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Abstract
Distributed Ledger Technologies (DLTs), when managed by a few trusted validators, require most but not
all of the machinery available in public DLTs. In this work, we explore one possible way to profit from
this state of affairs. We devise FBFT, a certified Byzantine consensus protocol that combines a modified
Practical Byzantine Fault Tolerance (PBFT) protocol and a revised Flexible Round-Optimized Schnorr
Threshold Signatures (FROST) scheme. We inject the resulting Proof-of-Authority (PoA) Byzantine
consensus protocol into Bitcoin, thus replacing its PoW machinery. The resulting blockchain may
offer a novel, modern, and safe foundation for digital payment systems used in stablecoins, sidechains,
and Central Bank Digital Currencies (CBDCs). Lastly, we evaluate our solution using a prototype
implementation of the full system, which we release in open-source.
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1. Introduction

The announcement of cryptoasset-inspired “stablecoins” by private companies [1] and the
prospective issuance of Central Bank Digital Currencies (CBDCs) [2, 3, 4, 5] for retail use,
coupled with the unabated diffusion of blockchain-based digital assets, have reignited the
interest in consensus protocols amenable to permissioned blockchains. In this paper, we
envision a distributed service provider that operates a modern, blockchain-based, programmable,
and transactional engine, exhibiting high-availability and strong fault tolerance. Nodes may
be managed by independent actors, which do not necessarily trust each other, but share a
common interest, which would be perfectly served, technically, by a distributed ledger with
no centralization point: Everyone enjoys equal rights, duties, and capabilities, and contributes
to the system resilience. Nodes may even reside in different jurisdictions and conform to
different laws, albeit under some shared regulatory framework1. These motivations hold for
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most permissioned DLT platforms, and for both payment and non-payment domains. However,
in this work, we specifically focus on Bitcoin and on digital payments. We ask ourselves: Is
the unorthodox notion of “Precisely Bitcoin, minus its traditional consensus algorithm, plus
identifiable third parties, in a permissioned setting” a technically consistent one? Our goal is
precisely to inherit verbatim all the algorithms, data structures, cryptography, and software from
Bitcoin, getting rid of merely the ingredients (chiefly, PoW) that are unnecessary/undesirable in
a permissioned setting. If it is possible to identify a small set of actors that end-users trust to
cooperatively guarantee scarcity and to prevent double spending, then a Bitcoin-like blockchain
can be grown via, e.g., a consensus based on Proof-of-Authority (PoA). High availability and
tolerance to faults and malicious behaviors remain mandatory even in our smaller, permissioned
setting. These properties can be recovered by borrowing and modifying existing consensus
and signature algorithms from the literature. The difficult thing is to inject such algorithmic
ingredients into Bitcoin while maximizing its codebase reuse, in order to inherit its virtues and
strengths even after PoW is excised.
Contribution: Our major contribution is to show how three fairly sophisticated protocols,

coming from different communities—namely PBFT [6] (Practical Byzantine Fault Tolerance)
from the distributed system research, FROST [7] (Flexible Round-Optimized Schnorr Threshold
Signatures), a result of recent cryptography studies, and Bitcoin from the crypto-assets realm—
can be combined to make them interlock neatly with one another. From such pooling, a
permissioned Bitcoin-derived DLT emerges, with strong fault tolerance and a confidential
quorum certificate. To the best of our knowledge, this is the first time algorithms such as PBFT
and FROST are combined and adapted to a PoA setting that retains the wealth of technical tools
accrued by Bitcoin. The major technical challenge to overcome is that a simple juxtaposition of
PBFT and FROST does not work: Issues arise during distributed signature, because the possible
reluctance of (faulty or malicious) nodes to sign blocks is something PBFT is unaware of and
FROST is unable to deal with.

This work extends [8], where our core ideas were sketched. In this paper we detail our
Certified Byzantine Consensus protocol, named FBFT, that combines PBFT and FROST to finalize
a block with a quorum of signatures aggregated into a single one (improving confidentiality
and block space efficiency). We also evaluate our solution using a prototype implementation of
the full system, which is made available in open-source2. Further details can be found at [9].

The rest of this paper is organized as follows: Sect. 2 offers a high-level view of our archi-
tecture; Sect. 3 recalls some preliminary concepts; Sect. 4 presents FBFT; Sect. 5 evaluates the
proposed solution; Sect. 6 reviews the related literature, and Sect. 7 concludes the paper.

2. System Model and Requirements

2.1. High-level architecture

Our architecture is composed of a participant network and a mining network, each with different
properties (see Fig. 1).
Participant and mining network. The participant network is composed of participant nodes,

2https://bancaditalia.github.io/itcoin

https://bancaditalia.github.io/itcoin


Figure 1: A permissioned mining network (𝑁 = 4) and a permissionless participant network.

noted 𝑃0, … , 𝑃𝑀−1, which run a modified Bitcoin protocol (Sect. 4.3). Each participant node
receives, validates, and stores a copy of the blockchain. The participants form a permission-less
network, without a predefined topology or size. The bidirectional communication channels
among them (dotted lines in Fig. 1) are used to propagate blocks and messages via gossiping,
as in Bitcoin. The rounded rectangles inside the gray area are mining3 nodes, or “miners”
(there are 4 of them in Fig. 1). Each miner 𝑀𝑖 = (𝐵𝑖, 𝐶𝑖) is composed of a bridging node 𝐵𝑖
and a consensus node 𝐶𝑖, running on the same host and connected by synchronous bridging
channels (see next). Each miner is operated by one member of a federation of 𝑁 trusted actors4,
called validators. While the bridging node of each miner runs the same protocol as any other
participant node (in particular, it collects transactions to be validated from participants and
propagates new valid blocks to others as soon as it gets aware of them), the consensus node runs
the certified Byzantine consensus protocol described in Sect. 4. Miners are connected to each
other in a full mesh topology; the resulting permissioned network is called the mining network
(everything within the gray area in Fig. 1). This is a peer-to-peer network too: Mining nodes
are equivalent to each other, with no one playing any special role. The communication links
among mining nodes (dashed lines) are bidirectional channels used to exchange authenticated
messages required by the consensus protocol (see Sect. 4).
Bridging channels. In between the bridging node and the consensus node of each miner,

there are 2 host-local, synchronous channels (solid, oriented arcs in Fig. 1), acting as bridging
channels: One uses an RPC protocol, whereby the consensus node takes the initiative to interact
with the corresponding bridging component to, e.g., obtain a candidate template block, sign a
block, ask to broadcast a block (see Sect. 4.1 and the self-loop messages in Fig. 2). The other
bridging channel adopts a publish/subscribe model over the ZMQ protocol: The consensus node

3The term “mining” is etymologically incongruous in our context where trusted nodes do not operate to mining any
reward; however, we stick to them for historic reasons and for their close association with Bitcoin.

4We target settings in which N is expected to be between 4 and ≈ 20.



subscribes to the bridging node in order to get the mining federation notified of occurrences
of new signed blocks. These interaction models and protocols allow maximum Bitcoin reuse
because they leverage the standard Bitcoin core APIs exposed by 𝐵𝑖.

Roles and coupling. The mining network is a service provider: Its goal is to collect transactions
from participants, reach a consensus on which ones to include in new blocks, and then deliver
signed blocks back to participants, who will add them to their local blockchains. Thanks to the
properties of the consensus and signing protocols, this network appears to the participants as a
single mining entity. Dually, the participant network acts as a single virtual client submitting
transactions to the blockchain managed by the mining nodes, and expecting such transactions
to be timely validated. The participant network is reliably connected to the miner network
via a few standard Bitcoin-like (𝑃𝑗, 𝐵𝑘) channels freely established by at least some participant
𝑃𝑗 towards one or more of the bridging nodes 𝐵𝑘; these channels are indistinguishable from
regular channels within the permissionless network.
Failures. We assume a Byzantine failure model whereby 𝐹𝐵 nodes can fail arbitrarily, with

𝐹𝐵 = ⌊(𝑁 − 1)/3⌋. The consensus we employ relies on synchrony to provide liveness, but
not to provide safety. To avoid the FLP impossibility result [10], we assume that (dashed)
communication channels are weakly synchronous: Message delays among correct miners
do not grow too fast and indefinitely, because a Global Stabilization Time (GST) event [11]
eventually happens, after which the mining network behaves synchronously. Moreover, as in
[12], we assume that all participants are able to synchronize in the course of a “round”, and
that each round includes a GST event. As long as the network is in a failed state, it may fail to
deliver messages, delay/duplicate them, or deliver them out of order. We assume an adversary
that can coordinate faulty nodes but cannot subvert cryptographic primitives.

2.2. Requirements

We call for our PoA consensus to exhibit the following properties.

R1 Correctness (or, validity, consistency). Each block needs to have content that is valid
according to the rules of the blockchain, and must transition the blockchain from one valid
state to another.

R2 Safety (or, agreement, deterministic finality). In a permissioned blockchain, safety forbids
chain forks, i.e., different but valid versions of the most recent blocks of the same blockchain.
This requires the Common Prefix Property [12] to be deterministic instead of probabilistic.
Specifically, at the end of a round, if a honest participant “prunes” 𝑘 ≥ 0 blocks from the
tip of its chain, the probability that the resulting pruned chain is not a prefix of another
honest participant chain is exactly 0 (instead of exponentially decreasing with 𝑘, as in PoW
blockchains).

R3 Liveness. Within each round, new blocksmust be produced every block time and propagated
to the participants network every round time. We use the Chain Growth property [12], with
parameters 𝜏 = round time

block time ∈ ℝ and 𝑠 ∈ ℕ: For any honest participant, it holds that after any
𝑠 consecutive rounds it adopts a chain that is at least ⌊𝜏 ⋅ 𝑠⌋ blocks longer.



R4 Calmness. The pace of block production is upper-bounded, which helps participants to
form expectations on their resource requirements. If a Byzantine miner creates blocks at
a rate significantly higher than 1

block time , it can cause participants to run out of resources,
effectively carrying out a denial-of-service attack. We require that after any 𝑠 consecutive
rounds it adopts a chain that is at most ⌊𝜏 ⋅ 𝑠⌋ blocks longer.

R5 Confidentiality. At each round carried on with no faulty miners, 5 the mining network does
not reveal information other than new valid blocks to the participants. Other information,
e.g., the mining network configuration and the consensus quorum for block validation,
should be kept hidden from the participants. This property can be used in addition to other
anonymization mechanisms (e.g., at network level) to make targeted attacks against the
miners harder.

R1-R3 have been already defined and studied in the context of blockchains [13], whereas R4-R5
are peculiar to ours.

3. Preliminaries: The FROST Signature Scheme

A (𝑘, 𝑛) threshold signature scheme, with 𝑘 ≤ 𝑛, requires that at least 𝑘 participants over 𝑛
cooperate to create a valid signature, i.e., it is not possible to create a valid signature with less
than 𝑘 participants. FROST is a threshold signature scheme that leverages the additive property
of Schnorr signatures to quickly combine signatures into an aggregated one [7]. The FROST
signature scheme defines three main protocols: (i) a key generation protocol that creates secret
shares for participants as well as public keys for signature verification; (ii) a commitment protocol
that creates nonce/commitment share pairs for all participants; these commitments allow to
prevent known forgery and replay attacks; (iii) a signature protocol coordinates the generation
of the aggregated signature by signers. We briefly introduce these protocols, whose complete
definition can be found in the original work [7].

Each participant 𝑀𝑖 has a unique identifier 𝑚𝑖 ∈ {1, … , 𝑛}. Let 𝔾 be a group of prime order 𝑞
in which the Decisional Diffie-Hellman problem is hard, 𝑔 be a generator of 𝔾, and let 𝐻1 and
𝐻2 be cryptographic hash functions mapping to ℤ∗

𝑞 . We denote by 𝑥 ← 𝐴 that 𝑥 is selected
uniformly randomly from set 𝐴.

Key Generation. Before signing any block, participants need to define secret and public keys.
They share the same cipher suite that specifies the underlying prime-order group details and
cryptographic hash function. The KeyGen protocol consists of two rounds. Afterwards, each
participant 𝑀𝑖, with 𝑖 ∈ {1, … , 𝑛}, owns a secret share 𝑠𝑖, a public verification share 𝑌𝑖 = 𝑔𝑠𝑖 , and
the group’s public key 𝑌. The public verification share 𝑌𝑖 allows others to verify the participant
signature shares; the group’s public key 𝑌 enables the aggregate threshold signature verification,
which depends on the set of participants 𝑛 and the configured threshold 𝑘.

Commitment. In the commitment protocol, participants generate (secret) nonces for signatures
and exchange their public commitments, which allow verifying the correct use of nonces. Each

5This property is impossible to guarantee in rounds where Byzantine failures happen since the network configuration
is known to each participant, and a Byzantine node can choose to reveal extra information to the outside world.



participant 𝑀𝑖, 𝑖 ∈ {1, … , 𝑛}, generates a pair of nonces (𝑑𝑖, 𝑒𝑖) ← ℤ∗
𝑞 × ℤ∗

𝑞 and derives the public
commitment shares (𝐷𝑖, 𝐸𝑖) = (𝑔𝑑𝑖 , 𝑔𝑒𝑖).
Aggregated Signature. The aggregate signature protocol works in two rounds. First, each

participant generates his signature share. Then, all participants’ shares are combined to obtain
the final signature. Let 𝑆 be the set of participants in the signing process; the cardinality
of 𝑆 is 𝛼, with 𝑘 ≤ 𝛼 ≤ 𝑛. Let 𝐿 = ⟨(𝑙, 𝐷𝑙, 𝐸𝑙)⟩𝛼𝑙=1 be the list of 𝛼 participants’ commitments.
When 𝑀𝑖 receives the message to sign 𝑚, he can use his secret share 𝑠𝑖 and 𝐿 to compute his
signature share 𝑧𝑖, which can then be sent to all other participants. Formally, 𝑀𝑖 computes
the set of binding values 𝜌𝑙 = 𝐻1(𝑙, 𝑚, 𝐿), 𝑙 ∈ {1, … , 𝛼}, and derives the group commitment
𝑅 = ∏𝛼

𝑙=1 𝐷𝑙 ⋅ (𝐸𝑙)𝜌𝑙 and the challenge 𝑐 = 𝐻2(𝑅, 𝑌 , 𝑚). Then, 𝑀𝑖 computes his signature share
on 𝑚 as 𝑧𝑖 = 𝑑𝑖 + (𝑒𝑖 ⋅ 𝜌𝑖) + 𝜆𝑖 ⋅ 𝑠𝑖 ⋅ 𝑐, using (𝑑𝑖, 𝑒𝑖) corresponding to (𝑖, 𝐷𝑖, 𝐸𝑖) ∈ 𝐿, and 𝑆 to determine
the 𝑖-th Lagrange coefficient 𝜆𝑖. Since nonces cannot be used multiple times, 𝑀𝑖 deletes the
((𝑑𝑖, 𝐷𝑖), (𝑒𝑖, 𝐸𝑖)) pair from his local storage. Then, 𝑀𝑖 sends 𝑧𝑖 to every other participant in 𝑆.

The second round starts when 𝑀𝑖 receives all other signature shares 𝑧𝑙. For verification, 𝑀𝑖
checks if the equality 𝑔𝑧𝑙 = 𝑅𝑙 ⋅ 𝑌

𝑐⋅𝜆𝑙
𝑙 holds for each received 𝑧𝑙. If the verification is successful,

𝑀𝑖 aggregates the signature shares locally by computing 𝑧 = ∑𝑖∈𝑆 𝑧𝑖. The resulting aggregated
signature of 𝑚 is 𝜎 = (𝑅, 𝑧), that can be verified as single-party signature.

4. Certified Byzantine Consensus

In our permissioned setting, blocks need to be authenticated in front of the participants net-
work. Therefore, we employ a Certified Byzantine Consensus Algorithm, which allows reaching
consensus on a sequence of blocks even in face of Byzantine faults and produces a proof of
validity for each block, which enables the participants to verify the whole blockchain validity.
To reach a consensus on blocks, we leverage a modified version of PBFT, while to produce the
proof, we leverage a Schnorr threshold signature scheme called FROST, which also provides
private quorum accountability [14]. It is worth noting that, in general, the set of block signers
can differ from the set of nodes reaching the consensus.

4.1. Ordering blocks with PBFT

In a nutshell, PBFT is a state machine replication algorithm. It relies on a set of replicas to
maintain a service state and to implement a set of operations onto it. The replicas move through
a succession of configurations called views, which are numbered consecutively. In a view, one
replica is the primary and the others are backups. View changes are carried out when it appears
that the primary has failed. Service operations are invoked by clients, which send requests to
the primary. Then a three-phase protocol begins: (i) in the pre-prepare phase, the primary
assigns a sequence number to the request and multicasts it to the backups; (ii) in the prepare
phase, the backups gather a Byzantine quorum of 2𝐹𝐵 + 1 prepare messages in order agree on
the sequence number proposed by the primary; (iii) in the commit phase, the replicas confirm
that an agreement on the request and its sequence number has been reached by a Byzantine
quorum of replicas. Then, each replica executes the operation and replies to the client. The
client waits for a reply quorum of 𝐹𝐵 + 1 replies from different replicas with the same result.
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Figure 2: Normal operation (no faulty primary) with 4 nodes, 𝑀0 is primary, 𝑀3 is faulty.

The client. In our setting, the PBFT client is a single virtual entity, i.e., the participants network,
and the state machine has a single operation, i.e., append a new block. The participants expect a
new valid block to be mined every target block time, which in our examples is set to one minute,
starting from the genesis block timestamp. In light of these considerations, all replicas know in
advance all valid request timestamps, that are obtained as genesis block timestamp plus multiples
of the target block time. Requests having such valid timestamps are self-generated locally by
each replica. Moreover, given that valid blocks are broadcast to the participants network once a
reply quorum of signatures by replicas is achieved, we omit the reply messages.

Normal operations (no faulty primary). The PBFT normal case protocol starts with a request
to append a new block. The operation is non-deterministic, as its result depends on the actual
content of the block to append (e.g., the set of transactions). We let the primary select and
backups verify such content independently [15]. In the pre-prepare phase, when a block is
expected at height 𝑛, the primary 𝑀0 gathers a set of transactions from its mempool and forms
a proposed block to be appended at height 𝑛, which corresponds to the sequence number of the
operation. Then, the primary includes the block in the pre-prepare message and broadcasts it
to backups. A backup (i.e., 𝑀1, 𝑀2, or 𝑀3 in the figure) accepts a pre-prepare message iff it is
valid according to the PBFT rules, its request has been already generated locally by the replica,
its timestamp is not in the future according to the local clock of the replica, and the proposed
block (checked by the participant node co-located with the replica) is also valid. If a backup
accepts the pre-prepare message, then it enters the prepare phase and broadcasts the prepare
message to all other replicas. A replica (primary or backup) accepts a prepare message iff all
the PBFT conditions are met; no additional checks are present at this stage. When replicas
reach an agreement on a block and its height, they proceed to the commit phase. In the commit
phase, a replica begins the signing process of the prepared block, by including a so-called FROST
commitments in the commit message, and broadcasting the commit to other replicas. A replica
accepts a commit message iff the PBFT conditions are met. A Byzantine quorum of commit
messages contains a valid reply quorum of FROST commitments, which allow the primary to
start the FROST signing sessions (described in Sect. 4.2).
Checkpoints. The checkpoint mechanism is used in PBFT to discard old messages and to
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Figure 3: Normal operation of FBFT. Replicas exchange their first commitments in the commit phase.
In the commitment share phase, the primary defines two sets of signers, 𝑆1 = {0, 1} and 𝑆2 = {0, 2}, and
related 𝐿1 and 𝐿2 parameters. In the sign phase, involved signers send the signature share to the primary
who can determine the aggregated signature.

advance in the processing of requests. In our protocol, we rely on the Bitcoin block propagation
mechanism of the underlying participants network for propagating checkpoints among replicas:
Each block appended to the blockchain represents a PBFT checkpoint and causes the replica to
move on to mining the next block.

4.2. FROSTing PBFT

Defining upfront the set of participants 𝑆 that will collaborate to compute the aggregated
signature 𝑧 is cumbersome in presence of Byzantine nodes, which may arbitrarily refuse to sign
blocks. We need rules for exchanging commitments (𝐷𝑖, 𝐸𝑖) and identifying the set 𝑆 of signers,
two critical information for reconstructing the secret used to sign messages.

Therefore, we design 5-Phase Frosted-BFT (FBFT, for short), which introduces two main
changes to the PBFT protocol. First, it blends the commitment protocol and the signature
protocol into the normal case PBFT. Second, it extends PBFT with additional rounds to guarantee
liveness in case Byzantine nodes play the role of signers. We assume that each replica is a
participant in the signing process, which collaborate to apply the threshold signature on the
block agreed upon consensus. As per Fig. 3, the new rounds introduced in FBFT are called
commitment-share and sign. When a message is prepared by replica 𝑖, it runs the commitment
protocol to randomly determine the nonce/commitment share pairs ((𝑑𝑖, 𝑒𝑖), (𝐷𝑖, 𝐸𝑖)). Public
commitments (𝐷𝑖, 𝐸𝑖) are piggybacked to the commit message and exchanged with other replicas
leveraging the PBFT protocol. The primary holds a list of responsive signers, among which
the set of candidate signers will be defined. Replicas that send the public commitments in
their commit message are considered as part of the initial set of responsive signers and will be
candidates for the signing session in the commitment-share phase.

After replicas exchange the commit messages, a set of commitment-share phases of FBFT takes
place. The primary defines a set of signers 𝑆 among active replicas; the selection policies for
defining the set 𝑆 follow the rules of ROAST, a wrapper of the FROST protocol that guarantees



liveness [16]. We choose 𝑆 with cardinality 𝑘 = 𝐹𝐵 + 1 (i.e., a reply quorum of signatures),
including the primary itself: In such a configuration, at least one honest signer is in, thus
preventing forgery of aggregate signatures over blocks that are invalid or not agreed upon.
Even though the primary might exclude nodes suspected to be unresponsive, malicious nodes
may be unknown and could be included in 𝑆. For this reason, the primary can initiate multiple
and concurrent commitment-share sessions, maintaining a set of responsive signers. As soon
as there are at least 𝑘 responsive signers in the set, the primary will initiate a new commitment-
share session. When the primary determines 𝑆, he creates and sends the list of signers’ public
commitment 𝐿 = ⟨(𝑙, 𝐷𝑙, 𝐸𝑙)⟩𝑙∈𝑆 to other replicas. Knowing 𝐿 (and, consequently, 𝑆), other replicas
𝑗 ∈ 𝑆 can compute the signature share 𝑧𝑗 on the block.

The sign phase of FBFT allows replicas to run the aggregate signature protocol presented in
Sect. 3. They create and exchange with the primary the signature shares 𝑧𝑖, with 𝑖 ∈ {1, … , 𝑘},
together with a new public commitment to be possibly used in another commitment-share
session. If any signature share 𝑧𝑖 is not valid, the primary marks the replica as malicious, so that
it will not be included in subsequent commitment-share phases. When the primary receives
all other signature shares 𝑧𝑖, with 𝑖 ∈ {1, … , 𝑘}, it can derive the aggregate signature 𝜎 = (𝑅, 𝑧),
with 𝑧 = ∑𝑖 𝑧𝑖 and 𝑅 the group commitment. If 𝜎 is a valid Schnorr signature, the primary
appends the signature to the previously proposed block, broadcasts it, and completes FBFT. As
demonstrated in ROAST [16], a non-faulty primary will receive all the signatures in at most
𝑁 − 𝑘 + 1 commitment-share sessions, under the hypothesis that the number of possible backup
failures 𝐹𝐵 is at most 𝑁 − 𝑘. The PBFT view-change protocol described in [15] allows to provide
liveness also in presence of a faulty primary, which delays (but does not compromise) the
ROAST protocol. When a view change is triggered by the block timeout, the (possibly new)
primary replica will act as a new semi-trusted coordinator, that will run again the aggregate
signature protocol. Note that the view-change cannot change values the quorum has agreed
upon, so the block content cannot be updated.

We now informally argue that the FBFT algorithm satisfies the safety and liveness properties.
The safety property relies on the usual cryptographic assumptions and a threshold adversary
model with threshold 𝑁 > 3𝑓, while the liveness additionally relies on the partial synchrony of
the network (as in PBFT).

Theorem 1 (Safety). If a set of replicas produced a valid signature for block 𝑏1 with sequence
number 𝑛 in view 𝑣, then no valid signature will be produced for block 𝑏2 with 𝑛 and 𝑣 by another
set of replicas.

Proof. By contradiction, assume that for view 𝑣 and sequence number 𝑛, there are two blocks 𝑏1
and 𝑏2, with 𝑏1 ≠ 𝑏2, for which 𝑓 + 1 signature shares have been collected. Consider non-faulty
replicas 𝑟1 and 𝑟2 that signed for 𝑏1 and 𝑏2, respectively. If 𝑟1 = 𝑟2, we already get a contradiction:
a correct replica signed two different blocks for 𝑛 and 𝑣. If 𝑟1 ≠ 𝑟2, by the safety property of
PBFT, there cannot be two correct replicas that commit to two different blocks for the same
sequence number. Similarly, the claim also holds for 𝑣 ′ > 𝑣, since PBFT guarantees that if at
least a correct replica locally committed the block 𝑏 in 𝑣, which is the precondition to sign 𝑏, then
no other request will be considered for the same sequence number 𝑛 in later views 𝑣 ′ > 𝑣.

Theorem 2 (Liveness). All valid block proposal are eventually committed and signed by all correct
replicas.



Proof. The claim follows from the proof of termination of ROAST (Theorem 4.3 of [16]), and by
the liveness property of PBFT, by taking care of triggering view-changes if a replica detects a
Byzantine aggregator of signature shares.

The requirements of Correctness and Calmness are satisfied by construction, as a pre-prepare
message is accepted only if its block is valid according to the protocol rules (Correctness),
its request has been generated locally by the replica, and its timestamp is not in the future
(Calmness). Finally, the Confidentiality requirement is guaranteed by the confidentiality of the
signature created using FROST.

4.3. Amending the Bitcoin protocol

This section describes the main changes we introduce to the Bitcoin codebase.
Block validity. Our blocks are valid iff they include the solution to a specific block challenge,

as in the Bitcoin Signet [17], that can be expressed either as a script or, since the introduction
of Taproot [18], as a public key used to validate a Schnorr signature. For each block, the block
solution to the challenge is stored in a special OP_RETURN output of the coinbase transaction,
so it is automatically propagated to the participant network using the standard mechanisms
for blocks and transactions. In our case, the solution is an aggregated Schnorr signature,
representing a valid but opaque quorum of trusted miners who agreed to append a given block
at a specific height. Since different quorums of signers may produce different valid signatures,
in order to accommodate for our safety requirement (R2) in the context of a certified Byzantine
consensus, it is necessary to exclude the block solution from the computation of the coinbase
transaction hash6. In addition, it is necessary to include the PoW fields nBits and nNonce in
the block signature, in order to prevent a (malicious) miner to cause a fork by tweaking them:
If the PoW fields were not signed, then a miner could change nNonce to imply more work, and
its block would replace the legitimate one by the Bitcoin rules.
Block mining. The steps for creating blocks become as follows: (1) Upon request by the

consensus node of a miner, the corresponding bridging node assembles a block template, i.e., it
selects a set of transactions from the mempool, and adds a coinbase transaction with an empty
block solution; the block Merkle root is now finalized. The miner grinds the block, i.e., it finds
a nonce that fulfills a trivial PoW-like challenge, which is purposely included for backward
compatibility with the original Bitcoin protocol; the block hash is now finalized. (2) A quorum of
miners signs the block and appends a valid block solution; the transactions are now finalized :
the Merkle root and block hashes are unaffected.
Block interval. The interval between blocks is fixed to one minute, instead of the 10-minute

interval of the public Bitcoin network. We could further increase the rate or the block size to
improve the throughput, but this would limit the valuable ability of all network participants to
stay in sync, especially those with low bandwidth. At any rate, transaction scalability is meant
to be achieved off-chain.

6Different sets of signers for the same block could lead to valid but different block solutions. If the different solutions
were included in the computation of the coinbase transaction hash, they would also be included in the Merkle trees,
and would result in different block hashes, which would lead to a chain reorganization.



Block subsidy. It plays an incentive role in the public Bitcoin, which is non-existent in our
setting. We remove the block subsidy checks from the code base of participant nodes.

Coinbase maturity. In Bitcoin, coinbase transaction outputs can only be spent after a certain
number of new blocks. In our settings, no forks occur as per our safety requirement, therefore
the coinbase maturity is safely set to 0.

5. Evaluation
We evaluate the performance of FBFT in a geographically distributed environment, involving
up to 22 mining nodes, placed in 8 different European regions of Amazon Web Services (AWS).7

According to data collected by cloudping in 20228, the median latency between these regions
ranges between 20 ms and 50 ms, while the intra-region median latency stays below 4 ms.

The main measure of performance we consider is consensus latency (or just latency, for short),
which represents the time needed by the mining network to reach an agreement and sign a
new block. Measured at the primary node, it is the difference between the time at which a new
signed block is submitted to the participant network (end of the consensus) and the time at
which a new block is proposed to the mining network with a pre-prepare message (beginning of
the consensus algorithm).

In Fig 4, we compare FBFT with two baseline variants, named PBFT and 3FBFT. The for-
mer produces a naïve block solution as the concatenation of signatures by a threshold of the
mining nodes. This block solution can be then verified by the participant network using the
OP_CHECKMULTISIG opcode. The latter is a trivial solution for creating a quorum certificate
using FROST: miners run multiple FROST sessions during the consensus, by exchanging, in
the commit message, a pair of commitments (𝐷𝑖, 𝐸𝑖) for all the (

𝑁
𝑘) possible combinations of

𝑘 = 2𝐹𝐵 + 1 signers. As a result, a replica that receives a Byzantine quorum of commit messages,
can immediately execute the aggregation of the signature shares. 3FBFT optimizes communica-
tion because it minimizes the number of rounds required to finalize a block. However, since
the number of signature shares grows exponentially, this protocol is practical only with small
mining networks. For the three variants, Fig 4 shows the size of the block solution (i.e., the
block signature), which represents a witness of the mining network agreement and is broadcast
to the participant network together with the block itself. PBFT produces a block solution whose
size increases with the mining network size (from 222 bytes with 4 replicas to 657 bytes with 13
replicas). Notably, the OP_CHECKMULTISIG opcode, used by participants to verify the block solu-
tion, allows checking at most 15 public keys. Both 3FBFT and FBFT represent an improvement
over the PBFT baseline because they use FROST for creating a quorum certificate and produce
a single Schnorr signature, which can be verified with an ad-hoc Taproot output. Therefore, the
block solution size is 67 bytes, no matter the number of miners. Fig 4 also compares the three
algorithms in terms of latency for different sizes of the mining network, here in absence of load.
The experiments confirm that FBFT shows higher latency than PBFT, which is motivated by the
presence of additional rounds needed for the FROST signature aggregation. Moreover, 3FBFT

7Namely: eu-west-1 (Ireland), eu-central-1 (Frankfurt), eu-south-1 (Milan), eu-north-1 (Stockholm), eu-west-2
(London), eu-central-2 (Zurich), eu-south-2 (Spain), eu-west-3 (Paris). We assign a sequential identifier to each
node and determine the AWS region where to deploy it using the modulo function.

8https://www.cloudping.co/grid/p_50/timeframe/1Y

https://www.cloudping.co/grid/p_50/timeframe/1Y
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Figure 4: Solution size and average consensus latency achievable with naïve PBFT, FBFT, and 3FBFT.
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Figure 5: Evaluation of FBFT: throughput, time spent in its protocols, and consensus latency.

shows lower latency than FBFT in small mining networks, but its performances degrade very
quickly when the number of nodes is greater than 10. This is motivated by the calculation of
all possible combinations of a Byzantine quorum of signatures out of all the possible signers,
leading to a prohibitively high latency of 19.2 s with 16 nodes. With 22 mining nodes, FBFT
registers an average latency of 1.7 s in a setting spread across 8 AWS regions. This value of
consensus latency is largely below our requirement of a new block every 60 s.

Fig. 5a reports the maximum throughput achievable with FBFT across the AWS European



regions. The throughput is the number of blocks that could be produced by the mining network
per unit of time. It is slightly lower than the inverse of the consensus latency, because it
also takes into account the time for block propagation in the mining network. We configure
the experiments so that the network produces blocks as fast as possible (i.e., we “disable” the
calmness, forcing miners to recover a blockchain with a genesis block time in the past). As
expected, the throughput decreases as the mining network size increases. This is mainly due to
the quadratic communication complexity of FBFT, which builds on PBFT.

In Fig 5b we investigate the impact of incoming transactions on consensus latency. We
configure the mining network to generate a new block every minute in the steady state, during
which we evaluate the performances. However, since we set the genesis block timestamp 30
minutes in the past, there is a warm-up period in which the miners will try to mine the first 30
blocks at the highest rate achievable with the given network conditions. In order to generate
load for the mining network, we set up additional 8 participant nodes that submit transactions to
the mining network. The warm-up period described above allows the clients to fill their wallets
with a number of coins sufficient to generate a transaction load at the desired rate. The client
rate is set to target a given block size that we describe as 0%, 25%, 50%, 75%, 100% of maximum
block size (1.8MB). As Fig 5b shows, when the load increases, the consensus latency increases as
well. Indeed, the increase of the block size slows down the exchange of the pre-prepare message
by the primary, and the block validity check by backups. We experience that the impact of
transaction load is linear for all the mining network configurations. Nevertheless, even with
blocks at full load and 22 mining nodes, the maximum latency we experienced is around 13 s,
below our requirement to mine a block every 60 s.

To agree and sign the next block, FBFT uses different protocols: PBFT for consensus, FROST
for signature aggregation, and Bitcoin for block validation. Fig. 5c details the time spent in these
different stages, under different load conditions, with 16mining nodes. When the load is 0 KB/s,
FBFT closes empty blocks in 2170 ms: it spends 64% of time to complete the PBFT phases; 35.1%
of time to exchange and aggregate the signature shares, whereas the Bitcoin block validity and
submission checks take less than 1% of the time. If the load is at its maximum, then PBFT takes
65% of time, the signature aggregation takes 29%, and the block validity check takes 6% of time.

Finally, we evaluate the block latency in presence of failures. When the primary appears as
faulty, FBFT uses the view change protocol to elect a new primary and recovers from failure.
Fig. 5d shows the impact of failures in the worst-case scenario, where the primaries of subsequent
views fail consecutively, and multiple view changes are triggered before finding the agreement
on the next block. After 60 s, we forcefully terminate the primary of the mining network in the
initial view, and possibly up to two other primaries expected for the next views. We set the
initial view change timeout to 30 s for an expected block time of 60 s. Almost for every mining
network size, the consensus latency is strongly delayed by the view-change protocol, which
doubles subsequent timeouts with the number of subsequent views. It increases from less than
2 s to ≈ 30 s, with 1 failure, to ≈ 60 s, with 2 concurrent failures, to ≈ 120 s, with 3 concurrent
failures (123.7 s with 22 nodes). When the view change is completed, the consensus protocol
recovers the delayed blocks at the maximum throughput, and continues to mine with calmness
at a consensus latency that is less than 2 s.

Overall, it appears that FBFT can provide Byzantine fault tolerance, network confidentiality,
and efficient usage of block solution space, for just a reasonable increment in consensus latency.



6. Related work

There exist previous examples of Bitcoin-derived ledgers meant for private networks. In partic-
ular, Elements9, whose production deployment (the “Liquid” sidechain [19]) uses a consensus
algorithm within a permissioned mining network consisting of cryptocurrency businesses.
Elements is the closest work to ours in terms of technologies and Bitcoin reuse goals. How-
ever, to the best of our knowledge, no public specification for its BFT approach exists, and the
open-sourced components10 do not include its implementation.

The second largest DLT born public and then adapted to permissioned settings is
Ethereum [20]. An example of an Ethereum-like ledger designed for private networks is
Hyperledger Besu11, which supports a PoA consensus based on Istambul BFT [21]. Another
example is Concord12. This is possibly the closest work to ours, in spirit, but (i) it implements
SBFT [22] instead of PBFT as a consensus algorithm; (ii) it works with BLS signatures instead
of Schnorr signatures; and (iii) it has Ethereum instead of Bitcoin as a foundation.

There is a host of other relevant permissioned DLTs, whose main difference with respect to
our approach is the absence by design of any attempt to profit from existing code bases from
major public blockchains. E.g.: Hyperledger Fabric13 is a general-purpose DLT that enables the
development of enterprise applications, not necessarily financial. Among its components, there
is a BFT consensus module, but its development appears to have ceased14. Corda15 is a DLT
designed for the financial industry; it has a token-based data model, like Bitcoin, and a Turing-
complete programming language, like Ethereum. Its notaries can run either a crash fault-tolerant
(CFT) consensus or a BFT consensus. Neither the BFT specification nor its implementation is
available in the open-source repository and, apparently, no aggregated signature scheme is
included. Hyperledger Sawtooth16 allows deploying private DLT networks with a variety of
consensus algorithms, including PBFT. Sawtooth has an open source implementation17, with
an incomplete PBFT implementation and no Schnorr signature aggregation. Diem18 (formerly
Libra) implements a Turing-complete programming language designed for safe and verifiable
transaction-oriented computation. It employs a custom BFT algorithm called DiemBFT [23],
based on Hotstuff [24]. Hamilton [25] is a DLT designed to support payments in a permissioned
network (a use case similar to ours). It inherits certain elements from Bitcoin (e.g., UTXO and
cryptographic primitives). Relevant differences: its ledger is not a blockchain and is meant
to stay private; its consensus protocol is not BFT but CFT; its main focus is on obtaining

9https://blockstream.com/elements
10https://github.com/ElementsProject
11https://www.hyperledger.org/use/besu
12https://blogs.vmware.com/opensource/2018/08/28/meet-project-concord
13https://www.hyperledger.org/use/fabric
14https://github.com/bft-smart/fabric-orderingservice
15https://www.corda.net and https://github.com/corda
16https://www.hyperledger.org/use/sawtooth
17https://github.com/hyperledger/sawtooth-pbft
18https://developers.diem.com/docs/welcome-to-diem
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Table 1
Comparison of major permissioned distributed ledgers

Byzantine Confidential Distributed Schnorr Open
Fault Tolerance Quorum Certificate Ledger Technology Quorum Certificate Source

Elements Strong Federations [29] Unclear Bitcoin Unclear Partially
Hyperledger Besu IstanbulBFT[21] No Ethereum No Yes
Concord SBFT [22] Yes, BLS[30] Ethereum No Yes
Hyperledger Fabric No, Raft [31] No Fabric No Yes
Corda Unclear Unclear Corda Unclear Partially
Hyperledger Sawtooth PBFT [15] No Sawtooth No Yes
Diem DiemBFT[23] No Diem No Yes
Project Hamilton No, Raft [31] No Hamilton No Yes
Our solution FBFT Yes Bitcoin Yes, FROST [7] Yes

transactional scalability on-ledger. Table 1 summarizes the main differences between the major
permissioned ledgers.

We analyzed several BFT consensus algorithms (e.g., [22, 23, 24, 26, 27]), and we decided to
design our block creation process around PBFT [15]. PBFT sacrifices linear communication
(the number of exchanged messages is quadratic in the cluster size) in return for a simpler
implementation; however, our requirements call for the mining network to produce no more
than a block per minute, and our cluster is (by design) small enough to make the superlinear
communication complexity a minor drawback, whereas simplicity in the implementation helps
a lot the cohabitation with the Bitcoin platform. We implemented the BFT consensus algorithm
from scratch instead of relying on already existing blockchain implementations, such as Ten-
dermint [28], in order to maximize the reuse of and compatibility with the Bitcoin protocol,
including its consensus engine.

Finally, note how most BFT protocols use threshold BLS signatures (e.g., [22, 24]), which rely
on pairing-based cryptography. However, this may be challenging to implement in practice in
our platform, since BLS signatures are not supported in Bitcoin. Conversely, Schnorr signatures
received increased interest recently, and they have already been included in the Bitcoin protocol.
Komlo and Goldberg [7] propose FROST (see Sect. 3), which is currently considered the most
efficient scheme for generating threshold Schnorr signatures. Recently, Ruffing et al. [16] propose
ROAST, a wrapper protocol around FROST, that provides liveness guarantees in presence of
malicious nodes and asynchronous networks: Our FBFT protocol guarantees liveness like
ROAST, in a peer to peer network which aggregates signature shares even in the case of
Byzantine coordinator.

7. Conclusion

We presented and evaluated a Bitcoin-derived permissioned blockchain, where blocks are signed
by a federation of trusted actors and transactions enjoy deterministic finality. Using a variant of
PBFT, such a federation can correctly operate also in presence of limited Byzantine failures. Block
signatures are aggregated via FROST, which preserves the confidentiality of the mining network
configuration and quorum. As future work, we plan to evolve our architecture towards different
research directions: dynamic federations (which enable network reconfiguration), fairness
(which would prevent a Byzantine primary to censor transactions), privacy, and scalability.
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