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Abstract
Malaria, a fever disease primarily caused by the infectious Plasmodium parasite that targets red blood
cells, poses significant challenges in diagnosis due to the laborious manual process of blood cell counting.
This limitation adversely impacts larger screening processes, necessitating the development of more
efficient diagnostic methods. Leveraging advancements in technology, this paper proposes a computer-
aided approach for the detection and analysis of malarial disease using Gabor Filters, followed by a
comparison of three classification algorithms: XG-Boost, Support Vector Machine (SVM), and Neural
Network Classifier. This study aims to reduce the complexity of model discrepancies and enhance
robustness and generalization. By analyzing and classifying parasitized and uninfected blood cells in a
given sample, the proposed model aims to improve the accuracy of decision-making. Experimental data
comprising approximately 13,750 parasitized and 13,750 unparasitized samples were used to evaluate
the models. The SVM algorithm achieved an accuracy of 94%, while XG-Boost achieved 90%, and the
neural network classifier achieved 80%. Among these, SVM demonstrated the most promising results
in accurately classifying and recognizing parasitized and uninfected blood cells, thereby enhancing
decision-making accuracy.
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Figure 1: Malarial blood cells infected samples

1. Introduction

Malaria is a highly prevalent disease, with an estimated 3.4 billion people in 92 countries at
risk of infection, of which 1.1 billion are considered to be at high risk. Specific areas within
current or former malaria-endemic regions possess crucial epidemiological and ecological
factors that facilitate the spread of the disease. To address this global health issue, the World
Health Organization (WHO) is actively promoting the development and implementation of
rapid and cost-effective diagnostic tests, which play a vital role in identifying appropriate
treatment methods[1][2][3]. Malaria is caused by parasites transmitted to humans through
the bites of infected female Anopheles mosquitoes. A survey conducted in 2019 estimated
approximately 229 million cases of malaria worldwide, resulting in a death toll of 409,000.
Young children under the age of 5 are particularly vulnerable to this disease [11][12]. The WHO
report highlights that the burden of malaria is disproportionately high in the African Region.
Although microscopy-based testing has been widely accepted, its time-consuming nature and
dependence on skilled parapsychologists have posed limitations. Misdiagnosis based on visual
interpretation has led to incorrect treatment decisions. Therefore, there is a growing need for
automated systems to enhance malaria diagnosis, ensuring reliability, accurate quantification
of disease, and cost-effectiveness in rural areas[14][15]. Medical experts recognize five classes
of Plasmodium parasites that can cause malaria in humans: P. falciparum, P. vivax, P. malaria,
P. ovale, and P. knowlesi. Among these, P. falciparum and P. vivax are the most common. P.
falciparum, in particular, is associated with severe cases and higher mortality rates. The various
stages of malarial cells are depicted in Figure:3. Observations from the initial slide indicate
the presence of P. falciparum trophozoites and gametocytes alongside white blood cells. The
enlarged nucleus of the malarial cell is then compared with the surrounding red blood cells. In
the subsequent image, P. falciparum ring stages and P. schizonts can be observed.
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Figure 2: Malarial blood cells uninfected samples

Figure 3: Stages of malaria in blood smear

2. A study of existing authors’ approaches

1. Kaewkamnerd et al : authors worked on the flexibility of the V-value histogram method
for 20 images and achieved 60% sensitivity[16].

2. Hanif et al : authors worked on contrast enhancement and threshold-based segmentation
on 200 patient images and achieved the qualitative results[17].

3. Chakrabortya et al : authors worked on the Color information-based pattern segmen-
tation on 75 patients’ images and achieved the 90% detection and 10% false positive
rate[18].
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4. Elter et althey applied the Histogram-based adaptive threshold and morphological
operations on denoised images on 80 patients images and achieved the 90% of detection
rate[19].

5. Quinn et althey applied the Feature extraction from connected components and moment
features on a randomized tree classifier of 2900 samples and achieved 20% of sensitivity
and 90%of precision[20].

6. Toress et al:authors worked on pertaining to local threshold for parasite candidate on
SVM and CNN classifier around 1400 image samples and achieved 90% of sensitivity[21] .

7. Sen Li, Zeyu Du, Xiangjie Meng, and Yang Zhang used a deep transfer graph convo-
lutional network to build a new deep learning strategy for recognizing malaria parasites
at various stages in blood smear pictures

8. Alharbi, A. H., Aravinda, V., C, Shetty suggested that machine-learning models be
used to detect the malaria parasite in blood smear images in their study. VGG16, VGG19,
ResNet50, ResNet101, DenseNet121, and DenseNet201 models were used to extract six
distinct characteristics.[22]

9. Alharbi, A. H., Aravinda, V., C, Lin, M., Ashwini, B suggested a study that looks
into using deep learning algorithms to detect a dangerous disease, malaria, for mobile
healthcare solutions for patients, and to develop an efficient mobile device.[23]

10. Md. Khayrul Bashar proposed a supervised approach for recognizing malaria parasite
stages from microscope pictures in the study. This approach combines color and texture
information with a support vector machine (SVM) classifier to achieve the goal. Three
texture characteristics were evaluated: an oriented pattern’s histogram (HOG), a local
binary pattern (LBP), and the Grey-level Co-occurrence Matrix (GLCM), as well as four
color features:

11. Park, Han Sang, and colleagues suggested an automated analytic technique for identi-
fying and classifying Plasmodium falciparum-infected red blood cells in the trophozoite
or schizont phase of the malaria parasite Plasmodium falciparum. Quantitative phase
images of unstained cells are used in this study. Various machine learning approaches
such as linear discriminant classification (LDC), logistic regression (LR), and k-nearest
neighbor classification.

12. Vinayak K. Bairagi and Kshipra C. Charpe described an automated approach for
detecting malaria parasites in blood pictures. Image processing methods are utilized to
diagnose and detect the stages of the malaria parasite. In blood images, factors such as
statistical features and textural aspects of malaria parasites are used to diagnose parasite
stages. This article compares how textural-based elements are utilized separately and
how they are used in groups. The comparison is based on the accuracy, sensitivity, and
specificity of the characteristics of identical photos in the database.

3. Methodology

A set of experiments was conducted using an openly available malaria data set. The upcoming
sections will delve into the details of data collection, classification, augmentation, and data
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pre-processing techniques. The recommended model architecture section will address the per-
formance observed during these experiments. The training details section will comprehensively
outline the entire workflow of this study.

3.1. Data-sets

The data-set comprises approximately 13,000 samples, which have been categorized into two
folders: parasitized Figure: 1 and uninfected Figure.2. Figure 2 indicates the presence of
Plasmodium parasites, while Figure 3 suggests the presence of other impurities or the absence
of Plasmodium.

3.2. Classification of malaria cells

In recent times, there has been a growing number of studies focusing on the application of
computer vision and machine learning technologies for automated malaria diagnosis. Building
upon previous related research [16],[17], a recent study [19] introduced an automated analysis
method to detect and identify red blood cells (RBCs) infected with the malaria parasite. To
effectively classify RBCs, three distinct machine learning algorithms were implemented, aiming
for accurate predictions and efficient performance as RBC classifiers.

3.3. Image Smoothing

The cell images’ was carried out with various smoothing techniques like Gaussian noise and
salt and pepper noise, comparing the effect of blurring via box, Gaussian, median and bilateral
filters for both noisy images as per the expected results were not promising. The 2D convolution
filtering was applied with various low-pass and high-pass filters in removing the noise and
blurring the image. A high pass filter produced promising results by finding the edges in cell
images. a 2* 2 averaging filter kernel was applied for this cell image K=1/9.

[1 1
1 1]

The above filtering kernel resulted as per our expectations., for every pixel, a 2 * 2 window
is centered on this pixel, then all the pixels which as coming in this window were calculated
on this pixel, and the result was divided by 9. These values were considered for computing
the average of pixel values inside the window. This was carried out to get the filtered image
as output as shown in figure 4.to figure 7. Based on these results of parasitized images the
parasitic region was mostly circular in nature and hence the circular kernel was chosen for
feature extraction and recognition.

3.4. Gabor Filtration technique applied

Normally many samples are visible to the naked eye as no malarial infected cells, hence these
can be used to reduce overall processing run-time. In this regard to calculate the infected
cell samples, a statistical analysis technique was implemented. After this infected area was
noticed and the threshold was performed on the color image using the Gabor Filter method.
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Figure 4: Infected sample

Figure 5: Infected sample

Figure 6: Uninfected sample

The outcome of this method confirmed that noise was not only present in the background as
well as inside RBCs. Later morphological series was applied to fill the holes to obtain individual
samples as shown in Figure:8 and Figure:9. The orientation of the Gabor filters information
depends on accuracy. The kernels of this filter are common to the 2D field and display the
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Figure 7: Uninfected sample

Figure 8: Gaborfilter applied

important features of spatial locality and orientation. The orientation of the 𝜙 and a scale 𝜔 the
Gabor wavelets (kernels, filters) are defined as mentioned in the equation

𝜓𝜔𝜙 =
𝜔

√2𝜋𝐶
𝑒−𝜔2(4𝑎2 + 𝑏2)/(8𝑐2)(𝑒𝑖𝑎𝜔 − 𝑒−𝑐2/2) (1)

Observe the figure 8 infected image and figure 9 uninfected image that shows the real and
imaginary parts of the Gabor kernel. Let’s consider the value of I(x+y) as a gray value at (x,y).
The convolution of sample I and the Gabor kernel of the scale 𝜔 and the orientation of the 𝜃 are
is as mentioned in the below equation.

𝐺𝜔,𝜙 = 𝐼 ⊗ 𝜓𝜔𝜙 (2)

This equation results were G 𝜔, 𝜃(z) at pixel z=(x,y)which consists of two components real and
imaginary. The response of each evenly spaced orientation is mentioned below.

𝐼𝜔𝜃(𝑧) = 𝑅𝑒(𝐺, 𝜔, 𝜃(𝑧))2 + 𝐼𝑚(𝐺, 𝜔, 𝜃(𝑧))2 (3)

The Figures from 10 to 13 show the images overlaid with sub-sampled which was estimated
using Gabor filters. The values considered ksize = 25*25, 𝜎 = 5,𝜃 = 1∗𝑛𝑝.𝑝𝑖/2,𝜆 = 1∗𝑛𝑝.𝑝𝑖/4,𝜙 =
0.8.
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Figure 9: Gaborfilter applied

Figure 10: Infected sample

Figure 11: Image grey scale

4. Result Analysis

To achieve the accuracy for the malarial parasite detection, a series of experiments were tested
using various machine learning algorithms. The S.V.M Classification Accuracy Obtained was
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Figure 12: kernel resized

Figure 13: Output of kernel resized

Figure 14: Simple Neural Network Architecture

94% as shown in table 2 The XG-Boost classification accuracy Obtained was about 90% as shown
in the table 3. The Neural Network classifier accuracy obtained was about 80% as shown in the
table 1.
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Table 1
Neural Network Structure for training

Layer (type) Output Shape Param
Dense (None, 256) 48000256
Dropout (None, 256) 0
Dense (None, 256) 32896
Dropout (None, 128) 0
Dense (None, 64) 8256
Dropout (None, 64) 0
Dense (None, 16) 1040
Dense (None, 1) 17

Total params: 48,042,465
Trainable params: 48,042,465
Non-trainable params: 0

.
Table 2
S.V.M Classification Accuracy Obtained- 94%

Precision Recall F1

Paratasized-0.9259 0.9615 0.9433%
Infected-0.9565 0.9166 0.9361%

.
Table 3
XG-Boost Classification Accuracy Obtained- 90%

Precision Recall F1

Paratasized-0.8275 0.9230 0.8727%
Infected-0.9047 0.7916 0.8444%

4.1. Experimental machine configuration

The recognition system is equipped on sever for online accessing. The CPU is Intel(R) Xeon(R)
CPU E5-1410 v2 @ 2.80 GHz, RAM is 8G, and OS is Ubuntu 18.04.3 LTS

5. Comparison of models

The evaluation criteria such as precision, recall, f1-score, and accuracies of the seven ML
algorithms and one ensemble algorithm that were recently explored for our multi-stage dataset
can be articulated using the graph shown in figure . Precision quantifies the extent to which a
model predicts a specified category. RF and NB have a higher precision score of 79%, followed
by EM with 78% precision, LDA with 77% precision, KNN with 76% precision, SVM and DT
with 75% precision, and LR with 55% precision. As a result, RF and NB would then predict more
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Figure 15: Randm Forest confusion Matrix

Figure 16: Support Vector confusion Matrix

relevant stage outcomes than irrelevant ones. The recall score of RF is 83%, followed by LDA and
EM at 81%, KNN at 79%, SVM,LR, and DT at 74%, and NB at 53%. As a result, we can conclude
that RF will correctly identify the class. The F1 score of RF is high at 80%, followed by LDA at
78%, KNN and EM at 77%, DT at 74%, LR,NB, and SVM at 63%. As a result, we can conclude that
RF accurately predicts the true class of multistage malaria parasites. The confusion matrix of
SVM, NN, RF, and various other models are shown in Figure 15,16,17,18 respectively.

11



Figure 17: Neural network confusion Matrix

Figure 18: Various Models confusion Matrix
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