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Abstract

One of the most fundamental results in the foundations of quantum mechanics is the Kochen–Specker

(KS) theorem, a ‘no-go’ theorem which states that contextuality is an essential feature of any hidden-

variable theory. The theorem hinges on the existence of a mathematical object called a KS vector system,

and its minimum size in three dimensions has been an open problem worked on by renowned physicists

and mathematicians for over fifty years. We improved the lower bound on the size of a three-dimensional

KS system from 22 to 23 with a significant speed-up over the most recent computational approach. Our

approach combines the combinatorial search capabilities of satisfiability (SAT) solvers, the isomorph-free

exhaustive generation capabilities of computer algebra systems (CASs), and the nonlinear real arithmetic

solving capabilities of SAT modulo theory (SMT) solvers. Our work therefore fits directly into the

Satisfiability Checking and Symbolic Computation (SC-Square) paradigm.

Keywords
Satisfiability solving, symbolic computation, symmetry breaking, isomorph-free generation, Kochen–

Specker systems

1. Introduction

Hidden-variable theory aims to model quantum phenomenons by speculating the existence of

a theory with unobservable degrees of freedom. The formulation of such a theory has been

attempted by many accomplished physicists, including Einstein, Podolsky, and Rosen [1], and

Bohm [2]. However, there are theorems describing observable properties of quantum mechanics

under assumptions of either locality or noncontextuality, asserting that any hidden-variable

theory is subject to several constraints. Two examples of such theories are Bell’s theorem [3]

and the Kochen–Specker theorem [4]. Bell’s theorem states that, given the principle of locality,

certain predictions of quantum mechanics using any hidden-variable theory are incorrect.

The Kochen–Specker (KS) theorem states that, given the principle of noncontextuality, it is

impossible to assign values to all physical observables consistently.

A KS System is a set of 3-dimensional vectors that proves the KS theorem by demonstrating
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contextuality. In this paper, we refer to the KS problem as the problem of finding the minimum

size of a three-dimensional KS system. Finding the minimum KS system not only has historical

significance, but also paves the way for near-future applications in quantum information

processing [5]. So far, the complexity of known KS systems has prevented physicists from using

them for any application. Finding the minimum 3-dimensional KS system reduces its intrinsic

complexity, and could enable applications in security of quantum cryptographic protocols based

on complementarity [6], zero-error classical communication [7], and dimension witnessing [8].

Boolean satisfiability (SAT) is one of the most influential problems in computer science and

mathematics, as it has been studied intensively since it was shown to be NP-complete [9]. Over

the last two decades, the design and implementation of conflict-driven clause learning (CDCL)

SAT solving algorithms has enabled the solution of instances with millions of variables [10].

Even more surprisingly, SAT solvers frequently outperform special-purpose algorithms designed

for software engineering [11], verification [12], and AI planning [13].

Despite these fantastic achievements, SAT solvers struggle on certain problems such as those

containing symmetries [14] or those requiring the usage of mathematical theories more advanced

than propositional logic [15]. Much work has been done to remedy these drawbacks, including

the development of sophisticated symmetry breaking techniques [16, 17] and the development

of solvers that support richer logics [18] (“SAT modulo theories” or SMT solvers). However,

the mathematical support of SMT solvers is quite primitive when compared with the vast

mathematical functionality available in a modern computer algebra system (CAS). A new kind

of solving methodology [19] was developed in 2015 that harnesses SAT solving in addition to the

efficient mathematical algorithms of CASs [20, 21]. This “SAT+CAS” solving methodology has

since been successfully applied to many diverse problems, including circuit verification [22, 23],

automatic debugging [24], finding circuits for matrix multiplication [25], computing directed

Ramsey numbers [26], finding sequences and matrices with special properties [27, 28], and

solving Lam’s problem from projective geometry [29]. In this paper, we use the SAT+CAS

solving methodology to dramatically improve the performance of searching for KS systems

when compared to an out-of-the-box SAT solver or an out-of-the-box CAS.

Our work provides a new lower bound on the size of a three-dimensional KS system and

discovers missing candidates from Uijlen and Westerbaan’s search [30] for KS systems of size 20.

We search for KS systems using a SAT solver coupled with computer algebraic routines (to

remove symmetry from the search) and an SMT solver (to solve nonlinear real systems). The

approach is motivated by the observation that a great number of properties that a KS system

must satisfy can be converted into Boolean logic.

2. Background

In quantum mechanics, spin is an intrinsic form of angular momentum carried by elementary

particles. Its existence can be concluded by the Stern–Gerlach experiment [31]. In this context,

a spin-1 particle is shot through a fixed inhomogeneous magnetic field and continues non-

deflected, deflects up, or deflects down. Along any given axes or directions of measurement, the

spin-1 particle has 3 possible angular momentum states, namely 0, 1, and −1. Thus, the squared

result of such measurements along any direction is always 0 or 1. The SPIN axiom states that



given three pairwise orthogonal directions of measurement, the squared spin components of a

spin-1 particle are 1, 0, 1 in these three directions. Thus, the observable corresponding to the

question “is the squared spin 0?” measured in three mutually orthogonal directions will always

produce yes (or 1) in exactly one direction and no (or 0) in the other two directions. The SPIN

axiom follows from the postulates of quantum mechanics and is experimentally verifiable [32].

A KS vector system can be represented in multiple ways—we describe it as a finite set of

points on a sphere. As a consequence of the SPIN axiom, the squared-spin measurements along

opposite directions must yield the same outcome, and we can restrict the domain to the northern

hemisphere. To define a KS vector system, we formally define a vector system and the notion of

010-colourability.

Definition 1. A vector system is a finite subset of the closed northern hemisphere.

Definition 2. A vector system is 010-colourable if there exists an assignment of 0 and 1 to each
vector such that:

1. No two orthogonal vectors are assigned 1.
2. Three mutually orthogonal vectors are not all assigned to 0.

Definition 3. A Kochen–Specker vector system is a vector system that is not 010-colourable.

Exhibiting the existence of a KS vector system proves the KS theorem, which states that there

is no function from the closed northern hemisphere to {0, 1} that satisfies the 010-property.

Each KS vector system has a corresponding KS graph, defined as follows.

Definition 4. For a vector system 𝒦, define its orthogonality graph 𝐺𝒦 = (𝑉,𝐸), where
𝑉 = 𝒦, 𝐸 = { (𝑣1, 𝑣2) : 𝑣1, 𝑣2 ∈ 𝒦 and 𝑣1 · 𝑣2 = 0 }.

A KS graph is the orthogonality graph of a KS system. Essentially, the vertices of 𝐺𝒦 are the

vectors in 𝒦, and there exists an edge between two vertices if and only if their corresponding

vectors are orthogonal. We can also translate the notion of 010-colourability from a vector

system to a graph.

Definition 5. A graph 𝐺 is 010-colourable if there is a {0, 1}-colouring of the vertices such that
the following two conditions are satisfied simultaneously:

1. Adjacent vertices are not both coloured 1.
2. For each triangle in 𝐺, there is exactly one vertex that is coloured 1.

It is not guaranteed that there is a corresponding vector system for an arbitrary graph. If a

graph does have a corresponding vector system, we say that this graph is embeddable.

Definition 6. A graph 𝐺 = (𝑉,𝐸) is embeddable if it is a subgraph of an orthogonality graph
𝐺𝒦 for some vector system 𝒦.

Essentially, being embeddable implies the existence of a vector system 𝒦 whose vectors

have a one-to-one correspondence with the vertices of 𝐺 in such a way that adjacent vertices

are mapped to orthogonal vectors. It is not necessary for non-adjacent vertices to go to non-

orthogonal vectors by the definition above, though it is necessary for distinct vertices to be



mapped to distinct vectors. An example of a unembeddable graph would be the cycle graph

of order 4, as the orthogonality constraints would force a pair of opposite vertices of 𝐶4 to

be mapped to the same point. A KS graph must be both embeddable and non-010-colourable.

Every KS system corresponds to a KS graph, allowing us to translate a problem on KS systems

into a problem on KS graphs.

Throughout the years, renowned mathematicians and physicists such as Roger Penrose, Asher

Peres, and John Conway have attempted to find a minimum three-dimensional KS system. The

current smallest known KS system contains 31 vectors and was discovered by John Conway

and Simon Kochen around 1990 [33]. This was communicated to Peres [34], who found a more

symmetric system of 33 vectors [35]. Shortly later, Penrose [36, 37] found another system of 33

vectors. In 2011, Arends, Ouaknine, and Wampler [38] proved several properties that any KS

graph must have and applied them to computationally prove that a KS system must contain at

least 18 vectors. Seven years later, Uijlen and Westerbaan [30] showed that a KS system must

have at least 22 vectors. This computational effort used around 300 CPU cores for three months

and relied on the nauty software package [39] to exhaustively search for KS vector systems.

Pavičić, Merlet, McKay, and Megill [40] have also shown that a KS system in which each vector

is part of a mutually orthogonal triple must have at least 30 vectors. However, despite these

extensive searches, the gap between the lower and upper bounds remains significant and the

minimum size of a 3-dimensional KS system remains unknown.

3. SAT Encoding of the KS Problem

A KS vector system 𝒦 can be converted into a KS graph 𝐺𝒦. Each vector in 𝒦 can be assigned

to a vertex in 𝐺𝒦, so that if two vectors are orthogonal, then their corresponding vertices are

connected. Therefore, to find a KS vector system, it is sufficient to find a Kochen–Specker graph.

A KS graph is minimal if the only subgraph that is a KS graph is itself. Arends, Ouaknine,

Wampler [38] proved that a minimal three-dimensional KS graph must satisfy the following

properties:

1. The graph must not contain a subgraph isomorphic to 𝐶4.

2. Each vertex of the graph must have minimum degree 3.

3. Every vertex is part of a triangle graph 𝐶3.

We will encode these three properties above and the non-010-colourability of the KS graph in

conjunctive normal form (CNF) in order to search for KS graphs using a SAT solver. If the solver

produces solutions, these solutions are equivalent to graphs satisfying all four properties. A

simple undirected graph of order 𝑛 has

(︀
𝑛
2

)︀
potential edges, and we will represent each edge

as a Boolean variable. The edge variable 𝑒𝑖𝑗 will be true exactly when vertices 𝑖 and 𝑗 are

connected where 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. For convenience, we let both 𝑒𝑖𝑗 and 𝑒𝑗𝑖 denote the same

variable. We also use the

(︀
𝑛
3

)︀
triangle variables 𝑡𝑖𝑗𝑘 denoting that distinct vertices 𝑖, 𝑗, and 𝑘

are mutually connected. In Boolean logic this is expressed as 𝑡𝑖𝑗𝑘 ↔ (𝑒𝑖𝑗 ∧ 𝑒𝑖𝑘 ∧ 𝑒𝑗𝑘) which in

conjunctive normal form is expressed via the four clauses ¬𝑡𝑖𝑗𝑘 ∨ 𝑒𝑖𝑗 , ¬𝑡𝑖𝑗𝑘 ∨ 𝑒𝑖𝑘, ¬𝑡𝑖𝑗𝑘 ∨ 𝑒𝑗𝑘,

and ¬𝑒𝑖𝑗 ∨¬𝑒𝑖𝑘 ∨¬𝑒𝑗𝑘 ∨ 𝑡𝑖𝑗𝑘 . Again, the indices 𝑖, 𝑗, and 𝑘 of the variable 𝑡𝑖𝑗𝑘 may be reordered

arbitrarily for notational convenience.



Encoding the Squarefree Constraint To encode the property that a KS graph must be

squarefree, we construct encodings that prevent the existence of any possible squares in the

graph. Three squares can be formed on four vertices. Therefore, for each choice of four vertices

𝑖, 𝑗, 𝑘, 𝑙, we use the three clauses ¬𝑒𝑖𝑗 ∨ ¬𝑒𝑗𝑘 ∨ ¬𝑒𝑘𝑙 ∨ ¬𝑒𝑙𝑖, ¬𝑒𝑖𝑗 ∨ ¬𝑒𝑗𝑙 ∨ ¬𝑒𝑙𝑘 ∨ ¬𝑒𝑘𝑖, and

¬𝑒𝑖𝑙 ∨ ¬𝑒𝑙𝑗 ∨ ¬𝑒𝑗𝑘 ∨ ¬𝑒𝑘𝑖. By enumerating over all possible choices of four vertices and

constructing the above CNF formula, we force the graph to be squarefree.

Encoding the Minimum Degree Constraint For each vertex 𝑖, to ensure that 𝑖 is connected

to at least three other vertices, we take each subset 𝑆 of the set {1, . . . , 𝑖− 1, 𝑖+1, . . . , 𝑛} with

cardinality 𝑛− 3 and construct the clause

⋁︀
𝑗∈𝑆 𝑒𝑖𝑗 . By enumerating over all such subsets we

enforce a minimum degree of 3 on vertex 𝑖. Thus, constructing similar formulae for all vertices

1 ≤ 𝑖 ≤ 𝑛 forces any vertex in the graph to have a degree of at least 3.

Encoding the Triangle Constraint We now encode the property that every vertex is part

of a triangle. For each vertex 𝑖, we require 2 other distinct vertices to form a triangle and there

are

(︀
𝑛−1
2

)︀
possible triangles containing 𝑖. At least one of those triangles must be present in the

graph and this is ensured by the clause

⋁︀
𝑗,𝑘∈𝑆 𝑡𝑖𝑗𝑘 where 𝑆 is {1, . . . , 𝑖− 1, 𝑖+ 1, . . . , 𝑛} and

𝑗 < 𝑘. Using this clause for each 1 ≤ 𝑖 ≤ 𝑛 ensures that every vertex is part of a triangle.

Encoding the Colourability Constraint We generate clauses to block as many 010-

colourable graphs as possible (ideally all of them, leaving only the non-010-colourable graphs).

A graph is non-010-colourable if and only if for all {0, 1}-colourings of the graph a pair of

colour-1 vertices is connected or a set of three colour-0 vertices are mutually connected. The

idea is to consider many {0, 1}-colourings and construct clauses that block the graphs for which

those colourings form a 010-colouring.

For each {0, 1}-colouring, we have a set of colour-0 vertices𝑉0 and a set of colour-1 vertices𝑉1.

Given a specific such colouring, the clause⋁︁
𝑖,𝑗∈𝑉1
𝑖<𝑗

𝑒𝑖𝑗 ∨
⋁︁

𝑖,𝑗,𝑘∈𝑉0
𝑖<𝑗<𝑘

𝑡𝑖𝑗𝑘

enforces that the colouring is not a 010-colouring of the graph since either a pair of colour-1

vertices is connected or a set of three colour-0 vertices is mutually connected. Due to the large

number of possible {0, 1}-colourings, we only consider colourings with less than or equal to

⌈𝑛2 ⌉ colour-1 vertices. Colourings with more than ⌈𝑛2 ⌉ colour-1 vertices are unlikely to be

010-colourings and in practice were not useful in blocking 010-colourable graphs.

4. Embeddability Checking

We verify the embeddability of a KS graph using an SMT approach. We refer to the solutions

generated by the SAT solver as KS candidates. If a KS candidate is embeddable, then it is a

KS system. Our embeddability checking algorithm consists of two parts. The first part is a

direct integration of Uijlen and Westerbaan’s vector assignment algorithm [30], which finds all



possible interpretations to describe the orthogonal relations between the vectors. We define

free vectors as vectors that have not been fixed as the cross product of two vectors. Of all

possible interpretations, we choose the one with the least number of free vectors, since such an

assignment will likely be solved in the least amount of time. The second part of the algorithm

applies an SMT solver to determine the satisfiability of an intepretation. An interpretation

generated by Uijlen and Westerbaan’s algorithm can be converted into a set of cross and dot

product equations, and we pass these equations into the SMT solver Z3 [41].

1. If 𝑣𝑖 is connected to 𝑣𝑗 and 𝑣𝑘, then 𝑉𝑖 = (𝑉𝑗 × 𝑉𝑘) or 𝑉𝑖 = (𝑉𝑘 × 𝑉𝑗).

2. If 𝑣𝑖 are 𝑣𝑗 are not connected, then 𝑉𝑖 is not collinear to 𝑉𝑗 , and 𝑉𝑖 × 𝑉𝑗 ̸= 0⃗.

3. If 𝑣𝑖 and 𝑣𝑗 are connected, then 𝑉𝑖 and 𝑉𝑗 are orthogonal, and 𝑉𝑖 · 𝑉𝑗 = 0.

To check whether a graph is embeddable, we use the Z3 theorem prover to determine whether

such a system of equations is satisfiable over the real numbers. Z3 applies a CDCL-style

algorithm to determine the satisfiability of non-linear arithmetic constraints [42]. Given a

system of equations, Z3 will attempt to find a solution for all variables. If a solution is found, it

is an assignment of vertices to vectors that satisfies all orthogonality constraints and the graph

is therefore embeddable.

5. Implementation

Directly solving a SAT instance with the above encodings is only feasible for smaller orders,

since the number of graphs in the search space increases exponentially with the order. We

implement two effective techniques to reduce runtime. One is an orderly generation technique

that generates graphs in the search space up to isomorphism, and the other is a parallelization

technique.

5.1. Orderly Generation

We use a hybrid SAT and isomorphic-free generation approach. First, we introduce the orderly

generation approach, developed independently by Igor Faradžev [43] and Ronald Read [44] in

1978. It uses the following canonical representation of a graph.

Definition 7. An adjacency matrix 𝑀 is canonical if every permutation of its rows produces
a matrix lexicographically greater or equal to 𝑀 , where the lexicographical order is defined by
concatenating the above-diagonal entries of the columns of the adjacency matrix in order.

The parent of an 𝑛 × 𝑛 matrix 𝐴 is the upper-left (𝑛 − 1) × (𝑛 − 1) submatrix of 𝐴. The

orderly generation method is based on the following two consequences of Definition 7:

1. Every isomorphic class of graphs has only one canonical representative.

2. If a matrix is canonical, then its parent is also canonical.

Note that the second property implies that if a matrix is not canonical, then all of its children

are not canonical. Therefore, we can reject all intermediate noncanonical matrices, as they will

not lead us to a canonical matrix in the search tree and we only want to generate canonical



matrices. Orderly generation works by recording intermediate canonical objects and iteratively

extending them a row and column at a time until the matrices have been extended to a full

canonical matrix.

In our SAT+CAS implementation, when the SAT solver finds an intermediate matrix the

canonicity of this matrix is determined by a canonicity-checking routine implemented in C++

and the MathCheck system [45]. If the matrix is noncanonical then a blocking clause is learned

which removes this matrix (and all of its children) from the search. Otherwise, the matrix

is canonical and the SAT solver proceeds as normal. We also combine this process with the

symmetry breaking clauses of Codish et al. that canonical matrices can be shown to satisfy [46,

Def. 8].

We simplify the SAT instance using the SAT solver CaDiCaL [47] before solving the instance

using MapleSAT [48]. As a preprocessing step, we also run the orderly generation process on

graphs with up to 12 vertices and add the generated blocking clauses directly into the instance

provided to CaDiCaL—this allows the simplification to incorporate some of the knowledge

derived from the orderly generation process.

5.2. Parallelization

For orders above 20, parallelization is applied by dividing the instance into smaller subproblems

using the cube-and-conquer approach [49]. The approach applies a lookahead solver [50] to

partition a hard problem into many subspaces, and offers very efficient solving time for some

combinatorial problems. During the splitting, the lookahead solver tries to find the next variable

that will split the search space the most evenly. We use the lookahead solver March_cu [51].

Each splitting variable will be added to the SAT instance as a new unit clause, generating two

subproblems (one with a positive unit clause and one with a negative unit clause) that can be

solved in parallel. We terminate the cubing process when a significant number of edge variables

have been fixed in each subproblem.

6. Results

Given the CNF file with the encoded constraints, we use the aforementioned techniques com-

bined with the SAT+CAS approach to verify all previous results on KS systems up to order 21

and improve the best known lower bound with a significant speedup factor. All computations

are done on Intel E5-2683 CPUs @ 2.1GHz administrated by Compute Canada. Table 1 sum-

marizes our results: our computation
1

on order 21 is over 1000 times faster than the previous

computational search of Uijlen and Westerbaan [30]. We apply cube-and-conquer and naive

parallel SAT solving on order 21 and 22 due to the combinatorial explosion caused by the large

order. We eliminate 75 edge variables from subproblems in order 21 and 90 edge variables in

order 22 during the cubing process. Some cubes of order 22 with 90 edge variables eliminated

define instances that are not solved within 72 CPU hours, so we perform additional cubing on

these instances until at least 125 edge variables have been eliminated.

1

We provide an easy-to-use open source repository (https://github.com/BrianLi009/PhysicsCheck) for readers to

reproduce our results.

https://github.com/BrianLi009/PhysicsCheck


Order Candidates Simplification Cubing Cube Simplification Solving

17 1 0.02 hrs N/A N/A 0.02 hrs
18 0 0.02 hrs N/A N/A 0.13 hrs
19 8 0.31 hrs N/A N/A 2.46 hrs
20 147 0.54 hrs N/A N/A 39.71 hrs
21 2,497 1.50 hrs 38 hrs 19.4 hrs 1,019 hrs
22 88,282 2.54 hrs 953.7 hrs 253.3 hrs 46,079 hrs

Table 1
A summary of our results in the Kochen–Specker problem on orders 17 ≤ 𝑛 ≤ 22.

All 90,935 KS candidates of order less than 23 are unembeddable, so a KS system must contain

at least 23 vectors. We compared our Kochen–Specker candidates with Uijlen and Westerbaan’s

results, and have verified their results up to order 21—though we obtained fewer candidates

for each order because Uijlen and Westerbaan did not require every vertex of a candidate to be

part of a triangle. However, we found four additional KS candidates in order 20 that are not

present in Uijlen and Westerbaan’s collection, indicating their search was incomplete. We have

verified that these four additional graphs satisfy the constraints of a KS candidate and therefore

would be KS systems were they embeddable. Note that not all KS candidates we discovered

are minimal. Some KS candidates of larger order contain a KS candidate of smaller order as a

subgraph.

7. Conclusion

In this paper we improved the lower bound on the size of a minimum three-dimensional KS

vector system, improved the efficiency of searching for KS systems by orders of magnitude, and

found KS candidates not present in the previous result of Uijlen and Westerbaan [30]. Compared

to previous work, our approach is less error-prone and provides robust results, since it reduces

the need for custom-purpose search algorithms. The SC-Square paradigm has resolved a number

of problems from combinatorics, number theory, and geometry that were not solvable using

either SAT solvers or CAS alone, and was proven once again to be an effective approach for

combinatorial problems. Using a completely new approach we made substantial progress on the

long-standing open problem of determining the smallest possible KS system. With this work

we extend the reach of the SAT+CAS paradigm, for the first time, to resolving combinatorial

questions in the realm of foundations of quantum mechanics.
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