
A Tale on Decentralizing an App: the Case of
Copyright Management
Andrea Vitaletti1, Marco Zecchini2,*

1Sapienza Università di Roma, Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Rome, Italy
2University of Salerno, Dipartimento di Ingegneria dell’Informazione ed Elettronica e Matematica Applicata, Fisciano,
Italy

Abstract
The Interested Party Information (IPI) system uniquely identifies the rights holders worldwide, making
it possible to know for each subject and at any time which rights are protected, by whom and for which
territories. Currently, this service is provided in a centralized way but, in 2021, Italian Society of Authors
and Editors (SIAE) deployed a blockchain-based solution to completely decentralize this database to
provide greater guarantees to the rights holders as well as to end users. With the development of the
blockchain technology hosting this solution, Algorand, we can design techniques that reduce some
trust assumptions of the solution developed by SIAE, enhancing at the same time its efficiency. In this
paper, we show decentralized protocols to issue new on-chain rights representation consistently with
the ledger’s previous blocks, in particular, avoiding or discouraging to represent twice the same right.
This makes rights holders autonomous in creating on-chain rights representations.

Keywords
Consistency Check, Blockchain Identity, Copyright Management, Decentralized Applications

1. Introduction

Creative operas express an intellectual work to which the law, like any other job, ensures
compensation, protecting the birth and life of such works. Copyright is the mean by which
creative works are protected and valued and its management is fundamental for the proper
compensation of the people creating operas, i.e., rights holders.

Centralized Copyright Management and the roles of Collective Management Orga-
nizations. Managing copyright and related rights individually may not always be realistic.
For instance, an author, performer, or producer cannot contact every radio station to negotiate
licenses and remuneration for the use of their songs. On the other side, it is not practical for
a radio station to seek specific permission from every rights holder for the use of each song.
A Collective Management Organization1 (CMO) facilitate rights clearance in the interest of
both parties and economic reward for rights holders. By authorizing or mandating professional

DLT 2023: 5th Distributed Ledger Technology Workshop, May 25-26, 2023, Bologna, Italy
*Corresponding author.
$ vitaletti@diag.uniroma1.it (A. Vitaletti); mzecchini@unisa.it (M. Zecchini)
� 0000-0003-1074-5068 (A. Vitaletti); 0000-0002-2280-9543 (M. Zecchini)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://www.wipo.int/copyright/en/management/.

mailto:vitaletti@diag.uniroma1.it
mailto:mzecchini@unisa.it
https://orcid.org/0000-0003-1074-5068
https://orcid.org/0000-0002-2280-9543
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.wipo.int/copyright/en/management/

CMOs to manage their rights, rights holders can simplify the management of those rights. The
main goals of a CMO are monitoring when, where, and what works are used and collecting the
fees from users and distributing these to the rights holders.

This has led to a centralized governance of copyright management and CMOs are the epicenter.
However, such a highly centralized architecture requires trust from end users. Indeed, rights
holders fully delegate CMOs without having the opportunity to verify the correctness of their
behavior. Furthermore, only a limited set of operators are involved in the royalties management
sector. This centralized governance allows CMOs and a few other stakeholders to have the
exclusive availability of valuable information that generates relevant revenues creating an
advantageous position for business investments with respect to the other stakeholders.

While it is absolutely clear the advantage of delegating to trusted third parties all the cum-
bersome physical activities related to the negotiation and the collection of fees, the delegation
should be transparent to provide the highest guarantee to all the involved parties and fos-
ter a competitive market. When transparency is a key requirement, there is no doubt that
public/permissionless blockchains provide a clear advantage.

An opportunity of decentralization. In the last years, we saw the rise of decentralized
applications. In these applications, unlike traditional applications, a set of peers agree on a
common system state through an algorithmic consensus instead of relying on trusted third
parties, thus providing unprecedented guarantees of transparency. The adoption of this kind of
application in copyright management can reduce the influence of CMOs acting as intermediaries
between end users.

Blockchain technologies are the enablers of such decentralized applications. Adopting
blockchain for royalties management is considered one of the most appealing use cases envi-
sioned for this technology2. We can imagine a future where while listening to a song on an
online player, a transaction on the blockchain is automatically triggered to remunerate almost
in real-time the rights holders in a suitable cryptocurrency. Thus, blockchain can replace CMO’s
job in the collection of revenues [1]. In addition, blockchain technology is completely transpar-
ent by design, creating a more dynamic and fair environment and providing new opportunities
for all copyright-related stakeholders.

While, in principle, we can envision the employment of decentralized technologies in all
the copyright management value-chain, a more realistic approach suggests we focus on key
components of such value-chain to prove the viability of the proposed approach. For this reason,
in this work, we will focus on the IPI database, which is in charge of recording the CMOs
delegated by right holders to handle some rights in specific territories (see Section 2 for further
details)

Identity Management and the need for a Trusted Party. On a blockchain, every user
is typically identified by a public cryptographic key univocally associated with a secret key.
The pair of cryptographic keys is created locally and randomly by each user, that, therefore,
can create as many on-chain identities as he/she wants (i.e., pseudo-anonymity). Although
verifying the correctness of a cryptographic signature guarantees the on-chain user identity

2https://consensys.net/blockchain-use-cases/

https://consensys.net/blockchain-use-cases/

(i.e., the user knows the secret key associated with the public key), it does not link an on-chain
identity to an entity in the physical world.

This problem affects many real use-case scenarios, including the one described in this paper.
Indeed, a rights holder can create many on-chain identities, but there is no guarantee that these
are associated with his/her real-world identity. For this reason, we need trusted entities, like
CMOs, certifying the association between the real-world identity and the digital one. Moreover,
in expectation of a fully digital economy based on tokens where all payments are transparent
and automatized, revenue collection in the physical world also requires trusted entities in charge
of this task. Observe that this introduces again the need of trusted third parties. However, we
do believe that in this scenario is acceptable to rely on a centralized entity to guarantee the
identity of a user, provided that the user is fully autonomous in managing his/her assets in a
fully decentralized way.

Note that CMOs can be natural certification authorities to guarantee the identity of the right
holders.

Towards a consistent on-chain rights management. In March 2021, the Italian Society of
Authors and Editors (SIAE), the Italian CMO, issued around 4 million digital tokens representing
the rights of the rights holders in one or more countries [2]. The purpose of SIAE was to
decentralize the ipi system3. The IPI system uniquely identifies the rights holders worldwide,
making it possible to know for each subject and at any time which rights are protected, by
whom and for which territories.

The goal of this prototype was to show on a blockchain how to represent the rights in one
or more countries and how rights holders can claim which CMOs is protecting their interest.
The rights are represented on-chain through Non-Fungible Token (NFT) and those who possess
on-chain the tokens represent the CMO in charge of protecting the interest related to the specific
rights. In a centralized solution, the trusted party in charge of maintaining the database creates
the right only if it does not lead the system to an inconsistent state (e.g., the right already
exists). In a decentralized platform, we need a strategy to interpret two or more on-chain
representations of the same right or deny their creation by design. From a general perspective,
a key question in this context is how to check that the information we wish to insert on-chain
is consistent with the previous blocks of the ledger. Note that this problem is related to the
double-spending one.

The first approach, developed by SIAE, accepts in the blockchain all the transactions, but
honest users, through a shared off-chain decoding technique (i.e., only the last record on-chain
is valid), discard those transactions that do not respect the common rules. However, such an
approach leads to a significant computational effort because it requires to always scan the entire
blockchain to reach the final and valid status of the system. Another approach adopts a set of
entities, defined as issuers, creating the tokens on the rights holder’s behalf, but this requires
trust assumptions similar to those of a centralized solution.

Smart contracts come to aid because they allow verifiable decentralized computations on
a blockchain. As a first approach, they can be developed to discourage bad behaviors of the
issuers through a penalization mechanism. Before issuing new tokens, an issuer transfers a

3https://www.ipisystem.org/

https://www.ipisystem.org/

cryptocurrency deposit to the smart contract as a guarantee of its good behavior. Indeed, if
caught in error (e.g., issuing twice the same right), he/she will lose the deposit. Other blockchain
users look for this type of inconsistency because they gain the issuer’s deposit if they detect one.
However, with such an approach, we do not deny by design the creation of illicit rights. Indeed,
smart contracts can be devised to verify on-chain by themselves if a right can be created. This can
be done by maintaining specific data structures (e.g., bit matrix) to keep track of created rights
in the blockchain. Unfortunately, smart contracts cannot address a large memory space and
cannot handle complex computations. [3] introduces the notion of computational effectiveness,
measuring the capacity of smart contracts to execute complex computations at reasonable costs.
In particular, SIAE’s tokens were issued on Algorand blockchain [4] whose smart contract
cannot compute complex tasks due to both limitations in the size of a transaction and in the
complexity of computations. In addition, Algorand smart contracts are more limited than other
blockchain technologies (e.g., Ethereum [5]) [3]. For these reasons, we want to explore a solution
where smart contracts verify the validity of proofs computed by users off-chain, proving their
legitimacy in creating a new right on-chain (e.g., if every right is represented as a leaf in a
Merkle Tree, the user would submit a Merkle trie proving that a specific leaf has an empty
value).

Contribution of the paper. In this paper, we first analyze the current implementation of a
decentralized version of the Interested Party Information (IPI) database. This solution has been
implemented in Algorand and has been significantly influenced by the continuous and rapid
evolution of such technology. It is sufficient to mention that at the beginning of the project,
Algorand only provided stateless smart contracts (i.e., the current smart signatures). The current
state of such technology allows us to envision interesting developments and to generalize the
problem. In view of such development, the solution proposed in the paper evolves towards the
design of a decentralized solution to make rights holders autonomous in issuing their rights
while still maintaining the system in a valid state and reducing or avoiding double-spending.

We have designed three protocols: a first approach optimistically accepts all created rights
as valid but allows users to destroy and penalize malicious users with economic penalizations
eventually; a second approach organizes the smart contract storage space as a matrix of created
rights to deny by design the creation of already created tokens; the last approach stores in the
smart contract a succinct representation (i.e., Merkle Tree) of the created rights. With this last
approach and a simple workaround on identity management (see Section 3.4 for more details),
we allow users to manage the entire set of creatable rights of the IPI database autonomously
and to do that consistently with already created ones.

Structure of the paper

The paper is structured as follows. In Section 2, we describe the solution developed by SIAE in
2021 and which are the trust assumptions for this approach. Motivated by such assumptions,
in Section 3, we describe the decentralized solutions to perform consistency checks on new
on-chain rights representation. Section 4 compares this work with related ones. Section 5
concludes the paper.

Heading Short description Cardinality Example

𝑏𝑎𝑠𝑒_𝑛𝑜
Interested Party (IP) base number,
unique identifier of a right holder

I-001068130-6 identifying the
rights holder

𝑛𝑎𝑚𝑒_𝑛𝑜
IP name number, additional
identifier of a rights holder

00334284961 identifying a
pseudonym of the rights holder

𝑛𝑎𝑚𝑒 IP name Rossi Mario
𝑐𝑚𝑜 Collecting Society ∼200 SIAE, SUISA
𝑐𝑐 Creation class 16 Musical Work, Dramatic work

𝑟𝑜 Role 34
Musical creator,
Book publisher

𝑟𝑖 Right 26
Performing right,
Re-transmission right,

𝑣𝑎𝑙𝑖𝑑_𝑓𝑟𝑜𝑚
The date from which the right
management is given to the collecting society

01.01.2017

𝑣𝑎𝑙𝑖𝑑_𝑡𝑜
The date until which the right
management is given to the collecting society

31.12.2017

𝑠ℎ𝑎𝑟𝑒
The percentage of right the CMO is in charged
to collect

100%, 75%, ...

𝑡𝑒𝑟𝑟
The territory in which the CMO is in charge
of the right management

220
Italy, France, Europe, North
America, World

Table 1
IPI main fields.

2. Modelling the IPI system

The Interested Party Information (IPI) System is an international information system containing
data about all rights holders used by CMOs4. The IPI system’s primary goal is to globally
identify a natural person or legal entity acting in various creation classes with some roles and
protected in some rights. This is important not only for the exchange of data between CMOs
but also for the worldwide exchange of information with third parties and user organizations
such as radio and TV stations.

The most relevant information in an IPI record is summarised in Table 1.
In the current centralized IPI System, the tuple ⟨𝑐𝑐, 𝑟𝑜, 𝑟𝑖⟩ identifies an artistic right of the

rights holder. Specifically, the tuple ⟨𝑐𝑐, 𝑟𝑜, 𝑟𝑖⟩ identifies a right (𝑟𝑖) relative to a category
of artistic works (𝑐𝑐) in which the rights holder has collaborated with a role (𝑟𝑜). The tu-
ple ⟨𝑛𝑎𝑚𝑒_𝑛𝑜, 𝑐𝑚𝑜, 𝑐𝑐, 𝑟𝑜, 𝑟𝑖, 𝑠ℎ𝑎𝑟𝑒, 𝑡𝑒𝑟𝑟, 𝑣𝑎𝑙𝑖𝑑_𝑓𝑟𝑜𝑚, 𝑣𝑎𝑙𝑖𝑑_𝑡𝑜⟩ represents an agreement
between the rights holder (𝑛𝑎𝑚𝑒_𝑛𝑜) and a copyright collecting society (𝑐𝑚𝑜) valid in the
interval of time [𝑣𝑎𝑙𝑖𝑑_𝑓𝑟𝑜𝑚, 𝑣𝑎𝑙𝑖𝑑_𝑡𝑜], and for the territory 𝑡𝑒𝑟𝑟. Essentially, these fields
mean that, in the interval of time from 𝑣𝑎𝑙𝑖𝑑_𝑓𝑟𝑜𝑚 to 𝑣𝑎𝑙𝑖𝑑_𝑡𝑜 and for the territory 𝑡𝑒𝑟𝑟, the
𝑛𝑎𝑚𝑒_𝑛𝑜 has assigned to the collecting society 𝑐𝑚𝑜 a percentage 𝑠ℎ𝑎𝑟𝑒 of the management of
his/her artistic right ⟨𝑐𝑐, 𝑟𝑜, 𝑟𝑖⟩.

A rights holder is associated with only one IP base number and with one or more IP name
number values (each IP Name has its own IP name number value).

Some fields of an IPI record are categorical and finite (such as 𝑐𝑐, 𝑟𝑜, 𝑟𝑖, 𝑐𝑚𝑜, 𝑡𝑒𝑟𝑟). Table 1
indicates the cardinality of those fields.

4Those that belong to International Confederation of Societies of Authors and Composers (CISAC)

https://www.cisac.org/

2.1. Current blockchain-based IPI system solution

In March 2021, SIAE deployed a first solution to represent the IPI system on a blockchain [2].
The goal of this solution was to represent on-chain rights and agreements according to the
definition described in this section. We will refer to the approach used by SIAE as the reference
solution.

This solution represents an artistic right for a specific territory (i.e., the tuple ⟨𝑐𝑐, 𝑟𝑜, 𝑟𝑖, 𝑡𝑒𝑟𝑟⟩)
as a single digital token. Since rights are not tradable objects, these tokens must be represented as
Non-Fungible Token (NFT). Each right must be protected by a CMO, formalized in an agreement
between the parties. To implement the stipulation of an agreement, a rights holder transfers the
property of the NFT to the target CMO. Therefore, the entity that possesses on-chain the NFT
is in charge of protecting the specific user right in the real world. The user, however, should
always be able to take the NFT back from the CMO in some specific scenario (for instance,
to make an agreement with another CMO) while, on the other hand, a CMO should give its
consent in the agreement.

The reference solution requires that the adopted blockchain supports the possibility of
managing NFT for representing an artistic right for a specific territory. Since all the operation
of creations (and, eventually, update/delete) must be agreed upon by multiple parties, namely
the rights holder and a CMO, it requires that the adopted blockchain supports multisignature
accounts. These accounts need the cryptographic signature of multiple standalone accounts to
publish new transactions on the blockchain.

SIAE deployed its prototype on the Algorand mainnet [2]. Algorand was chosen as blockchain
technology for deployment because it offers the above-mentioned features and it is currently
considered one of the top performers in terms of scalability. Its inter-block time is very short:
about 5 seconds and its consensus algorithm can confirm up to 1000 transactions per second [6].
This aspect will ensure good system performance if the network load increases if many rights
holders adopt it or other functionalities are developed on top of IPI system.

In Algorand, the digital tokens are called Algorand Standard Asset (ASA). ASAs are composed
of immutable fields (such as Creator, AssetName, UnitName, Total, Decimals, DefaultFrozen,
URL, MetaDataHash) and mutable fields (such as Manager address, Reserve address, Freeze
address and Clawback address). The information about the artistic right and the territory are
stored in the parameters of the Algorand Standard Asset (ASA). The ⟨𝑐𝑐, 𝑟𝑜, 𝑟𝑖, 𝑡𝑒𝑟𝑟⟩ values are
stored in the ASA immutable fields, while the 𝑣𝑎𝑙𝑖𝑑_𝑓𝑟𝑜𝑚 and 𝑣𝑎𝑙𝑖𝑑_𝑡𝑜 values can be implicitly
determined by the timestamp of the ASA asset transfer transactions. The percentage of the
𝑠ℎ𝑎𝑟𝑒 is determined thanks to total supply (equal to 100) and decimals (equal to 2) parameters.
Total supply and decimals, used together, allow the rights holder to be free to assign any portion
of the 100.00% of the 𝑠ℎ𝑎𝑟𝑒 to the 𝑐𝑚𝑜1, another portion to another society 𝑐𝑚𝑜2, avoiding, at
the same time, the double-spending of the share. In this solution, the Metadata Hash field of
every ASA stores the hash value of the IP private anagraphic data to verify such data’s integrity
later.

In this first approach, asset creation is (at least partially) centralized, while its management
is decentralized. The asset is created by an issuer and a rights holder 2-of-2 multisignature
account, which is the initial asset owner. We can have multiple issuers working independently
(but consistently) from each other. These issuers are responsible for creating well-formed ASAs.

In an ASA, a clawback address specifies an account able to transfer a token it does not possess.
In the reference solution, the clawback address corresponds to the rights holder blockchain
address (i.e., the hash of its public key). In this way, at whatever moment, the rights holder can
“take the control back” of the ASA and assign it to any other account. The structure of a right
represented as an ASA is depicted in Figure 1.

NFT Right ASA

General Properties

ASA Management

CREATOR = ISSUER + RH
ASSET NAME = IPI_NUM;NAME

TOTAL SUPPLY = 10000
DECIMALS = 2

UNIT NAME = GloC-Net
ASSET ID

MANAGER ADDRESS: ISSUER + RH MULTISIGNATURE ACCOUNT
RESERVE ADDRESS: ISSUER + RH MULTISIGNATURE ACCOUNT
FREEZE ADDRESS: ISSUER + RH MULTISIGNATURE ACCOUNT
CLAWBACK ADDRESS: RH STANDALONE ACCOUNT

Default Frozen
No

Meta Data Hash
Hash(anagraphic_information)

URL
CC;RO;RI;TERR

Figure 1: Structure of non-fungible ASA used in the reference solution.

Rights creation and management lifecycle. The reference solution involves three distinct
categories of users: issuer(s), rights holders, and CMOs.

COPYRIGHT SOCIETY A

AUTHOR + COPYRIGHT
SOCIETY A

MULTISIG ACCOUNT
[2/2]

COPYRIGHT SOCIETY B ..
.

AUTHOR + COPYRIGHT
SOCIETY B

MULTISIG
ACCOUNT [2/2]

AUTHOR + ...

MULTISIG
ACCOUNT [2/2]

ISSUER
+ AUTHOR

MULTISIG
ACCOUNT [2/2]

AUTHOR

Figure 2: Roles and Architecture of the reference solution

The proposed approach works as follows, illustrated in Figure 2:

1. When the rights holder 𝑟ℎ needs to assign the management of one of its rights, it first
requests the issuer 𝑖 to generate the corresponding new ASA with given ⟨𝑐𝑐, 𝑟𝑜, 𝑟𝑖, 𝑡𝑒𝑟𝑟⟩

2. The multisignature associated with the 𝑖 and 𝑟ℎ creates the ASA.

3. The rights holder claws back the ownership of the ASA and transfer it to another mul-
tisignature account associated with collecting society 𝑐𝑚𝑜1 and 𝑟ℎ. This corresponds to
assigning the management of the artistic rights associated with the ASA to the 𝑐𝑚𝑜1,
stipulating an agreement valid from the clawback transaction timestamp. Before receiving
the ASA, the multisignature account, associated with 𝑐𝑚𝑜1 and 𝑟ℎ, has to opt-in to the
asset, enabling its account to receive that token.

4. When the rights holder decides to re-assign the management of the artistic right to a
different society (𝑐𝑚𝑜2), it claws back again the ownership of the ASA and transfers it to
a 𝑐𝑚𝑜2 and 𝑟ℎ multisignature account. The values of the 𝑣𝑎𝑙𝑖𝑑_𝑡𝑜 field of the previous
agreement and the 𝑣𝑎𝑙𝑖𝑑_𝑓𝑟𝑜𝑚 field of the new agreement are equal to the clawback
transaction timestamp.

The multisignature accounts require 2 out of 2 signatures by each party composing it. This
means that both parties must agree upon every transaction issued by the account (and, therefore,
every on-chain activity). This prevents a single malicious party poisons the application with
fake or duplicated data in new ASAs and prevents CMOs from opt-in ASAs they don’t want to
receive. Indeed, any attack requires both parties to collude.

The role of the issuer. The issuers are one or more entities in charge of maintaining the
system’s state valid. Their main goal is to issue new well-formed ASAs representing new rights.
Moreover, an issuer can handle additional tasks. For instance, it can avoid double-spending on
rights, checking, before issuing a new ASA, whether the ASA relative to an artistic right for
that rights holder already exists in the system.

Depending on the governance requirements, an issuer can be managed:

1. by a single account;

2. by a multisignature account jointly managed by multiple accounts;

3. by a smart contract.

Limitations of the reference solution. In the reference solution, CMOs act as trusted issuers
since they are already trusted in the centralized solution. A trusted issuer verifies off-chain that
ASAs are well-formed and, ultimately, issues the new ASA representing the artistic right.

This solution does not prevent by-design the creation of multiple ASAs on-chain. CMOs are
also trusted to issue new ASA if another representation of the same right does not already exist
on-chain. If, by mistake, multiple ASAs appear on the blockchain representing the same right,
the reference solution proposes considering the last ASA inserted on-chain as valid. All the
previous ASAs are filtered out off-chain when reading from the blockchain as well as all the
operations related to them.

3. Decentralize Solutions for Consistency Check

In the reference solution, we accept in the blockchain all the transactions. Through an off-chain
decoding technique shared between honest users (i.e., only the last record on-chain is valid), we
discard those transactions that do not respect the common rules. This requires a continuous
audit of the blockchain or, if a peer disconnects for some time, scanning all the blocks of the
ledger and executing consistency checks to discard invalid transactions. Executing these checks
requires maintaining off-chain the entire state of the system and looking it up might represent
a significant computational overhead if many users adopt it. Using a smart contract, encoding
on-chain which assets are consistent with previous blocks of the ledger and filtering invalid
transactions by design, reduces the computational and memory overhead for users.

With this motivation, this section describes some techniques to perform on a smart contract
this type of verification. Note that since the rights were deployed on the Algorand mainnet,
we will consider smart contracts with constrained resources in terms of computational power
and input transaction parameters. Other platforms enabling smart contracts development (e.g.,
Ethereum [5]) would, however, benefit from such an approach because this decreases the amount
of on-chain computation, reducing transaction fees.

We can distinguish between two types of techniques:

• Optimistic approach, where we do not prevent illicit asset creations but discourage them,
thus, reducing them.

• Preventive approach, where we deny by design the creation of illicit assets.

3.1. Solutions Requirements

Before describing decentralized solutions to realize consistency checks on smart contracts, we
need to analyze how to identify rights holders in the system and which are the bounds of
Algorand smart contracts.

Identifying rights holder. In the IPI system, users are unequivocally identified with the
primary key 𝑏𝑎𝑠𝑒_𝑛𝑜. The system centrally assigns this identifier. Let us suppose that a user
on the blockchain has multiple identifiers (i.e., cryptographic key pairs) that uses to issue
his/her rights. If there is no information on-chain to verify that these identities are linked, all
consistency checks on the past blocks of the ledger will become ineffective.

Therefore, our analysis assumes that every user has only one identity on-chain and, eventually,
linked identities declared on-chain. This requires the involvement of a trusted third party to
associate the public keys to rights holders’ identities in the real world. In this way, we have a
centralized identity creation (i.e., the association between the public key and the rights holder’s
identity), but its management is decentralized (i.e., the user autonomously creates consistent
assets with the past blocks of the ledger representing rights).

Algorand Smart Contract constraints. There are two types of Algorand Smart Con-
tracts [6]:

• Stateful smart contracts which are designed to memorize arbitrary state variables accord-
ing to the logic defined in the contract,

• Stateless smart contracts which consent to add to the blockchain only those transactions
that respect the logic defined in the contract. In other words, they act as “filters” to the
transactions that can be added on-chain.

In Algorand, each computation performed on a smart contract has a cost. The simplest
operations, such as the arithmetic and the logical ones, have unitary costs. However, there are
other computations, such as cryptographic ones, that have higher costs varying from some
decades (e.g., sha256 costs 35) to thousands (e.g., ED25519 digital signature verification) of
computation units [7]. On a Stateful contract, we can execute at most 700 computations, while
on a Stateless contract, we can execute at most 20000 computations. Transactions invoking the
contract can have a maximum size of 2KB in the case of a stateful contract and of 1000 bytes in
the case of a stateless contract [6].

To exploit these instruments at the best, it is possible to invoke these two types of smart
contracts simultaneously with a group of atomic transactions. Indeed, in Algorand, it is possible
to create groups of atomic transactions that either commit all together or all abort if only one
of those is invalid [6]. With this technique, we can combine these two types of smart contracts.

Stateful smart contracts memorize arbitrary state variables. The storage space is organized
as a key-value map. However, their storage space is not unbounded. Indeed, a smart contract
can store at most 64 key-value pairs if this represents a global state of the smart contract (i.e.,
global variables) and 16 key-value pairs per each user “subscribing” the smart contract (i.e.,
local variables). Each key-value pair is bounded to 128 bytes (see more details here [6]).

3.2. Optimistic approach

In this approach, any inserted information is assumed to be valid, but all the users can indepen-
dently check the consistency of such information with the previous history of the ledger. If
an inconsistency is detected, users can provide the pointer to the two pieces of inconsistent
information to a smart contract that can invalidate one of the two according to a specific
policy (e.g., delete the newest one). Moreover, we can penalize those issuers who have created
inconsistent information through economic fees. Also, in this case, we do not prevent invalid
transactions, but these are discouraged due to the ability of any user to invalidate them. We
define this approach as optimistic because the system will eventually tend to a valid state.

For the sake of concreteness, let us analyze a concrete example with the support of Figure 3.
A user 𝑢1 wants to act as an issuer in the system, either on behalf of itself or for some other user.
Before issuing assets, it has to (step 1) transfer an economic deposit to a smart contract that can
be used to penalize it for an eventual malicious behavior. The smart contract (step 2) answers by
issuing to 𝑢1 a token, enabling it to create assets. Then, 𝑢1 creates two assets 𝑎1 and 𝑎2 (steps 3
and 4), representing the same right for the same set of territories ⟨𝑐𝑐, 𝑟𝑜, 𝑟𝑖, 𝑡𝑒𝑟𝑟⟩ for the same
user. Referring to Figure 1, this means that 𝑎1 and 𝑎2 corresponding URL and clawback address
fields of the token. Since 𝑎2 has been created later, double spends the right and the order among
the two assets is given by the asset id field, which is a unique counter in the blockchain.

Issuer
u1

SC

Verifier
u2

(1) Deposit

(2) Issuer TOKEN

A1

(3)

A2

(4)

(5) Pointer to A1 and A2

(6) Establish
Inconsistency

(7) Delete A2

(8) Issuer's Deposit

Figure 3: Steps of the optimistic approach

Suppose another user 𝑢2 is auditing the blockchain to eventually detect inconsistencies. It
notices 𝑎1 and 𝑎2 and that 𝑎2 is an invalid asset. Therefore, (step 5) 𝑢2 sends a transaction to the
smart contract with two pointers to 𝑎1 and 𝑎2. The smart contract establishes (step 6) that those
are inconsistent by 1) verifying that URL and clawback fields correspond and by 2) verifying
that 𝑎1 asset id is lower than 𝑎2 one. If the verification succeeds, it will (step 7) burn 𝑎2 and
(step 8) transfer 𝑢1’s deposit to 𝑢2.

3.3. Preventive approach

In this approach, only a smart contract is enabled to add new information to the blockchain.
The users send transactions to the smart contract, “asking” it to add this new information. If
the requested information is consistent with the past blocks of the ledger, the smart contract
adds it. Otherwise, it denies its addition. In other words, a smart contract will add new assets
representing user rights if and only if these are not already present in the blockchain.

The smart contract stores a succinct representation of the state of the ledger. The state
represents the issued ASAs of the rights on-chain. If a user wants to create a new rights
representation on-chain, he/she provides to the smart contract a proof, computed off-chain,
proving that that right is not comprised in the state.

The smart contract can index storage space of different dimensions depending on the tech-
nique adopted to represent the state succinctly. In this section, we evaluate several of these
techniques. In other words, this means that, with some solutions, we can check the consistency
of a higher number of combinations of rights with respect to others. However, the higher the
indexed space by a smart contract, the higher the number of computations might be, making
some less powerful solutions more convenient in some cases.

The same flow of actions is performed for all these techniques. Indeed, user 𝑢1, willing to
act as an issuer, sends proof that the asset 𝑎1 it wants to create is not registered in the contract
state. If the proof is valid, the smart contract updates its state, and, finally, it issues 𝑎1. If 𝑢1
tries to create 𝑎1 again, it will not be able to provide valid proof of the contract.

SC

LocalStorage RHpk

A11 A12 A13

A21 A22 A23

A31 A32 A33

Figure 4: BitMatrix representation of personal assets. SC indicates the stateful smart contract.

3.3.1. BitMatrix solution.

The simplest solution represents the application state registered on the ledger as a matrix
and stores it in the smart contract. Every element of the matrix 𝐴𝑖𝑗 represents a possible
combination of 𝑐𝑐, 𝑟𝑜, 𝑟𝑖 and 𝑡𝑒𝑟𝑟 and it has a boolean value. If true, a right has already been
created; otherwise, its value is false. When a user wants to create a new asset, the smart contract
verifies in the matrix whether the cell 𝐴𝑖𝑗 corresponding to the combination of 𝑐𝑐, 𝑟𝑜, 𝑟𝑖 and
𝑡𝑒𝑟𝑟 has a value of 0. If so, the smart contract toggles 𝐴𝑖𝑗 value to 1 and creates an asset equal
to the one of Figure 1. Note that, in this approach, the smart contract verifies by itself that the
rights have not already been created without any proof computed off-chain by the user.

To enhance the storage space available in Algorand smart contract, we use a type of memory
defined as “local”. Every user has its local storage allowing the smart contract to scale with
an increasing number of subscribing users. We recall that the local storage can host 16 local
variables, each 128 bytes long and structured as key/value [6]. At least 1 byte must belong to
the key and the value. Hence, if we use 1 bit for each cell of the matrix, the maximum number
of addressable computations is 16× 127× 8 = 16256. The number of computations to update
or verify the matrix is constant.

3.3.2. Merkle Tree solution.

The BitMatrix solution needs a few on-chain computations but does not build or verify an
elaborate succinct representation of the state. Indeed, the state is represented in its totality,
directly saving a matrix and keeping count of the created rights in the storage space. However,
storage space on-chain is limited. In this solution, we aim to represent a bigger matrix of created
rights with a succinct representation of it in the smart contract. To achieve this goal, we perform
more computation on-chain to verify a proof computed off-chain by users.

In particular, we memorize in the local variables of a user more root hashes of more Merkle

A11 A12 A13

A21 A22 A23

A31 A32 A33

root1

Matrix

SC

 H11121321

H1321

H21

A21

H13

H1112

H2223313233

LocalStorage RHpk

key1: root1, root2, root3
key2: root4, root5, root6

Figure 5: Merkle Tree representation of personal assets. SC indicates both the stateful and the stateless
contracts combined.

trees. The leaves of these trees represent a combination of 𝑐𝑐, 𝑟𝑜, 𝑟𝑖 and 𝑡𝑒𝑟𝑟. To update its
state, the rights holder must provide the smart contract a proof that the leaf corresponding to
the requested asset is set to a 0. If the proof is correct, the smart contract toggles the leaf to 1,
computes the new root hash, stores it in a local variable and issues the new ASA.

The depth of the tree is bound by the smart contract constraints discussed in Subsection 3.1.
In particular, this solution combines a stateful and a stateless smart contract to cooperate in
the verification. The stateless smart contract verifies the proof’s correctness and the stateful
smart contract verifies that the root hash passed in the proof is stored in its storage space (in
particular, in the local storage of the user).

One constraint of this approach is the transaction size invoking the stateless smart contract.
It corresponds to 1000 bytes and it carries the Merkle proof. The maximum number of verifiable
nodes is 1000× 8/256 ≃ 30. Since for each level of the proof, we need 2 nodes, the maximum
number of addressable nodes is 215. Since each root hash is 32 bytes long, we can store at most
3 root hashes in each local variable and verify 3× 16× 215 ≃ 1.57 million assets.

3.4. Discussion

Solutions comparison. Table 2 summarizes the pros and cons of every solution to draw the
final results of this paper. In general, all the solutions do not appear difficult to implement in
practice. The Merkle Tree solution requires a moderate effort to be implemented. The reference
solution has no mechanism to look for inconsistencies in the ledger but it relies on off-chain
encoding techniques. If discouraging double spending is secure enough to represent tokens
that must be consistent with each other, we suggest an optimistic solution. If we do not need to
represent a large set of tokens but we want to deny double spending, we can use the BitMatrix

Reference
Solution

Optimistic
Solution

BitMatrix
Solution

MerkleTree
Solution

+ easy to implement + easy to implement + easy to implement - moderate to implement

- no on-chain lookup to
the state of the system

+ efficient on-chain lookup
to the state of the system
(single transaction)

+ efficient on-chain lookup
to the state of the system
(single transaction)

+ efficient on-chain lookup
to the state of the system
(constant number of
transactions)

- no double-spending prevention
by design

+ double-spending prevention
by design

+ double-spending prevention
by design

- limited storage space
(∼16k elements)

+ larger storage space
(∼1.5M elements)
- Not unbounded storage space

Table 2
Comparison among different solutions explored in the paper. “+” denotes pros of the solutions and “-”
denotes cons.

solution because it is simpler to implement than the Merkle Tree one. Finally, the Merkle Tree
solution allows the management of a more extensive set of tokens.

In our use case scenario, we handle a large set of right on-chain representations and, since,
in the future, a large number of economic transactions might rely on this information, we aim
to design a system that ensures the highest degree of security. For this reason, Merkle Tree is
the solution that fits better for our scope.

Representation of the entire set of rights. In our use case scenario, the possible combina-
tions of 𝑐𝑐, 𝑟𝑜, 𝑟𝑖 and 𝑡𝑒𝑟𝑟 is 16× 34× 26× 220 = 3111680. The solutions proposed in this
section do not verify all the combinations required in our use case.

We can adopt a simple workaround to increase the addressable space for rights holders.
In particular, every rights holder starts managing a primary identity 𝑃𝑘𝑝𝑟, associated with
its real-world identity, controlling more derived identities. Each derived identity refers to a
creation class. Thus, we indicate the derived identities with 𝑃𝑘𝑐𝑐1 , 𝑃𝑘𝑐𝑐2 , ..., 𝑃𝑘𝑐𝑐16 . Each
derived identity must be uniquely associated with only one primary identity. In this way, for
every 𝑐𝑐 the possible combinations of 𝑟𝑜, 𝑟𝑖 and 𝑡𝑒𝑟𝑟 are 34× 26× 220 = 194480. Hence, the
Merkle Tree solution is sufficient to verify all the combinations.

Every time 𝑃𝑘𝑝𝑟 invokes the smart contract 𝑆𝐶 to create a new ASA, the contract verifies
that:

1. 𝑃𝑘𝑐𝑐𝑖 is associated only with the tuple (𝑃𝑘𝑝𝑟, 𝑐𝑐𝑖),

2. The element in matrix of 𝑃𝑘𝑐𝑐𝑖 corresponding to the specified ⟨𝑟𝑜, 𝑟𝑖, 𝑡𝑒𝑟𝑟⟩ tuple is set
to 0.

Property (2) is guaranteed as described in the previous subsections. To enforce 𝑃𝑘𝑐𝑐𝑖 to be
associated only with one tuple (𝑃𝑘𝑝𝑟, 𝑐𝑐𝑖) (property (1)), 𝑆𝐶 verifies that 𝑃𝑘𝑐𝑐𝑖 ’s local variables
in another smart contract 𝑆𝐶𝑖𝑑 are exactly (𝑃𝑘𝑝𝑟, 𝑐𝑐𝑖). 𝑆𝐶𝑖𝑑’s main goal is to maintain unique
associations between every 𝑃𝑘𝑝𝑟 and all its derived identities. A derived identity can “subscribe”
(i.e., opt-in [6]) 𝑆𝐶𝑖𝑑 only once, it cannot edit its state and it cannot “unsubscribe” (i.e., close-
out [6]) 𝑆𝐶𝑖𝑑. To handle fewer secret keys, which can represent a security issue if one of those

gets lost or compromised, 𝑃𝑘𝑐𝑐𝑖 , can authorize 𝑃𝑘𝑝𝑟 the send transactions on its behalf. This
mechanism on Algorand is called Rekeying [6].

4. Related Work

Copyright management on the blockchain is studied in the literature from various perspectives.
Audius [8] is a decentralized music streaming platform that allows anyone to publish and

listen to music without paying subscription fees. Each creator can manage its revenues inde-
pendently, unlike centralized systems. AUDIO, an ERC-20 token [9] that is also exchangeable
on other blockchains (e.g., Solana [10]), powers the token economy, the transactions are held
on Solana [10] and files corresponding to operas are hosted on IPFS [11]. Also, several other
studies [12][13] describe how to design distributed streaming platforms based on blockchain.
Fighting piracy using watermarks and verifying them with the information in the blockchain is
the purpose of other approaches, such as [14][15]. Our study is based on the approach devised
by SIAE, a relevant actor in the centralized solution, that wants to provide all the ingredients to
support the transition from the centralized to a decentralized architecture without overturning
the current system. This requires storing on-chain the information about artistic rights and
agreements of rights holders with CMOs.

In general, smart contracts filter out the transactions that lead an application to an invalid
state. In our case study, we filter out those transactions that double spend rights or create not
well-formed tokens. Therefore, we implement consistency checks on-chain for our application
domain. This type of inspection is present in the literature for different use cases. [16] describes
a blockchain-based system for managing the land registry in India. Real estates are stored as
assets within the blockchain; however, consistency verification with the rest of the system
is provided by a centralized entity. Zakhary et al. [17] propose a global asset management
system that unifies permissionless and permissioned blockchains. In the proposed system,
a governmental permissioned blockchain authenticates the registration of end-user assets
through smart contract deployments on a permissionless blockchain. Our approach removes
any centralization point when we want to manage a finite set of digital assets not linked to
assets in the physical world.

5. Conclusion and future works

In many application contexts, we need to guarantee that information inserted on-chain is
consistent with the previous history of the ledger. The usual approach to handle this problem is
to consider valid only the last record inserted or to trust a third party to perform the validation.
In this paper, we have investigated how to verify consistency in a decentralized way, through
on-chain smart contract computation.

We have shown how this problem affects real-world use cases, such as copyright management,
particularly focusing on a first implementation sponsored by SIAE on Algorand mainnet.
However, the described decentralized solutions for addressing this problem can check the
existence of a limited number of identity attributes. Not controlling a very large set of assets
may represent a limit in the adoption of such techniques. Indeed, it may not always be possible

to find a workaround as we did in this paper. As a future work, we want to investigate further
techniques, suitable for constraint contracts such as Algorand ones, to index a larger addressable
space (around 232 or 264) of elements. Furthermore, we plan to implement the analyzed solutions
to verify consistency on-chain to evaluate their performances in terms of transaction fees and
network latency.

References

[1] K. Ito, M. O’Dair, A Critical Examination of the Application of Blockchain Technology
to Intellectual Property Management, in: Business Transformation through Blockchain:
Volume II, Palgrave Macmillan, Cham, Switzerland, 2018, pp. 317–335. doi:10.1007/
978-3-319-99058-3_12.

[2] SIAE, Italy’s largest collective management organisation, represents au-
thors’ rights as digital assets managed on the Algorand blockchain,
2023. https://www.algorand.com/resources/ecosystem-announcements/
siae-launches-4-million-nfts-on-algorand-for-creators [Online; accessed 26. Jan.
2023].

[3] F. Mogavero, I. Visconti, A. Vitaletti, M. Zecchini, The blockchain quadrilemma: When
also computational effectiveness matters, in: 2021 IEEE Symposium on Computers and
Communications (ISCC), 2021, pp. 1–6. doi:10.1109/ISCC53001.2021.9631511.

[4] Y. Gilad, et al., Algorand: Scaling Byzantine Agreements for Cryptocurrencies, in:
Proceedings of SOSP ’17, 2017.

[5] G. Wood, et al., Ethereum: A secure decentralised generalised transaction ledger, Ethereum
project yellow paper 151 (2014) 1–32.

[6] Algorand Developer Docs - Algorand Developer Portal, 2023. https://developer.algorand.
org/docs [Online; accessed 13. Feb. 2023].

[7] Algorand, Operational Cost of TEAL Opcodes, 2021. URL: https://developer.algorand.org/
docs/features/asc1/teal/#dynamic-operational-cost-of-teal-opcodes.

[8] Audius - Empowering Creators, 2023. https://audius.co [Online; accessed 28. Feb. 2023].
[9] M. Shirole, M. Darisi, S. Bhirud, Cryptocurrency Token: An Overview, in: IC-BCT 2019,

Springer, Singapore, 2020, pp. 133–140. doi:10.1007/978-981-15-4542-9_12.
[10] A. Yakovenko, Solana: A new architecture for a high performance blockchain v0. 8.13,

Whitepaper (2018).
[11] J. Benet, IPFS - Content Addressed, Versioned, P2P File System, arXiv (2014). doi:10.

48550/arXiv.1407.3561. arXiv:1407.3561.
[12] Y. Zeng, Digital music resource copyright management mechanism based on blockchain, in:

2020 3rd International Conference on Smart BlockChain (SmartBlock), 2020, pp. 158–162.
doi:10.1109/SmartBlock52591.2020.00036.

[13] A. Kim, M. Kim, A study on blockchain-based music distribution framework: Focusing on
copyright protection, in: 2020 International Conference on Information and Communi-
cation Technology Convergence (ICTC), 2020, pp. 1921–1925. doi:10.1109/ICTC49870.
2020.9289184.

[14] W. Peng, L. Yi, L. Fang, D. XinHua, C. Ping, Secure and traceable copyright manage-

http://dx.doi.org/10.1007/978-3-319-99058-3_12
http://dx.doi.org/10.1007/978-3-319-99058-3_12
https://www.algorand.com/resources/ecosystem-announcements/siae-launches-4-million-nfts-on-algorand-for-creators
https://www.algorand.com/resources/ecosystem-announcements/siae-launches-4-million-nfts-on-algorand-for-creators
http://dx.doi.org/10.1109/ISCC53001.2021.9631511
https://developer.algorand.org/docs
https://developer.algorand.org/docs
https://developer.algorand.org/docs/features/asc1/teal/#dynamic-operational-cost-of-teal-opcodes
https://developer.algorand.org/docs/features/asc1/teal/#dynamic-operational-cost-of-teal-opcodes
https://audius.co
http://dx.doi.org/10.1007/978-981-15-4542-9_12
http://dx.doi.org/10.48550/arXiv.1407.3561
http://dx.doi.org/10.48550/arXiv.1407.3561
http://arxiv.org/abs/1407.3561
http://dx.doi.org/10.1109/SmartBlock52591.2020.00036
http://dx.doi.org/10.1109/ICTC49870.2020.9289184
http://dx.doi.org/10.1109/ICTC49870.2020.9289184

ment system based on blockchain, in: 2019 IEEE 5th International Conference on Com-
puter and Communications (ICCC), 2019, pp. 1243–1247. doi:10.1109/ICCC47050.2019.
9064101.

[15] Z. Meng, T. Morizumi, S. Miyata, H. Kinoshita, Design scheme of copyright manage-
ment system based on digital watermarking and blockchain, in: 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC), volume 2, IEEE, 2018, pp.
359–364.

[16] N. Gupta, M. L. Das, S. Nandi, Landledger: Blockchain-powered land property administra-
tion system, in: 2019 IEEE International Conference on Advanced Networks and Telecom-
munications Systems (ANTS), 2019, pp. 1–6. doi:10.1109/ANTS47819.2019.9118125.

[17] V. Zakhary, M. J. Amiri, S. Maiyya, D. Agrawal, A. E. Abbadi, Towards Global Asset
Management in Blockchain Systems, arXiv (2019). doi:10.48550/arXiv.1905.09359.
arXiv:1905.09359.

http://dx.doi.org/10.1109/ICCC47050.2019.9064101
http://dx.doi.org/10.1109/ICCC47050.2019.9064101
http://dx.doi.org/10.1109/ANTS47819.2019.9118125
http://dx.doi.org/10.48550/arXiv.1905.09359
http://arxiv.org/abs/1905.09359

	1 Introduction
	2 Modelling the IPI system
	2.1 Current blockchain-based IPI system solution

	3 Decentralize Solutions for Consistency Check
	3.1 Solutions Requirements
	3.2 Optimistic approach
	3.3 Preventive approach
	3.3.1 BitMatrix solution.
	3.3.2 Merkle Tree solution.

	3.4 Discussion

	4 Related Work
	5 Conclusion and future works

