CEUR-WS.org/Vol-3457/paper4ximl .pdf

Imitation Learning of Logical Program Policies for
Multi-Agent Reinforcement Learning

Manuel Eberhardinger™*, Johannes Maucher! and Setareh Maghsudi?

"Hochschule der Medien Stuttgart, Germany

?University of Tuebingen, Germany

Abstract

This work shows that it is possible to learn Logical Program Policies (LPP) for the Multi-Agent Reinforce-
ment Learning environment called Level-based Foraging. Policies are derived from decision trees that
use a logical combination of small feature detector programs generated by a probabilistic context-free
grammar. We show that these created programmatic policies allow to explain decisions of all agents in
the environment and also can be used without retraining on all other environments. This is possible by
creating not just one program for each agent, but several, by sampling learned programs and selecting
the best programs according to the approximate reward in the specific environment the program was
learned on. By using LPP to represent the policies for agents, the policies are interpretable and also
extrapolate to unseen environments. Code: https://github.com/ManuelEberhardinger/LPP-MARL
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1. Introduction

Programmatic reinforcement learning is an interesting research direction to make black-box
deep reinforcement learning (DRL) policies interpretable. By using a synthesized program to
control an agent, the behaviour of the agent is interpretable, as the generated program can
be studied and verified by experts before using it in dangerous environments. Additionally,
the program is controllable, as software developers can adjust the program to their own needs.
Programs also tend to extrapolate to out-of-distribution data, as programs are not restricted to
specific input sizes like neural network models.

Nevertheless, learning a programmatic policy directly, is very hard and most work use a form
of Imitation Learning and a customised domain-specific language (DSL) to reduce the search
space and make the synthesis of a program feasible [1, 2, 3].

We show that it is possible to learn programs for multiple agents by using a strong prior
in the DSL so that the search for programs becomes feasible. Programs are learnt by using
Imitation Learning after collecting data from a black-box neural network policy. In this work
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we propose to use Logical Program Policies [4] to generate programs for the Multi-Agent
Reinforcement Learning (MARL) environment Level-based Foraging (see Figure 2) [5]. Figure
1 shows a high-level overview of all necessary steps to create programs for a given MARL
environment.

We show that the generated logical programs are interpretable and also extrapolate to unseen
environments as the programs are not restricted by grid sizes, the number of players or the
number of objects. This makes programs a good alternative for black-box neural network
policies which must be retrained if one changes the details of the environment, even though
synthesized programs do not achieve the same performance as the DRL policy which was
trained until convergence and used for data collection.

2. Related WOI‘k MARL Environment
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2.1. Program Synthesis and Programmatic Policies

Program synthesis has a long history in the artificial intelligence Train Neural Network
research community [6, 7]. In recent years, more and more research
has been conducted on combining deep learning and program syn-
thesis to make program search more feasible by reducing or guiding
the search space [8, 9, 10]. Another promising method is to learn — [RlCEREEUEIEICHELS
a library of functions from previously solved problems. These func-
tions are then reusable in an updated DSL to solve more difficult
problems [11, 12].

Existing methods for creating programmatic policies mostly use
Imitation Learning. Verma et al. use program sketches and a neural
network oracle to synthesise programmatic policies [1, 2]. Other
work synthesised finite state machines to represent policies [3] or Logical Program Policies
extract policies from decision trees [4, 13]. Recent promising work
al.so shows that it. is po.ssi.bl.e to sy.n"[he.sise programmatic policies Figure 1: The high level
directly [14, 15], since distilling policies into a program always leads 2 iow of the nec essary
to performance degradation on a given task. steps to create programs for

Imitation Learning
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agiven MARL environment.
2.2. Multi-Agent Reinforcement Learning

The goal of MARL is to jointly learn multiple agents to solve a given task by learning how
to behave in a shared environment. There exists a variety of paradigms how to learn MARL
algorithms by adapting DRL methods for multiple agents. One approach is to learn the agents
independently or with sharing of information [16]. The latter paradigm is also known as
Centralised Training Decentralised Execution [17].

Program synthesis research for MARL was first conducted to derive programmatic commu-
nication rules by imitating a learned transformer communication policy [18]. To the best of
our knowledge, there exists no work that tests the extrapolation qualities of learned policies on
unseen environments.



2.3. Level-based Foraging

The implementation of the Level-based Foraging environment that is used in this work was
introduced in [19] (see Figure 2). Each agent and fruit has a specific level. Possible actions are
moving in each direction or picking up a fruit. The goal of the agents is to pick up all fruits, but
agents can only pick up fruits if their level is greater or equal than the level of the fruit. If the
level of the fruit is higher than the agents level, multiple agents need to cooperate to pick up
the fruit. Therefore this is a mixed cooperative-competitive environment, as agents compete
in picking up fruits but also need to cooperate for some fruits. The reward is divided by the
agents that were involved in foraging of the fruit.

3. Method

This work adapts the Bayesian Imitation Learning method Log-
ical Program Policies that calculates a posterior distribution
of logical formulas h for MARL environments [4]. The log-
ical formula consists of small feature detector programs, de-
noted as f, that are drawn from a probabilistic context-free
grammar (PCFG) G. The goal of the feature detectors is to
parametrise the state-action pairs of the expert demonstrations
D with boolean values if the given action was taken in the given
state: f(s,a) : S x A — {0,1}.

Actions taken in a given state represent positive examples. In
the original method all actions not taken for a specific state were Figure 2: The environment
added as negative examples. However, this is not applicable for Level-based foraging with two

. . . . . players and two fruits.
our purpose, since in a given state several actions are possible
that lead to the same goal, namely to approach a fruit in order to pick it up. Therefore, we add

as negative examples only actions that increase the distance of the agent from the fruit.

This newly created dataset can then be used to train a binary decision tree classifier. The
logical formula is represented in a disjunctive normal form and can be extracted from this
classifier as a combination of a finite subset of feature detector programs

~

h(s,a)=(fi1(s,a) A ... A fig, (s,a)) V...V (fa1(s,a) Ao A fii,(s,a)), (1

where d is the number of the demonstrations and k is the number of the feature detector
programs. Negation of f is also possible. These extracted formulas can be converted into a flow
chart for making decisions of the agents interpretable for humans [20].

3.1. Approximating the posterior

The following equations (adapted for our purpose from [4]) show how to approximate the
posterior distribution ¢ from the prior p(7) and the likelihood p(D|7) where D are the expert
demonstrations:

q(m) = p(7| D) (2)



VO<w<1:p(r|D)=wxp(r)+p(D|r) —p(D) (3)
p(m) = the log probability of the generated feature detectors by G (4)
N Agents
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p(D) = the log probability of the evidence, e.g. the provided demonstrations (6)

The prior of the distribution is defined as the weighted log probability of the generated
feature detectors from the PCFG. Since w is defined to decrease the importance of the length of
the programs, it must be in between 0 < w < 1. We use w = 0.1 in our experiments as the
environment is more complex than the grid games used in [4]. This decreases the importance
of the length of the programs since very short feature detectors are not able to find good
abstractions for our problem. The likelihood is calculated from the log of the average reward
each agent received by following a given policy 7 for /N runs. We set N = 100 to get a good
approximation of how good the program is on the given environment. Equation 3 adds and
subtracts the probabilities instead of multiplying and dividing them, since we work with log
probabilities.

To better approximate the posterior, Silver et al. [4] use M logical formulas Ay, ..., hps in one
LPP, as a weighted mixture of experts with each formula weighted equally. In our experiments
we set M = 25. To provide a more diverse distribution of h to select, we train multiple decision
trees with different random seeds. In our experiments we choose to train 5 decision trees. This
improves the performance of LPP, since hardly one formula captures the complete structure
of the state space. The selection of M formulas is implemented by sampling a subset of M
programs from all generated decision trees and empirically evaluating which subset returned
the highest average reward after NV test runs of the environment. The more often M decision
trees are sampled, the better the approximation for the best LPP. We run this 100 times in our
experiments.

To use LPP in MARL, we store all combinations of evaluated M logical formulas in a list, and
instead of returning only the best policy, the same number of policies as agents are returned.

Following equation derives the final policy 7. (s) for using at test time:

m«(s) = arg max E4[n(a, s)] = arg max Z q(h)mp(als) (7)
acA acA heq
In words, each selected logical formula calculates for all actions the probability with which an

action a should be taken in a given state s. The probabilities for the same action are added and
then the action with the highest probability is returned.

3.2. Domain-specific Language for the feature detectors

The DSL was updated according to the requirements of the environment. We added more
specific perceptual primitives that the feature detector programs can use to represent the state
succinctly. These are the functions that can be used to determine in which direction the fruit is
located from the agent (see Table 3 in the appendix). We also had to include the agent’s position
information as a parameter in the function so that the program would know which agent was
being controlled.



3.3. The neural network oracle

For training of the neural network policy we choose to use the IQL algorithm [16] reported from
[17] which received on both 8x8 grid size environments perfect reward. IQL is an adaptation of
the Q-Learning algorithm [21] for multiple agents in which each agent has an independent state-
action value function. The loss function is the default Q-learning loss, which is independently
minimised for each agent’s local past observations and actions [17]. We trained the model with
the default parameters reported in the paper on the smallest environment on a grid size 5x5
with two players and two fruits. This model was then used to collect data for generation of the
LPPs.

3.4. Summary of the algorithm

Algorithm 1 shows a high level overview of all necessary steps to generate programs with LPP
for the level-based foraging environment. First, we need an oracle to create the positive expert
demonstrations. Then we can create negative examples from the positive ones. The next step ist
to generate all feature detector programs from G and calculate the corresponding prior. Then a
dataset is created by running all feature detectors on all demonstrations. This dataset is used
for training of multiple decision trees. The trained classifiers are evaluated to approximate the
likelihood of the models using equation 5. After computing the posterior distribution with
equation 3, we can select the best models, which are then converted into specific LPP polices by
equation 7.

Algorithm 1: The complete algorithm for generating a program with LPP

Input :neural network 6, ensemble size M, number of demos d and programs k
Output :the n best LPP policies

w = 0.1; // the importance of the prior
D = collect_demos_with_oracle(f, d);

D= generate_anti_demos(D);

f = generate_feature_detectors_from_dsl(k);

priors = calculate_priors(f);

X = {(fl(s, a), ey fk<3, a))d : (S, a) e DU b} ; /] generate data for learning decision trees
Y = {bo, . bd} ; // boolean truth values derived from D U D are the targets with b € {0, 1}
models = train_decision_tree_classifiers(X, Y, M);

likelihoods = evaluate_likelihoods(models);

10 posterior = w-priors + likelihoods - In(P(evidence));

11 LPPs = select_best_lpp_models(models, posterior);

12 return LPPs;
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4. Experiments

In the experiments we want to compare the extrapolation capabilities of the neural network
oracle and the created LPP policies. As extrapolation we define all larger environments than the



Table 1
Overview of the results. We always evaluated the average of 100 runs on the given environment. To
use 1QL for bigger environments we have to use a partial observability of 5x5 so that the input size will
match.

Results
Environment LPP | 1QL 5x5
Foraging-grid-5x5-2p-2f-v2 0.82 0.98
Foraging-grid-8x8-2p-4f-v2 0.71 0.27
Foraging-grid-10x10-2p-4f-v2 || 0.60 0.18
Foraging-grid-12x12-2p-4f-v2 || 0.63 0.09
Foraging-grid-14x14-2p-5f-v2 || 0.53 0.04
Foraging-grid-16x16-2p-6f-v2 || 0.54 0.05
Foraging-grid-18x18-2p-8f-v2 || 0.56 0.03

one which was used to train the neural network model. Training models on bigger grid sizes
and then testing them on smaller ones, will not test the extrapolation capabilities as the smaller
environments are just a subset of the larger environment. This would be interpolation of the
state space and not extrapolation. This trained model is then used as an oracle and also as a
comparison baseline.

As it is not easily possible to test the trained neural network model on other environments,
we decided to use a partial observability for other grid sizes. Using partial observability makes
it possible to run the neural network also on different grid sizes than the one it was trained
on. We also evaluate the programmatic policies on different numbers of players. However,
we cannot compare them to the trained neural network policies, since they cannot be easily
adapted to different numbers of players.

Table 1 shows that we only loose performance on the smallest environment, that
was used to generate the data from the oracle. The smallest environment is called
Foraging-grid-5x5-2p-2f-v2, with a grid size of 5x5, the number before p are the players
and the number before f are the amount of fruits. On all larger environments our approach
outperforms the neural network policy by far.

Table 2 shows the results when using the created LPP policies for more players than the ones
trained on. It is clearly visible that the programs can extrapolate to all other environments.
With three players the performance drops, but with more players the performance increases
again.

4.1. Number of demonstrations

In this experiment we want to analyse how important the provided number of demonstrations
are. Therefore, we run the generation of LPP policies with different numbers of demonstrations.
Figure 3 shows how the number of demonstrations affect the performance of the created policies.
It is observable that providing too many demonstrations result in not finding a program at all.
We choose to use 50 demonstrations as this results in the best performance. In addition, it takes
as few as 15 demonstrations to achieve a performance almost as good as the best. However, we
only evaluated the performance on the Foraging-grid-5x5-2p-2f-v2 environment.



Table 2
Overview of the results on different number of players. We always evaluated the average of 100 runs
on the given environment.

Results on different number of players

Environment LPP Environment LPP
Foraging-grid-5x5-3p-2f-v2 | 0.59 Foraging-grid-5x5-5p-2f-v2 | 0.91
Foraging-grid-8x8-3p-4f-v2 | 0.38 Foraging-grid-8x8-5p-4f-v2 | 0.68
Foraging-grid-10x10-3p-4f-v2 | 0.35 || Foraging-grid-10x10-5p-4f-v2 | 0.58
Foraging-grid-12x12-3p-4f-v2 | 0.36 || Foraging-grid-12x12-5p-4f-v2 | 0.60
Foraging-grid-14x14-3p-5f-v2 | 0.26 || Foraging-grid-14x14-5p-5f-v2 | 0.54
Foraging-grid-16x16-3p-6f-v2 | 0.25 || Foraging-grid-16x16-5p-6f-v2 | 0.51
Foraging-grid-18x18-3p-8f-v2 | 0.24 || Foraging-grid-18x18-5p-8f-v2 | 0.51
Foraging-grid-5x5-4p-2f-v2 | 0.76 Foraging-grid-5x5-6p-2f-v2 | 0.91
Foraging-grid-8x8-4p-4f-v2 | 0.51 Foraging-grid-8x8-6p-4f-v2 | 0.79
Foraging-grid-10x10-4p-4f-v2 | 0.48 || Foraging-grid-10x10-6p-4f-v2 | 0.74
Foraging-grid-12x12-4p-4f-v2 | 0.46 || Foraging-grid-12x12-6p-4f-v2 | 0.70
Foraging-grid-14x14-4p-5f-v2 | 0.48 || Foraging-grid-14x14-6p-5f-v2 | 0.65
Foraging-grid-16x16-4p-6f-v2 | 0.36 || Foraging-grid-16x16-6p-6f-v2 | 0.60
Foraging-grid-18x18-4p-8f-v2 | 0.39 || Foraging-grid-18x18-6p-8f-v2 | 0.58
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Figure 3: This plot shows how the number of demonstrations affect the performance of the LPP policy.

4.2. Using the same program for multiple agents

We also evaluated how the same LPP policy behaves if used for multiple agents. Figure 4 shows
that the overall performance decreased on all environments. We think that the reason for this
behaviour is, that the agents get more often stuck as they want to move to the same position or
one agent blocks the way to the fruit from the other agent. We concluded that the program
was not able to learn how to navigate around the other agent. This is also the case for the still
existing gap between the average reward from the oracle and the created programs.
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Figure 4: This plot shows the performance gap when using the same LPP policy for multiple agents
instead of different ones.

4.3. Interpretation of the decision making process

Figure 5 shows an example code block why a given action was selected. The analysis of the
program shows that the program search still needs improvement, as not the best programs
are found and unnecessary parts are visible such as the three negated action_is_east,
action_is_west and action_is_south checks. Theses checks will never be false in the for-
mula as action_is_load already filters out other actions. As programs are only interpretable
by someone who has a basic understanding about programming languages, further work can
be invested in visualising a flowchart why a chosen action was taken for a single agent and
state similar to [20].

5. Discussion and Conclusion

This work shows that it is possible to make decisions of Multi-Agent Systems interpretable
by adapting the Logical Program Policies method. We show that generated programs on the

((action_is_load(cell_is_value( lbc.AGENT.value , action, state, pos) , action, state, pos)
and not (action_is_east(fruit_is_east(state, pos) , action, state, pos))
and not (action_is_west(fruit_is_west(state, pos) , action, state, pos))
and not (action_is_south(fruit_is_south(state, pos) , action, state, pos))
and not (action_is_load(fruit_is_west(state, pos) , action, state, pos))
and not (action_is_load(fruit_is_east(state, pos) , action, state, pos))))

Figure 5: This code block shows the part of the formula why the action to pick up a fruit was selected.
We have displayed only the part that was responsible for selecting the ‘Pick up a fruit® action. The other
disjunctive parts of the logical formula were omitted for clarity as the program would get too large.



smallest environment can be used without retraining on other environments or players and are
as well interpretable for any person if converted into a flowchart. This is only possible with
using a strong prior in the DSL as otherwise programs are not interpretable and also do not
generalise to other instances of the same environment.

Nevertheless, there is still a moderate performance gap between the neural network models
and the created programs. One reason for this is, that distilling a policy into a program always
results in loss of information [15]. Additionally, at the moment it is not possible for the agents to
communicate with each other. Incorporating communication into the DSL could be a promising
way to increase the performance of the programmatic policies, but only if the program also
learns how to navigate around other agents.

An interesting way that agents could learn this behaviour is through the use of library
learning as proposed in [12]. Right now, the DSL does not adequately represent how to navigate
when there are objects between the agent and the selected target. Learning a library of functions
would make it possible for the program to navigate around each agent when seen several
times from the oracle. Another advantage is that one does not need to incorporate background
knowledge of the fruit location in the DSL. The method should learn these functions itself by
updating the DSL when the same structures are found in multiple programs. A disadvantage
of learning a library is that much more demonstrations and computational power would be
required to learn these functions.
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A. Appendix

Table 3

The domain-specific language which is represented by a probabilistic context-free grammar. The start
symbol is denoted by P. The prior for one generated program is the log of the multiplied probability of
all used production rules. The filters for the correct actions are necessary, as each feature detector only

applies to the action it was generated for.

Probabilistic Context Free Grammar
Production Rule & Method ‘ Probability ‘ Description of the Method
Filter for correct actions
S — action_is_west(C) 0.2 checks if the action is going to the west
S — action_is_east(C) 0.2 checks if the action is going to the east
S — action_is_south(C) 0.2 checks if the action is going to the south
S — action_is_north(C) 0.2 checks if the action is going to the north
S — action_is_load(C) 0.2 checks if the action is picking up the fruit
Conditions
C — shifted(O, B) 0.5 shifts agents position and then checks a condition
C—B 0.5
Base Conditions
B — cell_is_value(V) 0.33 checks the value on the attended position
B — action_is_executable() 0.33 checks if selected action is executable
B—F 0.33
Fruit Conditions
F — fruit_is_east() 0.2 checks if fruits are east of the agent
F — fruit_is_south() 0.2 checks if fruits are south of the agent
F — fruit_is_west() 0.2 checks if fruits are west of the agent
F — fruit_is_north() 0.2 checks if fruits are north of the agent
F — fruit_is_pickable() 0.2 checks if agent can pickup a fruit
Directions
O —(P,P) 0.25 Offsets for two positive numbers
O0—=(N,N) 0.25 Offsets for two negative numbers
O — (P,N) 0.25 Offsets for a positive and negative number
O —(N,P) 0.25 Offsets for a negative and positive number
Natural Numbers
P—o0,..4 each 0.2 Positive natural numbers
N — 0,-1,...,-4 each 0.2 Negative natural numbers
Values
V — agent 0.5 the value that represents an agent
V — fruit 0.5 the value that represents a fruit
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