
A survey of attention mechanisms for wearable
sensor-based human activity recognition
Xin Wang1, Yan Wang1,∗, Yingrui Geng1, Hongnian Yu2, Hongmei Yang1,
Xiaoxu Wen1 and Aihui Wang1

1School of Electric and Information, Zhongyuan University of Technology, Zhengzhou 450007, China
2School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK

Abstract
Attention mechanisms, widely used in many fields such as computer vision (CV) and natural language
processing (NLP), enable deep learning networks to extract more important information from the input,
thereby improving performance and efficiency. Recently, attention mechanisms are introduced to wear-
able sensor-based human activity recognition (WSHAR) for learning more robust feature representations.
This paper investigates the attention mechanisms in WSHAR with a special focus on the principles of
computing attention and the targets on which the attention works in a network and future directions.
The aim is to provide readers with a clearer understanding of attention mechanisms in WSAHR and
motivate more diverse work in the future.
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1. Introduction

Recently, attention mechanisms have become enormously popular in deep learning [1, 2, 3].
Researchers apply attention mechanisms to networks, allowing models to dynamically focus
on key parts of the input to perform specific tasks more effectively. The basic principle of
the attention mechanism is to weigh the input information so that parts of input with higher
weights are considered more relevant to the task and have a greater impact on the model’s
decisions [4]. Attention mechanisms were first introduced into the encoder-decoder network
for natural language processing (NLP) [5], enabling the decoder to selectively access the input
sequence parts that are important to the context. Vaswani et al. [6] performed an innovative
development on attention mechanisms, where they relied solely on a self-attention mechanism
to model the global dependencies of the input. The mechanism overcame the difficulties such as
performance degradation and computational inefficiency caused by recurrent neural networks
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(RNNs) as the length of the input sequence increased, and showed state-of-the-art results on NLP
tasks when it was proposed. Another mainstream application scenario of attention mechanisms
is in computer vision (CV) for image classification [7, 8], anomaly detection [9, 10] or semantic
segmentation [11, 12]. Attention mechanisms in CV can effectively solve the problem of image
information overload, which contributes to saving computational resources [13].

In the past decade, with the advances in Artificial Intelligence (AI) and sensor technologies,
human activity recognition (HAR) is gradually playing an important role in many cross-cutting
areas, such as smart healthcare [14], motion monitoring [15] and human-robot interaction [16].
Depending on the type of sensors arranged, HAR can be classified into three categories: 1) vision
sensor-based HAR (VSHAR), 2) ambient sensor-based HAR (ASHAR) and 3) wearable sensor-
based HAR (WSHAR) [17]. The WSHAR systems are more portable, require less computational
resources. They overcome the limitation of working only in specified areas which cameras and
ambient sensors have, thus becoming a research hotspot in the field of HAR recently. Learning
robust feature representations from raw wearable sensor data is critical for WSHAR tasks.
As an effective and powerful performance-enhancing network, attention mechanisms have
also been introduced into WSHAR to learn more valuable features from raw signals [18, 19].
Applying attention mechanisms to raw data from different wearable sensors enables the model
to focus on the data that contribute more to activity recognition, avoiding the effect of noise
caused by individual faulty sensors. For example, Mahmud et al. [20] proposed the sub-module
named Sensor Modality Attention to weigh the data captured from different sensor modalities
according to their varying contribution levels. The weighted representations obtained showed
better performance than the raw data. Combining attention mechanisms with some typical
neural networks, such as convolutional neural networks (CNNs) and long short-term memory
network (LSTM), can also help improve the performance in handling HAR tasks. Sun et al. [21]
introduced an attention layer into the LSTM to automatically capture the important temporal
dependencies. Singh et al. [22] utilized self-attention to select and learn important time points
of spatial-temporal features captured by the combination of CNN and LSTM, which achieved a
significant enhancement over the existing methods.

Although several papers have reviewed the attention mechanisms or their applications in
natural language processing [23, 24] and computer vision [25, 26], few can be found in WSHAR.
The use of attention mechanisms in WSHAR tasks differs in the calculation principle and the
target that the attention works on in a network. This paper thus provides a concise review and
discussion on the applications of attention mechanisms in WSHAR. The main contributions of
this work are as follows.

• Identifying the attention mechanisms inWSHAR according to the principles of computing
attention and presenting the theoretical explanations accordingly;

• Exploring the applications of attention mechanisms in WSHAR tasks according to the tar-
gets that the attention works on in a network, and mining the corresponding motivations
and reasons behind;

• Providing the future directions of attention mechanisms in WSHAR, i.e., exploring the
feasibility of introducing the cross-attention mechanism to perform WSHAR tasks.

The rest of the paper is organized as follows: Section 2 provides theoretical principles of
the generic attention mechanisms in WSHAR. Section 3 identifies and summarizes the three
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attention methods in WSHAR tasks. Section 4 discusses the future directions of attention-based
WSHAR. Finally, the conclusion is presented in Section 5.

2. Attention mechanism theoretical principles

Thanks to the high compatibility, and excellent performance in feature and model optimization,
attention mechanisms have been acquiring great success in WSHAR and a large number of
attention-based HARmodels have emerged in a short period of time. According to the principles
of computing attention, there are two basic attention mechanisms in WSHAR: weight-based
attention and self-attention. Before looking into the attention methods in WSHAR, we detail
the two types of attention mechanisms in this section.

2.1. Weight-based attention

Extracting important features in the input elements helps further enhance the performance
of HAR models. The weight-based attention learns the importance of the input elements. It
assigns different weight coefficients to each element, thus increasing the proportion of important
elements in feature extraction and reducing or eliminating unimportant elements. As illustrated
in Figure 1, the input elements 𝑥 𝑖 are first fed into a specific network for features learning
to obtain the attention representations 𝑎𝑖. Then a softmax operation is performed on 𝑎𝑖 to
produce the attention scores 𝛼 𝑖. Finally, the obtained attention scores 𝛼 𝑖 are fused with the input
elements to derive the weighted attention output. Usually, there are two ways of fusion, one is
to directly fuse the attention scores with the original input elements 𝑥 𝑖 to obtain the weighted
input vectors 𝑐𝑖, and the other is to apply the attention scores to the attention representations 𝑎𝑖
to get the weighted attention representations 𝑜𝑖.
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Figure 1: Wight-based attention

2.2. Self-attention

The weight-based attention calculation process is shown as:

𝑎𝑖 = 𝜎 ⋅ (𝑊𝑥 𝑖 + 𝑏) (1)
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𝛼 𝑖 = softmax (𝑎𝑖) =
exp (𝑎𝑖𝑘)
𝑛
∑
𝑘=1

exp (𝑎𝑖𝑘)
(2)

𝑐𝑖 = 𝛼 𝑖 ⋅ 𝑥 𝑖 (3)

𝑜𝑖 = 𝛼 𝑖 ⋅ 𝑎𝑖 (4)

where 𝑊 and 𝑏 in (1) are the parameters learned by the network when linear transformations
are applied to 𝑥 𝑖, and 𝜎 denotes the nonlinear activation function that help extract the nonlinear
features of inputs.

The weight-based attention has various variants in HAR due to different element objects,
action ranges and network structures. According to the action element object, it can be divided
into spatial attention, temporal attention, etc. The networks designed to capture attention
representations are diverse, such as fully connected layers, CNNs, RNNs.

Self-attention is a mechanism proposed by Vaswani et al. [6] in Transformer. Unlike weight-
based attention, self-attention contains both attention score calculation and feature extraction,
i.e., self-attention enables the extraction of features from inputs independently, as shown in
Figure 2.
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Figure 2: Self-attention [6]

The calculation of self-attention consists of three primary operations. Firstly, applying linear
transformations to the input 𝑋 to obtain the transformation matrices Query (𝑄), Key (𝐾) and
Value (𝑉). 𝑥𝑖, 𝑞𝑖, 𝑘𝑖 and 𝑣𝑖 are the elements of 𝑋, 𝑄, 𝐾 and 𝑉, respectively. 𝑊 𝑞, 𝑊 𝑘 and 𝑊 𝑣 are the
trainable parameter matrices. Secondly, comparing 𝑞𝑖 with each 𝑘𝑖, which means conducting
matrix operations on 𝑄 and the transpose of 𝐾 to get the scores as follows:

𝑓 =
𝑄 ⋅ 𝐾𝑇

√𝑑𝑘
(5)

where 𝑑𝑘 represents the dimension of 𝐾 and the scaled operation leads to having more stable
gradients. Then the results are normalized by softmax to obtain the attention scores. Finally,
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multiply the attention scores with 𝑉 to give the final output 𝑍. The entire formula for self-
attention can be expressed as:

𝑍(𝑄, 𝐾, 𝑉 ) = softmax(
𝑄 ⋅ 𝐾𝑇

√𝑑𝑘
) ⋅ 𝑉 (6)

The multi-head attention proposed in [6] performs multiple self-attention operations on
the input in parallel. Then it stitches the output of each self-attention together to extract the
information obtained by multiple self-attention through an additional parameter matrix 𝑊 𝑜, as
defined in (7).

𝑀𝑍(𝑄, 𝐾, 𝑉 ) = 𝑊 𝑜 ⋅ Concat (𝑍1, 𝑍2, … , 𝑍ℎ) (7)

where 𝑍𝑖 indicates the output of the 𝑖-th self-attention and ℎ is the number of self-attention.
Multi-head attention enables the extraction of more valuable features from different views,
which enhances model’s performance and thus is widely used in WSHAR.

3. Attention methods in WSHAR

Section 2 detials the attention mechanisms based on computational principles. Both attentions
can enhance the information processing ability of neural networks. Factors such as the target
objects or the binding networks contribute to the diversity of applications of both attention
mechanisms in WSHAR. In this section, we review the attention methods in HAR according
to the targets that the attention works on in a network and give explanations of the function
of each attention applied in a specific WSHAR task, with a summary of the related works in
Table 1.

3.1. Temporal attention

Activity data from wearable sensors are time series signals with high time dependence [41].
Extracting temporal features from raw sensor data is crucial to improve the recognition per-
formance. Although RNNs and their variants, such as LSTM and gated recurrent unit (GRU),
specialize in learning the sequential dependencies [42, 43, 44], they treat all time steps of sensor
data equally. It means that noise or unimportant signals are also fed into models for training,
which may lead to a degradation of recognition accuracy. The temporal attention mechanism
weights the time steps in the input or obtained representations to make the temporal mod-
els mentioned above that focus on the information extraction on important time steps [45].
Therefore, a model with temporal attention is able to learn more robust temporal features from
the raw sensor data or representations and exhibits high efficiency [46]. Figure 3 presents the
generic structure of temporal attention in WSHAR, where 𝑆 and 𝐶 represent the number of
samples and sensor channels, respectively.

Haque et al. [27] introduced a temporal attention named hierarchical context-based attention
to the two-layer GRU model to learn the hierarchy of temporal features. The attention generates
diverse importance for temporal features learned bu GRU, effectively capturing the context
of relevant time steps. Similarly, Betancourt et al. [29] added a two-layer self-attention after
an LSTM layer to improve the model’s performance. Self-attention layer compares each time
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Table 1
Typical studies in attention-based WSHAR

Category Method description Reference

Temporal
attention

Conducting weight-based attention on the temporal features
generated by GRU

[27], [28]

Conducting self-attention or weight-based attention on the
temporal features learned by LSTM

[29], [30], [31]

Performing self-attention on the representations of ConvLSTM
model from the temporal dimension

[22], [32]

Spatial
attention

Executing weight-based attention on the spatial features
generated by different CNN three times in succession

[33]

Performing weight-based attention on the 3D spatial features
learned by CNN

[34]

Temporal
& spatial
attention

Executing self-attention on the temporal features generated by
GRU and spatial features generated by CNN, respectively

[35]

Conducting weight-based attention on the spatial or temporal
features generated by CNN

[36], [37], [38]

Executing weight-based attention on the input and
model-generated representations from the spatial dimension or

the temporal dimension, respectively
[39], [40]
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Figure 3: Temporal attention-based model

step in the representations learned by the last LSTM layer with all time steps to determine the
more relevant time steps. The obtained relevance helps to extract robust time dependencies.
The LSTM network with the attention module improved the accuracy by 4.0% and 4.2% on the
UCI-HAR and MTUT-HAR datasets, respectively. Singh et al. [22] used self-attention to further
learn the spatial-temporal representations generated by CNN and LSTM. The ConvLSTM model
with self-attention shows better performance on all six publicly available HAR datasets than
those without self-attention.

3.2. Spatial attention

Wearable sensors such as accelerometers, gyroscopes or magnetometers capture different infor-
mation about the same activity and bring different contributions to activity recognition [47].
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The involvement of different body parts during the execution of an activity is diverse, so the
contribution of data collected from different positions to activity recognition also varies [48].
Hence, activity data from wearable sensors are not only rich in time dependencies but can
have complex spatial features. Spatial attention assigns varying weights to data from differ-
ent sensors or wearing positions in the spatial dimension according to their importance for
activity recognition. Thus spatial attention-based models can learn more robust spatial feature
representations, as shown in Figure 4.

S
p

at
ia

l 
n

et
w

o
rk

Spatial Attention

W
ei

g
h
te

d
 

re
p
re

se
n
ta

ti
o
n
s

Spatial Attention

A
ct

iv
it

y
 c

la
ss

e
s

Inputs

[S, C]

S
p

at
ia

l 
n

et
w

o
rk

Spatial Attention

W
ei

g
h
te

d
 

re
p
re

se
n
ta

ti
o
n
s

Spatial Attention

A
ct

iv
it

y
 c

la
ss

e
s

Inputs

[S, C]

Figure 4: Spatial attention-based model

Wang et al. [33] proposed an attention-based CNN architecture that separately adds attention
submodules after the third, fourth and fifth CNN layers, respectively. The attention submodule
weighs local features of the total spatial features learned by a CNN to enhance the noticeable
parts and weaken the less significant parts. The CNN model with attention submodules shows
a more efficient backpropagation and improves recognition accuracy. Sarkar et al. [34] applied
continuous wavelet transform to convert the time series from sensors with the size of 𝑐 × 𝑡 to 2D
frequency-time domain scalograms with the size of 𝑐 × 𝑡 × 𝑡, here 𝑐 is the number of timestamps
and 𝑡 denotes the number of sensor channels. Then they conducted the spatial attention to 𝑐 to
improve the features maps in CNN, thus enhancing CNN’s ability to learn deeper features.

3.3. Temporal & spatial attention

Temporal and spatial attention mechanisms have demonstrated their particular strengths in
WSHAR tasks. Based on their advantages, the temporal & spatial attention can extract more
robust spatial-temporal features from the raw sensor data or feature representations learned by
the model, as shown in Figure 5.
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Figure 5: Temporal & spatial attention-based model
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Ma et al. [35] proposed the AttnSense model that adds different attention mechanisms after
CNN and GRU, respectively. The attention subnet after CNN takes self-attention to give
varying weights for different sensor modalities from the spatial dimension, aiming to prioritize
the important modalities. The attention subnet after GRU uses self-attention to increase the
feature extraction of time steps with important contributions, while weakening the impact of
unimportant time steps. The comparison results on three publicly available HAR datasets show
that the model with two attention subnets achieves higher accuracy than using either one or
neither. Gao et al. [36] introduced channel attention and temporal attention in the DanHAR
model for feature re-extraction on the representations generated by CNN from the spatial and
temporal dimensions, respectively. The channel attention they proposed for HAR time series
signals is essentially a kind of spatial attention that uses max-pooling to combine the important
representations generated through multiple filters in the convolutional layer. In the temporal
attention, they applied global average-pooling and max-pooling to aggregate important global
contextual information. Similarly, Zheng [39] also used spatial & temporal attention in the
LGSTNet model, with the difference that Zheng applies temporal attention to the original input
windows and spatial attention to the representations generated by 2D CNN. The probabilities
generated by temporal and spatial attention can enhance the contributions of the important
segments of the local spatial-temporal features. The ablation experiment results indicate that
the attention mechanisms can improve the recognition performance of the LGSTNet model,
especially in recognizing some similar activities.

4. Future directions

The studies mentioned above have demonstrated the potential of the self-attention mechanism
in human activity recognition [29, 22, 35]. The Q, K and V in WSHAR tasks are almost from the
same data source, which is effective in capturing sequential features and global information.
Recently, some studies have improved self-attention to propose a mechanism called cross-
attention, where Q and K come from the same data source and V comes from another data source.
Thus, cross-attention enables to learn the inter-dependencies of different data sources. Lin et
al. [49] proposed a cross-attention mechanism that alternates attention to information within
image slices to acquire local information and captures attention information between local image
slices to obtain global information. Their model improves the recognition rate in vision tasks and
reduces the computational effort of the self-attention mechanism in the standard Transformer.
Bhatti et al. [50] established attention-based cross-modality for connecting different locations
of wearable information for emotion recognition.

For multi-position wearable HAR, how to fuse the data provided by multiple heterogeneous
sensors and learn the data relationships within and between sensors is also one of the main
challenges. The sensor data from different wearing positions are either similar or different.
Therefore, introducing a cross-attention mechanism to establish the interaction of sensor
information from different wearing positions can be further explored.
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5. Conclusion

This paper summarizes attention mechanisms used in wearable sensor-based human activity
recognition. Firstly, based on the principles of computing attention, we divide the attention
mechanisms commonly used in WSHAR into two categories, i.e., weight-based attention and
self-attention, and theoretically demonstrate their principles. Secondly, targeting the objects
on which the attention mechanism acts, we survey and discuss the applications of attention
mechanisms in WSHAR in terms of the attention methods: temporal attention, spatial attention
and spatial & temporal attention. Finally, we point out that introducing the cross-attention
mechanisms to WSHAR can benefit learning global and cross correlations in related works.
Future work should consider running the codes of works mentioned above and further mine
the attention principles in specific WSHAR tasks.
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