
Decidability of Difference Logics with Unary
Predicates
Bernard Boigelot1, Pascal Fontaine1 and Baptiste Vergain1

1Montefiore Institute, B28, Université de Liège, Belgium

Abstract
We investigate the decidability of a family of logics mixing difference-logic constraints and unary
uninterpreted predicates. The focus is set on logics whose domain of interpretation is R, but the language
has a recognizer for integer values. We first establish the decidability of the logic allowing unary
uninterpreted predicates, order constraints between real and integer variables, and difference-logic
constraints between integer variables. Afterwards, we prove the undecidability of the logic where unary
uninterpreted predicates and difference-logic constraints between real variables are allowed.

Keywords
Satisfiability, First-order logic, Unary uninterpreted predicates, Difference logic

1. Introduction

SMT (satisfiability modulo theories) solving has been very successfully used in various ap-
plications, most notably in verification (see e.g., [1]). Most SMT solvers were conceived as
decision procedures for quantifier-free fragments including interpreted symbols and arithmetic
operators. Support for quantifiers was mainly based on heuristics. Although some techniques
were later introduced in SMT solvers (e.g., [2, 3, 4]) to reach decidability for quantified but
purely arithmetic fragments, that is, without uninterpreted predicates, there has been little
attention to the problem of decidability of quantified fragments mixing uninterpreted symbols
and arithmetic.

In a previous paper [5] we discussed how to mix arithmetic and predicate symbols while
avoiding undecidability. We focused on logics allowing uninterpreted unary predicates and
difference-logic constraints, and investigated the expressive power of such logics over the
domains N, Z, Q and R. We highlighted that when the domain is N or Z, the logic is equivalent
to the monadic second-order theory of N with one successor relation (usually referred to as
S1S). It is thus decidable and some effective decision procedures already exist. We also provided
some directions to solve the case where the domain of interpretation is R, namely developing an
encoding for the models of the predicates variables, and advocating for the use of the automata
defined in [6].

SC2 2022: The 7th International Workshop on Satisfiability Checking and Symbolic Computation, August 12, 2022, Haifa,
Israel
$ Bernard.Boigelot@uliege.be (B. Boigelot); Pascal.Fontaine@uliege.be (P. Fontaine); bvergain@uliege.be
(B. Vergain)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:Bernard.Boigelot@uliege.be
mailto:Pascal.Fontaine@uliege.be
mailto:bvergain@uliege.be
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

In this paper we show that difference logic on the reals together with unary uninterpreted
predicates is already undecidable. However, the mixed integer-real theory of order with unary
uninterpreted predicates is decidable, even when allowing difference-logic constraints on integer
variables. Basically, adding the “+1” function on the reals makes the logic undecidable.

After some prerequisites and the introduction of the studied fragments in Section 2, we first
prove in Section 3 the decidability of the fragment with uninterpreted unary predicates, order
constraints between real and integer variables and difference-logic constraints involving only
integer variables. Section 4 is dedicated to a proof of undecidability of the fragment interpreted
over R, where uninterpreted unary predicates, order between real values, and difference-logic
constraints on real variables are allowed.

2. Preliminaries

We refer to e.g., [7] for a general introduction to first-order logic with equality, and assume that
the reader is familiar with the notions of signature, term, variable, and formula. We use the usual
logical connectives (∨, ∧, ¬, ⇒, ⇔) and first-order quantification ∃𝑥. 𝜙 and ∀𝑥. 𝜙, respectively
equivalent to writing ∃𝑥 (𝜙) and ∀𝑥 (𝜙), i.e., the dot stands for an opening parenthesis that is
closed at the end of the formula. Variable symbols are denoted by 𝑥, 𝑦, 𝑧, . . .

Our signature contains interpreted arithmetic symbols 0, 1, +, −, <, ≤, ≥, >, and constants
in N that stand for terms 1 + 1 + · · ·+ 1. We furthermore use a unary interpreted predicate
𝑥 ∈ Z to denote that 𝑥 has an integer value. The signature also contains uninterpreted predicate
symbols 𝑃 , 𝑄, . . . In the whole article, we only consider unary predicate symbols. Our language
is the set of all well-formed formulas (in the usual sense) built using symbols from the signature.
Further specific restrictions will be introduced later.

An interpretation specifies a domain (i.e., a set of elements), assigns a value in the domain to
each free variable, and assigns relations of appropriate arity on the domain to predicate symbols
in the signature. Throughout the article, the interpretation domain is always R. The arithmetic
symbols 0, 1, +, −, <, ≤, ≥, > are interpreted as expected on R, and 𝑥 ∈ Z is true if and only
if 𝑥 has an integer value2. An interpretation assigns an arbitrary subset of the domain R to
each unary predicate. By extension, an interpretation assigns a value in R to every term, and a
truth value to every formula. We denote the interpretation 𝐼 of a variable 𝑥 by 𝐼[𝑥], and the
interpretation of a predicate 𝑃 by 𝐼[𝑃]. A model of a formula is an interpretation that assigns
true to this formula. A formula is satisfiable on a domain (here R) if it has a model on that
domain.

2.1. Difference arithmetic with unary predicates

We consider several fragments where the language is restricted, in particular in the way that the
arithmetic relations can be used. A fragment is decidable if there exists an effective procedure
to check whether a given formula in this fragment is satisfiable.

In the various fragments introduced below, all arithmetic atoms are of the following form:

2In the current context, this choice of notation for mixed integer-real arithmetic is simpler than using a multi-sorted
logic.

• order constraints of the form 𝑥 ◁▷ 𝑦, where 𝑥 and 𝑦 are variables and ◁▷∈ {<,≤,=,≥, >};
• difference-logic constraints of the form 𝑥 − 𝑦 ◁▷ 𝑐, where 𝑥 and 𝑦 are variables, 𝑐 is a

constant in Z, and ◁▷ ∈ {<,≤,=,≥, >}.

As a reminder, the language of our formulas only contain unary predicates. The only atoms
besides the arithmetic ones are of the form 𝑃 (𝑥) where 𝑃 is an uninterpreted predicate symbol
and 𝑥 is a variable, and 𝑥 ∈ Z where 𝑥 is a variable. For convenience, the set of comparison
operators is not minimal (we allow negations in formulas). Also, we sometimes write difference-
logic constraints in their equivalent form 𝑥 ◁▷ 𝑦 + 𝑐.

We now introduce our fragments of interest. Their names are derived from the SMT-LIB
nomenclature, where acronyms stand for the theories that appear in the combinations:

• UF1: the theory of uninterpreted functions, with the restriction that only monadic (i.e.,
unary) predicates are allowed;

• RO: the theory of order on the reals only;
• IRO: the theory of order on the reals and integers;
• IDL: difference logic on the integers;
• RDL: difference logic on the reals.

UF1·RO. The fragment UF1·RO is the fragment with unary uninterpreted predicates and order
constraints between variables interpreted over R. Difference-logic constraints and atoms of the
form 𝑥 ∈ Z are not allowed.

Example: The formula

∀𝑥 ∃ 𝑦, 𝑧 . 𝑦 < 𝑥 < 𝑧 ∧ ∀𝑡 . (𝑦 < 𝑡 < 𝑧 ∧ 𝑃 (𝑡)) ⇒ 𝑡 = 𝑥

describes a predicate 𝑃 that is true only on isolated real numbers.

UF1·IRO. The fragment UF1·IRO is the extension of UF1·RO where atoms of the form 𝑥 ∈ Z
are allowed. This fragment can express order relations between real and integer variables.

Example: The formula

∀𝑥, 𝑦.
[︀
𝑥 < 𝑦 ∧ 𝑥 ∈ Z ∧ 𝑦 ∈ Z

]︀
⇒ ∃𝑣. 𝑥 < 𝑣 < 𝑦 ∧ 𝑃 (𝑣)

describes a predicate 𝑃 that is true for at least one value located between any two integers.

UF1·IDL·IRO. The fragment UF1·IDL·IRO is an extension of the fragment UF1·IRO (and
therefore of UF1·RO). It is also interpreted over R. Order constraints between variables and
atoms of the form 𝑥 ∈ Z are allowed. Additionally, difference-logic constraints are allowed, but
they can only involve integer-guarded variables.

In order to enforce this integer-guard restriction on difference-logic constraints, UF1·IDL·IRO
formulas must be well-guarded, i.e., difference-logic constraints can only appear in the two
following contexts:

• 𝑥 ∈ Z ∧ 𝑦 ∈ Z ∧ 𝑥− 𝑦 ◁▷ 𝑐,

• (𝑥 ∈ Z ∧ 𝑦 ∈ Z) ⇒ 𝑥− 𝑦 ◁▷ 𝑐,

where 𝑥 and 𝑦 are variables, 𝑐 ∈ N is a constant, and ◁▷ ∈ {<,≤,=,≥, >}.

Example: The formula[︀
∀𝑥, 𝑦.

(︀
𝑥 ∈ Z ∧ 𝑦 ∈ Z ∧ 𝑦 − 𝑥 = 2

)︀
⇒

(︀
𝑃 (𝑥) ⇔ 𝑃 (𝑦)

)︀]︀
∧

[︀
∃𝑥, 𝑦. 𝑥 ∈ Z ∧ 𝑦 ∈ Z ∧ 𝑃 (𝑥) ∧ ¬𝑃 (𝑦)

]︀
∧

[︀
∀𝑧.¬(𝑧 ∈ Z) ⇒ 𝑃 (𝑧)

]︀
describes a predicate that is either true on all odd numbers and false on all even numbers, or
the opposite, as well as true on all non-integer numbers.

UF1·RDL. The fragment UF1·RDL is the fragment interpreted over R, where order constraints,
difference-logic constraints and unary predicate atoms are allowed without any restriction.
The use of atoms of the form 𝑥 ∈ Z is forbidden. Since order constraints are a special case of
difference-logic constraints, the name of the fragment only refers to RDL and not RO.

Example: The formula

∀𝑥 ∃𝑦. 𝑦 − 𝑥 > 0 ∧ 𝑦 − 𝑥 < 3 ∧ 𝑃 (𝑦)

describes a predicate 𝑃 such that any sub-interval of R of length greater or equal to 3 contains
a value for which 𝑃 is true.

Note: It might appear to the reader that a missing logic in this nomenclature is UF1·IRDL,
with difference-logic constraints on both real and integer variables. We will later show that
UF1·RDL is already undecidable, so it makes little sense to introduce any extension of it.

3. Decidability of UF1·IDL·IRO
It has been established in [8, 9, 10, 11, 12] that the monadic first-order logic of order over R
(UF1·RO) is decidable. We show here that its extension UF1·IDL·IRO (and therefore UF1·IRO) is
also decidable, by reduction to UF1·RO.

Theorem 1. UF1·IDL·IRO and UF1·IRO are decidable.

Note that the decidability of UF1·IRO is a direct consequence of the decidability of UF1·IDL·IRO,
since UF1·IDL·IRO is an extension of UF1·IRO. The remaining of this section is thus dedicated to
the proof that UF1·IDL·IRO is decidable.

3.1. Recognizing integer values

We first show how to define in UF1·RO a predicate 𝑃int over R that is <-isomorphic to Z, i.e.,
there exists a bijection between the sets described by 𝑃int and Z that preserves the order relation
over their elements. Integer guards in UF1·IDL·IRO will later be translated using 𝑃int. Intuitively,
an integer-guarded variable in a UF1·IDL·IRO formula will correspond to a variable taking its
value in the set described by 𝑃int in the translated UF1·RO formula.

We axiomatize 𝑃int in UF1·RO as follows:

∙ Every element of 𝑃int is isolated:
∀𝑥 ∃ 𝑦, 𝑧. 𝑦 < 𝑥 < 𝑧 ∧ ∀𝑡. [𝑦 < 𝑡 < 𝑧 ∧ 𝑃int(𝑡)] ⇒ 𝑡 = 𝑥.

∙ Every point in R has a successor in 𝑃int:
∀𝑥 ∃ 𝑦. 𝑥 < 𝑦 ∧ 𝑃int(𝑦) ∧ ∀𝑡. 𝑥 < 𝑡 < 𝑦 ⇒ ¬𝑃int(𝑡).

∙ Similarly, every point in R has a predecessor in 𝑃int:
∀𝑥 ∃ 𝑦. 𝑦 < 𝑥 ∧ 𝑃int(𝑦) ∧ ∀𝑡. 𝑦 < 𝑡 < 𝑥⇒ ¬𝑃int(𝑡).

Notice that the successor and predecessor axioms ensure that 𝑃int is not the empty predicate.
Furthermore, it is worth mentioning that defining the successor (resp. predecessor) axiom by
stating that every point in 𝑃int has a successor (resp. predecessor) in 𝑃int would not be correct,
as 𝑃int would also describe sets that are not <-isomorphic to Z, e.g., the set {(𝑘, 𝑖) | 𝑘 ∈ Z, 𝑖 ∈
{1, 2}} with the order relation (𝑘, 𝑖) < (ℓ, 𝑗) if and only if either 𝑖 < 𝑗, or 𝑖 = 𝑗 and 𝑘 < ℓ.

The set of all integers is a model for 𝑃int, therefore the above axiomatization is consistent.
The set of elements satisfying 𝑃int is necessarily infinite and does not admit a maximal or a
minimal element. This is a direct consequence of the successor and predecessor axioms. More
interestingly, this set is also necessarily countable. Indeed, since each point is isolated, there
exists an application that maps the elements satisfying 𝑃int to disjoint open intervals. Any set
of disjoint intervals in R with non-zero length is necessarily countable [13], since each of them
contains a rational value that does not belong to the others.

It is now possible to define a predecessor and a successor relation on the real numbers
satisfying 𝑃int with the following formulas:

• pred(𝑥, 𝑦) = 𝑃int(𝑥) ∧ 𝑃int(𝑦) ∧ 𝑥 < 𝑦 ∧ ∀𝑧. 𝑥 < 𝑧 < 𝑦 ⇒ ¬𝑃int(𝑧),
i.e., 𝑥 is the predecessor of 𝑦;

• succ(𝑥, 𝑦) = 𝑃int(𝑥) ∧ 𝑃int(𝑦) ∧ 𝑦 < 𝑥 ∧ ∀𝑧. 𝑦 < 𝑧 < 𝑥⇒ ¬𝑃int(𝑧),
i.e., 𝑥 is the successor of 𝑦.

Note that these two definitions are redundant, i.e., the formula pred(𝑥, 𝑦) holds if and only if
succ(𝑦, 𝑥) holds.

We next prove that the set of elements satisfying 𝑃int is <-isomorphic to the integers. For
convenience in the proof, we define 0int as an arbitrary existentially quantified value that
belongs to the set described by 𝑃int.

Lemma 1. For any model 𝑀 of 𝑃int, the set {𝑥 | 𝑥 ∈𝑀 [𝑃int]} is <-isomorphic to Z.

Proof. Given a model 𝑀 of the axiomatization of 𝑃int, we need to define a bijection between
the set 𝒫 = {𝑥 | 𝑥 ∈𝑀 [𝑃int]} and Z that preserves order.

Let us define an application 𝑓 from 𝒫 to Z. We set 𝑓(0int) = 0, and then define recursively:

• 𝑓(𝑦) = 𝑓(𝑥) + 1 for each 𝑥, 𝑦 ∈ 𝒫 such that 𝑦 > 0int and pred(𝑥, 𝑦),
• 𝑓(𝑦) = 𝑓(𝑥)− 1 for each 𝑥, 𝑦 ∈ 𝒫 such that 𝑦 < 0int and succ(𝑥, 𝑦).

Thanks to the fact that every point has a unique predecessor and successor, it follows that 𝑓
ranges over the whole set Z. It is clear that 𝑓 preserves order. It remains to show that 𝑓 is well
defined for every element in 𝒫 .

If there exists some element 𝑦 ∈ 𝒫 for which 𝑓 is not defined, it means that 𝑓 is not well-
founded, in the sense that there exists either an element 𝑦 > 0int such that the interval [0int, 𝑦]
contains an infinite number of elements satisfying 𝑃int, or there exists an element 𝑦 < 0int such
that the interval [𝑦, 0int] contains an infinite number of elements satisfying 𝑃int. Since both
cases are symmetric, we only address the former. There must exist a strictly increasing infinite
series of elements in 𝒫 bounded by 𝑦. Let us consider its limit 𝑧 ∈ R. Because there must
exist an element of 𝒫 smaller than 𝑧 and arbitrarily close to 𝑧, it follows that 𝑧 cannot have a
predecessor, which contradicts an axiom. Therefore 𝑓 is well-defined, and every element of 𝒫
is associated to an integer number. The application 𝑓 is therefore a bijection.

3.2. Translating formulas

We are now able to describe the satisfiability-preserving translation of formulas from UF1·IDL·IRO
to UF1·RO. Consider a UF1·IDL·IRO formula 𝜙. Without loss of generality, we assume that 𝑃int
does not appear in 𝜙. The translation of 𝜙 is defined as

AXIOMS(𝑃int) ∧ J𝜙K

where AXIOMS(𝑃int) is the conjunction of the axioms of 𝑃int, and J·K is a translation opera-
tor. This translation operator J·K distributes over all Boolean operators and quantifiers, and
corresponds to the identity for most considered atoms, except for:

• J𝑥 ∈ ZK = 𝑃int(𝑥);
• J𝑥− 𝑦 ◁▷ 𝑐K = ∃𝑧0, . . . 𝑧𝑐 . (𝑦 = 𝑧0) ∧ (𝑥 ◁▷ 𝑧𝑐) ∧

⋀︀
0≤𝑖<𝑐 succ(𝑧𝑖+1, 𝑧𝑖),

for 𝑐 ∈ N and ◁▷ ∈ {<,≤,=,≥, >}. We assume that 𝑧0, . . . 𝑧𝑐 are fresh variables w.r.t. 𝑥
and 𝑦.

Example:

J𝑥− 𝑦 ≤ 2K = ∃𝑧0, 𝑧1, 𝑧2. 𝑦 = 𝑧0 ∧ succ(𝑧1, 𝑧0) ∧ succ(𝑧2, 𝑧1) ∧ 𝑥 ≤ 𝑧2.

Notice that we only deal with the case 𝑐 ∈ N since every atom of the form 𝑥− 𝑦 ◁▷ 𝑐 with
𝑐 ∈ Z ∖ N and ◁▷ ∈ {<,≤,=,≥, >} can be rewritten as 𝑦 − 𝑥 ◁▷′ −𝑐 with the following
correspondences: (◁▷, ◁▷′) ∈ {(=,=), (<,>), (>,<), (≥,≤), (≤,≥)}.

3.3. Establishing equisatisfiability

Given a UF1·IDL·IRO formula 𝜙, the translation that we have introduced generates a corre-
sponding UF1·RO formula 𝜓. To establish that they are equisatisfiable, we need to prove that if
𝜙 admits a model, then 𝜓 also admits one, and reciprocally. This is quite straightforward:

∙ If 𝜙 is satisfiable, let 𝑀 be one of its models. Then, since 𝜓 shares the same free variables
and predicates than 𝜙with the only addition of 𝑃int, we can directly construct a model𝑀 ′

of 𝜓 that is similar to 𝑀 for the shared variables and predicates, and 𝑃int is interpreted
so that 𝑃int(𝑥) holds whenever 𝑥 ∈ Z. This is always possible since the only constraints
on 𝑃int generated by the construction of 𝜓 are the axioms stated above.

∙ If 𝜓 is satisfiable, then there exists a model 𝑀 of 𝜓. Let us construct a model 𝑀 ′ of
𝜙. Let 0int ∈ R be an arbitrary element of 𝑀 [𝑃int] (similarly to before). We define
an automorphism 𝑔 of R, such that 𝑔(0int) = 0, and recursively 𝑔(𝑦) = 𝑔(𝑥) + 1 for
𝑥, 𝑦 ∈ 𝑀 [𝑃int], 𝑦 > 0int, and pred(𝑥, 𝑦); and 𝑔(𝑦) = 𝑔(𝑥) − 1 for 𝑥, 𝑦 ∈ 𝑀 [𝑃int],
𝑦 < 0int, and succ(𝑥, 𝑦). The automorphism 𝑔 maps each open interval between the 𝑘-th
and (𝑘+1)-th successors (resp. predecessors) of 0int in 𝑀 [𝑃int], onto the open interval
(𝑘, 𝑘 + 1) (resp. (−(𝑘+1), 𝑘)) while preserving order.
𝑀 ′ is defined by 𝑀 ′[𝑥] = 𝑔(𝑀 [𝑥]) for each free variable 𝑥 of the formula 𝜙, and
𝑀 ′[𝑃] = {𝑔(𝑥) |𝑥 ∈𝑀 [𝑃]} for each uninterpreted predicate 𝑃 of 𝜙. No unary predicate
atom can be violated by𝑀 ′ by definition. Furthermore, no order constraint can be violated
by 𝑀 ′ either since 𝑔 preserves order. Regarding the difference-logic constraints, the
intermediate variables 𝑧𝑖 introduced in the translation are necessarily mapped to values
in 𝑀 [𝑃int] since the succ relation enforces this property. Hence for each such variable,
we have 𝑔(𝑀 [𝑧𝑖]) ∈ Z. Intuitively, this ensures that in 𝑀 ′ the difference between the
values taken by the integer variables is consistent with the difference-logic constraints.
Hence 𝑀 ′ is a model of 𝜙.

4. Undecidability of UF1·RDL

The result presented in the previous section establishes a lower bound of some sort for the decid-
ability of our family of fragments. A natural follow up problem is to establish a corresponding
upper bound, i.e., to define a slight extension of this logic that yields non-trivial undecidability.
We show here that as soon as difference-logic constraints on reals are allowed, the logic becomes
undecidable. More precisely, we establish the undecidability of UF1·RDL by reducing the halting
problem of a Turing machine to the satisfiability problem over UF1·RDL.

Theorem 2. Satisfiability is undecidable for UF1·RDL.

The remaining of this section is dedicated to the proof of the undecidability of UF1·RDL.
We consider w.l.o.g. Turing machines defined over an alphabet with only two symbols and no
explicit blank symbol [14]. This choice leads to a simpler proof, but the same approach can
easily be extended to Turing machines with larger alphabets.

4.1. Turing machine

The proof is by reduction from the halting problem for a Turing machine starting from a blank
tape (i.e., a tape filled with the symbol 0). Consider a Turing machine ℳ = (𝑄,Σ, 𝑞𝐼 , 𝑞𝐹 , 𝛿),
where

• 𝑄 is a finite set of states,
• the alphabet Σ is w.l.o.g. assumed to be {0, 1},
• 𝑞𝐼 ∈ 𝑄 is the initial state,
• 𝑞𝐹 ∈ 𝑄 is the halting state,
• 𝛿 : (𝑄 ∖ {𝑞𝐹 })× Σ → 𝑄× Σ× {𝐿,𝑅} is the transition relation, assumed to be total.

A configuration 𝐶 of such a Turing machine is a triplet containing the current state 𝑞, the
content of the tape 𝑡 = {0, 1}Z and finally the position of the head ℎ ∈ Z. Since the machine
starts from a blank tape, the initial configuration is 𝐶0 = (𝑞𝐼 , {0}Z, 0).

A run 𝜌 of length 𝑛 ∈ N ∪ {+∞} of such a Turing machine is a (possibly infinite) sequence
of configurations (𝐶𝑖)𝑖∈[0,𝑛] , such that for any two consecutive configurations 𝐶𝑖 = (𝑞𝑖, 𝑡𝑖, ℎ𝑖)
and 𝐶𝑖+1 = (𝑞𝑖+1, 𝑡𝑖+1, ℎ𝑖+1) there exists a transition (𝑞, 𝛼, 𝑞′, 𝛼′, 𝜆) ∈ 𝛿 such that:

• 𝑞 = 𝑞𝑖 and 𝑞′ = 𝑞𝑖+1,
• 𝑡𝑖[ℎ𝑖] = 𝛼, i.e., the tape cell at position ℎ𝑖 contains the symbol 𝛼,
• 𝑡𝑖+1[ℎ𝑖] = 𝛼′,
• 𝑡𝑖+1[𝑘] = 𝑡𝑖[𝑘], for every 𝑘 ∈ Z, 𝑘 ̸= ℎ𝑖,
• ℎ𝑖+1 = ℎ𝑖 + 1 if 𝜆 = 𝑅, and ℎ𝑖+1 = ℎ𝑖 − 1 if 𝜆 = 𝐿.

A halting run is a finite run such that the state of its last configuration is the halting state 𝑞𝐹 ,
and such that no previous configuration has 𝑞𝐹 as its state.

4.2. Encoding a run with predicates

The reduction consists in encoding a run 𝜌 of ℳ of length 𝑛 ∈ N ∪ {+∞} with predicates
interpreted over real values. For this, we need to be able to represent configurations, and verify
whether there exists a transition of ℳ that allows to go from one to another.

This requires to be able to represent the state, the head position and the entire tape content
for each consecutive configuration of the run 𝜌. Furthermore, we also need to compare two
consecutive contents of the tape and ensure that the only change occurs at the position of the
head, as well as to handle the motion of the head.

This can be done as follows:

∙ Let 𝑁 = ⌈log2(|𝑄|)⌉. Every state 𝑞 ∈ 𝑄 can be encoded without ambiguity by
a tuple (𝑏𝑞,1, 𝑏𝑞,2, . . . , 𝑏𝑞,𝑁) of Boolean values. The states visited by 𝜌 can thus be
described by 𝑁 predicates 𝑄1, 𝑄2, . . . , 𝑄𝑁 such that for each 𝑖 ∈ [0, 𝑛], the tuple
(𝑄1(𝑖), 𝑄2(𝑖), . . . , 𝑄𝑁 (𝑖)) encodes the state reached by 𝜌 after 𝑖 steps. For convenience
we introduce the formula State𝑞(𝑖) =

⋀︀
1≤𝑗≤𝑁 𝑄𝑗(𝑖) = 𝑏𝑞,𝑗 that is true if and only if

the machine is in state 𝑞 at step 𝑖, where the shorthand 𝑄𝑗(𝑖) = 𝑏𝑞,𝑗 means ¬𝑄𝑗(𝑖) if
𝑏𝑞,𝑗 = ⊥ and 𝑄𝑗(𝑖) otherwise.

∙ For each 𝑖 ∈ [0, 𝑛], the content of the tape after 𝑖 steps is described by the value of a
predicate 𝑇 interpreted over the open interval (𝑖, 𝑖+ 1). This is achieved by defining an
order-preserving mapping 𝜁 between Z and the open interval (0, 1), and replicating this
mapping in every interval (𝑖, 𝑖 + 1). In other words, for every step 𝑖 ∈ [0, 𝑛] and tape
position 𝑗 ∈ Z, the value of 𝑇 (𝑖+ 𝜁(𝑗)) provides the content of the cell at position 𝑗 of
the tape after 𝑖 steps.

∙ The position of the head is described by the value of a predicate𝐻 interpreted in the same
way as 𝑇 : For every step 𝑖 ∈ [0, 𝑛] and tape position 𝑗 ∈ Z, we have 𝐻(𝑖+ 𝜁(𝑗)) = ⊤ if
and only if the head is at position 𝑗 after 𝑖 steps.

Recall that in this fragment the use of integer guards is forbidden. In order to have similar
landmarks as natural and integer numbers, we will have to construct our own sets of elements
that are <-isomorphic to N and Z.

4.3. Enforcing a valid run

We now show how to translate ℳ into a formula of the logic, that is satisfiable if and only if
ℳ admits a halting run.

First, we define 0 as an arbitrary existentially quantified value in R, and 1 as the real such
that 0 + 1 = 1.

Then we define a predicate 𝑃nat that is <-isomorphic to N. We construct 𝑃nat as follows:

∀𝑥 . 𝑃nat(𝑥) ⇔ [𝑥 = 0 ∨ (𝑥 ≥ 1 ∧ ∃𝑦 . 𝑃nat(𝑦) ∧ 𝑥 = 𝑦 + 1)]

The state of the initial configuration is encoded on 0, and the states of the successive configura-
tions are encoded on the successive elements belonging to the set described by 𝑃nat.

We also define a predicate 𝑍 with a characteristic set that maps Z into (0, 1): each 𝑥 such
that 𝑍(𝑥) holds must satisfy 0<𝑥<1, be isolated, and every point in the open interval (0, 1)
must admit a successor and a predecessor within (0, 1) on which 𝑍 is true. All these constraints
are clearly expressible in UF1·RDL. This is done in a similar way as the definition of 𝑃int in the
previous section. The only differences are that we forbid 𝑍 to be true for any value outside of
(0, 1), and that the successor and predecessor axioms are adapted in the following way:

• Successor:
∀𝑥 . (0 < 𝑥 < 1) ⇒ (∃𝑦 . 𝑥 < 𝑦 < 1 ∧ 𝑍(𝑦) ∧ ∀𝑡 . 𝑥 < 𝑡 < 𝑦 ⇒ ¬𝑍(𝑡)).

• Predecessor:
∀𝑥 . (0 < 𝑥 < 1) ⇒ (∃𝑦 . 0 < 𝑦 < 𝑥 ∧ 𝑍(𝑦) ∧ ∀𝑡 . 𝑦 < 𝑡 < 𝑥⇒ ¬𝑍(𝑡)).

Notice that the successor and predecessor axioms ensure that 𝑍 is not the empty predicate.
We can now extend 𝑍 into 𝑍 over the union of intervals (𝑖, 𝑖 + 1) for 𝑖 such that 𝑃nat(𝑖)

holds:

∀𝑥 . 𝑍(𝑥) ⇔
[︀
(0 < 𝑥 < 1 ∧ 𝑍(𝑥)) ∨ (𝑥 > 1 ∧ ∃𝑦 . 𝑥 = 𝑦 + 1 ∧ 𝑍(𝑦))

]︀
The conditions on the initial configuration of ℳ are encoded by the following formula:

STARTℳ = State𝑞𝐼 (0) ∧ (∀𝑥 . 𝑍(𝑥) ⇒ ¬𝑇 (𝑥))
∧ ∃𝑥 . 𝐻(𝑥) ∧ 𝑍(𝑥) ∧ ∀𝑦 . (𝑍(𝑦) ∧𝐻(𝑦)) ⇒ 𝑦 = 𝑥

Notice that we do not specify the value of the head and tape predicates outside of the set
described by 𝑍 . In other words, we ignore how these predicates behave outside of 𝑍 . The same
goes for the value of the state predicates (𝑄𝑗)1≤𝑗≤𝑁 outside of 𝑃nat.

The conditions on the transition relation of ℳ are more complex. Intuitively, if at a given
step 𝑖 ∈ [1, 𝑛] we have not yet encountered the halting state 𝑞𝐹 , then we must ensure that
the configuration at step 𝑖 can be obtained from the configuration at the previous step 𝑖− 1,
by following a transition (𝑞, 𝛼, 𝑞′, 𝛼′, 𝜆) ∈ 𝛿. The overall formula for these conditions is the
following:

STEPℳ = ∀𝑦 .
(︀
𝑦 > 0 ∧ 𝑃nat(𝑦) ∧ NotEndedℳ(𝑦)

)︀
⇒ ∃𝑥 . 𝑦 = 𝑥+1 ∧ Transitionℳ(𝑥, 𝑦)

The subformula NotEndedℳ(𝑦) expresses that no previous landmark to 𝑦 (i.e., a value 𝑥 such
that 𝑥 < 𝑦 and 𝑃nat(𝑥) holds) encodes the halting state. The formula is defined by:

NotEndedℳ(𝑦) = ∀𝑥 . (𝑥 < 𝑦 ∧ 𝑃nat(𝑥)) ⇒ ¬State𝑞𝐹 (𝑥)

The subformula Transitionℳ(𝑥, 𝑦) expresses that there exists a transition (𝑞, 𝛼, 𝑞′, 𝛼′, 𝜆) ∈ 𝛿
that allows to move from the configuration corresponding to the landmark 𝑥 to the configuration
corresponding to 𝑦 in one step. For convenience, we decompose the conditions on the transition
relation as follows:

Transitionℳ(𝑥, 𝑦) = UniqueHeadℳ(𝑥, 𝑦)

∧
⋁︁

(𝑞,𝛼,𝑞′,𝛼′,𝜆)∈𝛿

[︁
States𝑞,𝑞′(𝑥, 𝑦) ∧ Tape𝛼,𝛼′(𝑥, 𝑦) ∧ Head𝜆(𝑥, 𝑦)

]︁
For a given transition (𝑞, 𝛼, 𝑞′, 𝛼′, 𝜆) ∈ 𝛿, the conditions on the states, tape and head are

expressed as follows:

• The landmarks 𝑥 and 𝑦 should be such that 𝑄1(𝑥), 𝑄2(𝑥), . . . , 𝑄𝑁 (𝑥) encode 𝑞 and
𝑄1(𝑦), 𝑄2(𝑦), . . . , 𝑄𝑁 (𝑦) encode 𝑞′:

States𝑞,𝑞′(𝑥, 𝑦) = State𝑞(𝑥) ∧ State𝑞′(𝑦)

• The tape must contain 𝛼 at the current position of the head for the step corresponding
to 𝑥. Additionally, for the step corresponding to 𝑦, the tape contains 𝛼′ at the previous
position of the head, and is unchanged at all other positions.

Tape𝛼,𝛼′(𝑥, 𝑦) =[︀
∀𝑧. (𝑥 < 𝑧 < 𝑦 ∧𝐻(𝑧) ∧ 𝑍(𝑧)) ⇒ (𝑇 (𝑧) = 𝛼 ∧ ∃𝑧′. 𝑧′ = 𝑧+1 ∧ 𝑇 (𝑧′) = 𝛼′)

]︀
∧

[︀
∀𝑧. (𝑥 < 𝑧 < 𝑦 ∧ ¬𝐻(𝑧) ∧ 𝑍(𝑧)) ⇒ ∃𝑧′. 𝑧′ = 𝑧+1 ∧ 𝑇 (𝑧′) = 𝑇 (𝑧)

]︀
• The head is moved in the direction specified by 𝜆. This can be expressed by exploiting

the predecessor and successor relations on 𝑍 (defined in the exact same manner than
pred(𝑥, 𝑦) and succ(𝑥, 𝑦) for 𝑃int in the previous section).

Head𝜆(𝑥, 𝑦) = ∀𝑧.
[︀
(𝑥 < 𝑧 < 𝑦 ∧𝐻(𝑧) ∧ 𝑍(𝑧))
⇒ ∃𝑧′, 𝑧′′. (𝑧′ = 𝑧 + 1) ∧ 𝑓𝜆(𝑧′′, 𝑧′) ∧𝐻(𝑧′′)

]︀
where

𝑓𝜆 =

{︃
succ if 𝜆 = 𝑅

pred if 𝜆 = 𝐿

• We must also ensure that the position of the head is unique for the configuration corre-
sponding to 𝑥:

UniqueHeadℳ(𝑥, 𝑦) = ∃𝑧.
[︀
𝑥 < 𝑧 < 𝑦 ∧ 𝑍(𝑧) ∧𝐻(𝑧)

∧ ∀𝑧′.
(︀
𝑥 < 𝑧′ < 𝑦 ∧ 𝑍(𝑧′) ∧𝐻(𝑧′)

)︀
⇒ 𝑧′ = 𝑧

]︀

Finally, the existence of a halting run is expressed by the formula:

ENDℳ = ∃𝑥. 𝑃nat(𝑥) ∧ State𝑞𝐹 (𝑥)

The global formula that expresses that the Turing machine ℳ halts on some run encoded by
the predicates 𝑄𝑗 (𝑗 = 1, . . . 𝑁), 𝑇 and 𝐻 is the following:

HALTℳ(𝑄1, . . . 𝑄𝑁 , 𝑇,𝐻) = STARTℳ ∧ STEPℳ ∧ ENDℳ

This concludes the proof of Theorem 2.

5. Conclusion and future work

In this work, we have established a lower and an upper bound for decidability in a family of
logics mixing weak forms of arithmetic and uninterpreted unary predicates.

We proved the decidability of the fragment UF1·IDL·IRO, where uninterpreted unary pred-
icates, order constraints between real and integer variables and difference-logic constraints
between integer variables are allowed. This result is a consequence of the already established
decidability of its restriction UF1·RO (where only uninterpreted unary predicates and order
constraints between real values are allowed).

The other result establishes the undecidability of the fragment UF1·RDL, where uninterpreted
unary predicates and difference-logic constraints between real variables are allowed. Notice
that this result can be adapted straightforwardly to the logic interpreted over the domain Q.

Since the submission of this article, we additionally proved that the restriction of UF1·RDL
where only a single unary uninterpreted predicate is allowed is also undecidable. This further
refines the decidability frontier.

A complexity upper bound for a decision procedure of UF1·RO is also known [11, 12]. Our
long term goal is to design a practical decision procedure for this decidable logic, and to adapt
it for UF1·IDL·IRO.

References

[1] C. Barrett, D. Kroening, T. Melham, Problem solving for the 21st century: efficient solvers
for Satisfiability Modulo Theories, Technical Report 3, London Mathematical Society
and Smith Institute for Industrial Mathematics and System Engineering, 2014. URL: http:
//theory.stanford.edu/~barrett/pubs/BKM14.pdf, Knowledge Transfer Report.

[2] P. Rümmer, A constraint sequent calculus for first-order logic with linear integer arithmetic,
in: I. Cervesato, H. Veith, A. Voronkov (Eds.), Proceedings, 15th International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, volume 5330 of Lecture
Notes in Computer Science, Springer, 2008, pp. 274–289.

[3] N. Bjørner, Linear quantifier elimination as an abstract decision procedure, in: J. Giesl,
R. Hähnle (Eds.), Automated Reasoning, 5th International Joint Conference, IJCAR 2010,
Edinburgh, UK, July 16-19, 2010. Proceedings, volume 6173 of Lecture Notes in Computer
Science, Springer, 2010, pp. 316–330.

http://theory.stanford.edu/~barrett/pubs/BKM14.pdf
http://theory.stanford.edu/~barrett/pubs/BKM14.pdf

[4] E. Ábrahám, J. H. Davenport, M. England, G. Kremer, Deciding the consistency of non-
linear real arithmetic constraints with a conflict driven search using cylindrical algebraic
coverings, Journal of Logical and Algebraic Methods in Programming 119 (2021).

[5] B. Boigelot, P. Fontaine, B. Vergain, Deciding satisfiability for fragments with unary
predicates and difference arithmetic, in: Proceedings, 6th International Workshop on
Satisfiability Checking and Symbolic Computation, 2021.

[6] V. Bruyère, O. Carton, Automata on linear orderings, Journal of Computer and System
Sciences 73 (2007) 1–24.

[7] H. B. Enderton, A mathematical introduction to logic (2nd edition), Academic Press, Boston,
2001.

[8] J. P. Burgess, Y. Gurevich, The decision problem for linear temporal logic, Notre Dame
Journal of Formal Logic 26 (1985) 115–128.

[9] H. Läuchli, J. Leonard, On the elementary theory of linear order, Fundamenta Mathematicae
59 (1966) 109–116.

[10] W. Thomas, Ehrenfeucht games, the composition method, and the monadic theory of
ordinal words, in: Structures in Logic and Computer Science, Springer, 1997, pp. 118–143.

[11] M. Reynolds, The complexity of temporal logic over the reals, Annals of Pure and Applied
Logic 161 (2010) 1063–1096.

[12] A. Rabinovich, Temporal logics over linear time domains are in PSPACE, Information and
Computation 210 (2012) 40–67.

[13] W. Sierpiński, Cardinal and ordinal numbers (2nd edition), PWN, Warszawa, 1965.
[14] C. E. Shannon, A universal Turing machine with two internal states, Automata studies 34

(1956) 157–165.

	1 Introduction
	2 Preliminaries
	2.1 Difference arithmetic with unary predicates

	3 Decidability of UF1·IDL·IRO
	3.1 Recognizing integer values
	3.2 Translating formulas
	3.3 Establishing equisatisfiability

	4 Undecidability of UF1·RDL
	4.1 Turing machine
	4.2 Encoding a run with predicates
	4.3 Enforcing a valid run

	5 Conclusion and future work

