0.24 202.3± 124.31

Wachter et al. 0.49± 0.26 161.37± 74.89
Van Looveren & Klaise 0.5± 0.25 168.80± 79.66

Figure 3 shows that our approach achieved the on-average lowest distances, resulting in
counterfactuals that have on average fewer changes (𝑙1) and smaller changes (𝑙2) than the other
two approaches.

Table 1 adds the obtained results for the metrics redundancy and yNN. For both datasets, our
approach achieves the highest yNN indicating that the resulting counterfactuals have higher
support from the training data than the counterfactuals obtained by the benchmark approaches.
On redundancy, no conclusion can be made. On MNIST our approach has a smaller redundancy
(i.e. less unnecessary changes) than the benchmark approaches, while on Fashion MNIST the
opposite is the case.

For both datasets, our approach found the closest counterfactual with the most support from
the training dataset, while using no other input information than the classifiers prediction
function and the input image. The redundancy is in this case negligible, as sometimes more
pixels need to change to obtain higher support from training data than for changing a classifier’s
decision. Figure 4 visualizes the best found counterfactual for the input images with all the
evaluated approaches.

5. Conclusion

In this work, we introduced an approach to generate image counterfactuals in a multiclass
classification problem by perturbing the original image with evolutionary computation and data
augmentation. Based on NSGA-II, we presented a promising direction in building counterfactuals
close to the original input with high data support, without the need to access additional
information or model parameters. Further, we show that the counterfactual optimization
problem is applicable in high-dimensional feature spaces such as images and that the mutation
and augmentation of the image data enables a better search space coverage. Finally, our approach
achieves state-of-the-art results on par with the approaches of Wachter et al. [4] and Van Loveren



& Klaise [12]. Based on the provided approach and the general applicability, we aim to optimize
the runtime of the underlying algorithm further, investigate the mutation step and apply our
method to real-world applications.

(a) MNIST

(b) Fashion MNIST

Figure 4: Visualization of the best found counterfactual of every evaluated approach on MNIST
and Fashion MNIST.
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