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Abstract 
In this study, basic experiments were conducted to detect pedestrians in a non-line-of-sight 
(NLOS) area behind a wall using a 2.4 GHz frequency modulated continuous wave (FMCW) 
radar and to classify their risk of rushing out. The experimental results showed that the 
pedestrians in the NLOS area were detected using only diffracted waves. Furthermore, the 
classification of pedestrian movements with different rush-out risks was achieved with 95% 
accuracy. The assumed movements were walking from the NLOS area toward the located radar 
(high rush-out risk) and walking toward the opposite side of the radar (low rush-out risk). 
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1. Introduction 

In Japan, the incidence of road accidents has declined in recent decades, partly due to the widespread 
adoption of collision avoidance technologies such as Advanced Driving Assistant Systems (ADAS). 
However, there has been an increase in the number of accidents involving blind areas, often referred to 
as non-line-of-sight (NLOS) areas, including collisions with pedestrians outside the driver's field of 
vision such as pedestrians behind walls and cars [1]. Current ADAS systems are primarily designed to 
monitor directly visible areas from the sensors embedded in vehicles and are inadequate for detecting 
pedestrians in NLOS areas. 

To solve the above problems, a method has been proposed that utilizes a communication network 
between a pedestrian's mobile device and a car to detect the location of pedestrians in NLOS areas [2]. 
However, it should be noted that this method is limited in its ability to detect pedestrians who lack 
electronic devices capable of communicating with vehicles, such as mobile phones, or when such 
devices are powered off. Another approach involves direct vehicle-to-vehicle communication to detect 
pedestrians in NLOS areas [3]. This method can identify pedestrians in the blind area even when the 
vehicle is not in that area. However, in cases where two or more vehicles are present if one vehicle can 
see a pedestrian, the other vehicle may not be able to see the same pedestrian. In such situations, the 
system reports the presence of undetected pedestrians. Nonetheless, this approach also has its 
limitations, as detecting pedestrians in NLOS areas requires the presence of multiple vehicles and is 
thus not practical for use on heavily trafficked roads.  

As another approach to detecting pedestrians existing in NLOS areas, microwave radar-based 
monitoring techniques have been proposed [4], [5], [6]. In our previous study [4], we used 24 GHz radar 
to classify the risk of pedestrians being run over based on multipath reflections. However, it proved 
difficult to use where there were no other walls or obstacles to multipath reflections. In [5], the detection 
capability for the targets in the NLOS range was investigated using only the diffracted waves of the 2.4 
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GHz band radar. However, this study only considered signal detection and did not consider pedestrian 
motion detection. In [6], an efficient method for the detection of pedestrian rush-out using radar and 
stereo cameras was presented. However, this method does not sufficiently address the situation where 
the camera cannot detect the target pedestrian.  

In this study, we investigate a classification of the rush-out risk of pedestrians in NLOS areas using 
the 2.4 GHz frequency modulated continuous wave (FMCW) to exploit the range information of 
diffracted waves.  The possibility of detecting pedestrians behind walls using only diffracted waves was 
investigated. A rush-out risk classification method was then proposed and a high classification accuracy 
was demonstrated.  

2. Experimental Setup 

This study uses a 2.4 GHz FMCW radar. A sweeping signal in the 2.4 to 2.5 GHz frequency range is 
generated and transmitted from the transmitter antenna towards the target. Next, the receiver antenna 
picks up the reflected wave and the signal is amplified by a low-noise amplifier. The signal is then 
detected by multiplying the received signal with a delayed signal from the transmitter, and noise is 
removed by a low-pass filter to obtain the received signal. Because the bandwidth of the transmitting 
sweeping signals was 100 MHz, the range resolution of our FMCW radar was 1.5 m.  

Figure 1 shows the system model of the experiments to measure pedestrians in a NLOS area, and 
Figure 2 depicts the experimental site. The pedestrian participant was behind an obstacle wall and was 
measured using diffractied waves from the left side of the obstacle. The height and width of the obstacle 
wall were 185 cm and 230 cm. The initial position of the participant was (𝑥𝑥, 𝑦𝑦) = (0 m, 0 m), two types 
of motion are performed: 'Approaching the radar', walking from the origin to (𝑥𝑥, 𝑦𝑦) = (-1.65 m, 0 m), 
and 'Going away from the radar', moving from the origin to (𝑥𝑥, 𝑦𝑦) = (1.65 m, 0 m). The walking speed 
of the participants was approximately 0.6 m/s. We define two radar received signals as data0 and data1: 
the data0 was recorded at the start of the movement (0 s to 0.05115 s) and the data1 was recorded 1 
second after the start of the movement (1 s to 1.05115 s). We performed each movement of approaching 
and moving away from the radar 80 times and collected data0 and data1 on each occasion. There were 
two participants (age: 22 and 23 years, height: 172cm and 173cm). Note that the distance between the 
radar and the back wall was 30 m and the radar echoes from the back wall were easily separated from 
those of the measured human target. 
 

 
Figure 1: Radar measurement system model.     
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                                                                      Figure 2: Experimental site. 
 

3. Acquisition of Range Profiles 

We obtained the range profiles of data0 and data1 by applying the Fourier transform to the received 
signals to confirm the detection capability of the pedestrians in the NLOS area and to classify their rush-
out risks. Figure 3 shows an example of the range profiles of data0 and data1 for the two classes 
'approaching the radar' and 'going away from the radar'. The vertical axis represents the radar received 
amplitude normalized to its maximum value, while the horizontal axis shows the range calculated from 
the beat frequency of the FMCW radar [7]. 

As indicated in Figure 3(a), the amplitude of the 7.5 m range of data1 increased compared with that 
of data0 for 'approaching the radar'. This increase in amplitude corresponds to the walking motion of 
the participant, as the path of the diffracted wave between the participant and the radar was 
approximately 8 m, as shown in Figure 1. In contrast, the amplitude of the 7.5 m range slightly decreased 
for the participants who were 'going away from the radar'. These results suggest that the range profile 
and its time-variation contain information about the small differences corresponding to the movements 
of the participants in the NLOS area, indicating the feasibility of pedestrian detection using diffracted 
waves and motion recognition of the detected pedestrians. 

 

      
 

(a) 'Approaching the radar'                                   (b) 'Going away from the radar' 
  

Figure 3: Examples of range profiles. 
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4. Classification of Walking Motions with Different Rush-Out Risks 

In this section, we present the results of the classification of the two types of walking motions with 
different rush-out risks based on the acquired range profiles. Firstly, we consider the efficient feature 
parameters in the range profiles. Figure 4 shows plots of the normalized received amplitude of data0 
and data1 for 7.5 m and 10.5 m range bins, where the differences between the two classes were relatively 
clear. The 7.5 m range is the area where the pedestrian participant mainly exists. The 10.5 m range 
corresponds to the echoes of multiple reflections of the wall and the participant, and the slight 
differences corresponding to lateral movement relative to the radar can be detected at this range bin. 
Note that the data for other ranges did not show significant differences between the two classes.  

 

    
 

             (a) 7.5 m range                                                      (b) 10.5 m range 
 

Figure 4: Plots of amplitude data for the classification of rush-out risks. 
 
 

For the classification, we used a support vector machine (SVM) [8] using the feature space shown 
in Figure 4. The SVM used a Gaussian kernel and the other hyperparameters were empirically optimized. 
The accuracy of the classification was evaluated using hold-out validation. 70% (112 data) of the 
acquired data (80 data × 2 people = 160 data) were used as training data to determine the SVM model, 
and the remaining 30% (48 data) were used as test data. The holdout validation was performed 10 times 
by randomly varying the training data selection.  

Table 1 shows the confusion matrix for all 10 tests. The mean classification rate was 95.0%, 
indicating that the rush-out risk classification was performed with sufficient accuracy. Furthermore, it 
is important for practical purposes that the detected pedestrians having high rush-out risks are not 
misclassified as those with low risks. Thus, reproducibility is crucial and it was found to be 95.8%. 
Although these results indicate high performance in the classification of rush-out risks, better 
reproducibility is required for practical use. 

 
Table 1 
Confusion matrix of rush-out risk classification. 

True\Predicted Approaching Going away 

Approaching 95.8% 4.2% 

Going away 5.8% 94.2% 
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5. Conclusion 

This study aimed to assess the feasibility of using a 2.4 GHz band FMCW radar to classify the risk 
of pedestrian rush-out in the NLOS area behind the obstacle wall. Our results demonstrated that the 
classification accuracy of 95% and reproducibility of 95.8% were achieved based on the received 
signals corresponding to diffracted waves. Although more performance is required for the practical use 
of ADAS, our experiments indicated the feasibility of monitoring NLOS areas using low-frequency 
radar compared with well-used millimeter-wave automotive radars. To improve the accuracy, the use 
of bistatic array radar systems and more sophisticated classification method including deep learning 
approaches should be considered in our future study. 

6. Acknowledgements 

This study was supported by Suzuki Foundation and Support Center for Advanced 
Telecommunications Technology Research (SCAT). 

7. References 

[1] National Police Agency, Traffic Accident Statistics, Annual report 2022.  
URL: https://www.e-stat.go.jp/en/stat-search/files?page=1&layout=datalist&toukei=00130002& 
tstat=000001027457&cycle=7&year=20220&month=0 

[2] R. Q. Malik, K. N. Ramli, Z. H. Kareem, M. I. Habelalmatee, A. H. Abbas, A. Alamoody, An 
overview on V2P communication system: Architecture and application, In Proceedings of 2020 
3rd International Conference on Engineering Technology and its Applications (IICETA), 2020, pp. 
174–178.   

[3] K. Asano, N. Enami, T. Kamada, and C. Ohta, Person ReIDentification for Detection of 
Pedestrians in Blind Spots through V2V Communications, In Proceedings of IEEE Intell. 
Transport. Syst. Conf. (ITSC), Auckland, New Zealand, 2019, pp. 764–779. 

[4] S. Hayashi, K. Saho, D. Isobe, and M. Masugi, Pedestrian detection in blind area and motion 
classification based on rush-out risk using micro-Doppler radar, Sensors 21 (2021), Article no. 
3388. 

[5] S. Masuda, Z. Zhongqi, M. Kitamura, M. Morishita, K. Jitsuno, K. Inagaki,  A. Kanno, T. 
Kawanishi, In-vehicle NLOS pedestrian detection system using secondary radar based on 
frequency doubling and oversampling signal analysis, IEICE Commun. Express 11 (2022) 560–
565. 

[6] A. Palffy, J. F. Kooij, D. M. Gavrila, Detecting darting out pedestrians with occlusion aware sensor 
fusion of radar and stereo camera, IEEE Trans. Intell. Vehicles 8 (2023) 1459–1472. 

[7] S. Neemat, F. Uysal, O. Krasnov, and A. Yarovoy, Reconfigurable Range-Doppler Processing and 
Range Resolution Improvement for FMCW Radar, IEEE Sens. J. 19 (2019) 9294–9303. 

[8] C. J. C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and 
Knowledge Discovery 2 (1998) 121–167. 

 

103


