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Abstract
The Proof-of-Stake (PoS) consensus algorithm has been criticized, in the literature and in several cryp-
tocurrencies communities, due to the so-called compounding effect: who is richer has more tokens to put
in stake, hence higher probability of being selected as a block validator and obtain the corresponding
rewards, thus becoming even richer. In this paper we present a PoS simulator written in the R language,
that allows to tweak several parameters of the consensus algorithm and observe how the distribution of
tokens among the users evolves over time. This tool can be used to investigate which combinations of
parameter values allow to obtain a “fair” consensus algorithm, in which no one gets richer or poorer by
the mere act of validating blocks.
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1. Introduction

The advent of Bitcoin [1] has given rise to an increasing interest in blockchains and distributed
ledger technologies (DLTs), attracting many scientists, programmers, and business investors.
Since then, many types of blockchains and DLTs have been proposed, both permissionless and
permissioned, based on several types of consensus algorithms, among which we can find Proof-
of-Work (PoW), Proof-of-Stake (PoS), Delegated Proof-Of-Stake (DPoS), Practical Byzantine
Fault Tolerance (PBFT), Proof-of-Burn (PoB), Proof-of-Capacity, and Proof of Elapsed Time
(PoET).

In the first years of DLTs, questions of technological nature received the most attention;
questions about economics, cryptocurrencies distributions and tokenomics have been addressed
much less thoroughly. Some papers in the literature address the issue of (lack of) decentraliza-
tion in blockchain governance, implicitly assuming that who is richer has more power in making
decisions about which transactions and blocks should be validated. Albeit decentralization and
wealth distribution among the users of a blockchain are somehow related, the two phenomena
do not necessarily coincide. In fact, it is commonly believed that monetary policy concerns
cryptocurrency distribution, whereas decentralization is merely a technical (infrastructural)
matter. However, monetary policy is not the only important factor for wealth distribution: even
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technology solutions, like consensus mechanisms, might influence it. Hence, to understand
the implications of wealth distribution each different type of consensus algorithm must be
analyzed separately. As an example, a comparison of Proof-of-Work (PoW) and Proof-of-Stake
(PoS) consensus mechanisms is very informative. In PoW, newly created units of currency are
rewarded to the specialized users, called miners, who have access to efficient and powerful hard-
ware. PoW miners might hold a large number of cryptocurrency units; however, a large portion
of mined rewards must be sold to cover expenses like electricity bills, rent, and amortization
costs of mining rigs. In PoS systems, instead, new tokens are rewarded to stakers who hold
a large number of cryptocurrency units. Unlike PoW miners, PoS stakers do not experience
high costs and are incentivized not to sell their rewards as doing so increases their revenue in
the future. This phenomenon, known as compounding effect, illustrates that even supposedly
monetary-agnostic technology solutions might influence tokenomics.

The topics of wealth distribution, decentralization, and blockchain governance, have become
particularly relevant and very much discussed when Ethereum [2] announced their intention to
switch from PoW to PoS, which they did on September 15, 2022, in the event known as “The
Merge” [3]. To avoid the compounding effect of PoS – whereby the richest get even richer
– and also to mitigate the negative externalities posed by Maximal Extractable Value (MEV)
strategies – that include, omit, or reorder transactions when making a new block, with the aim
of producing as much additional profit as possible – the community has proposed Flashbots
[4], a (quite elaborate) infrastructure running on top of Ethereum’s blockchain. Flashbots, as
well as other recent similar projects, provides an off-chain marketplace to build and propose
the most profitable blocks to the validators; however, this off-chain mechanism introduces
some degree of opacity in the consensus mechanism, which is against the transparency and
fairness principles that drive permissionless blockchains. Further details on how the Flashbots
architecture works, and a preliminary analysis of how the rewards have been distributed since
its birth, can be found in [5].

In this paper we partially address questions about wealth distribution in blockchains that
make use of the Proof-of-Stake family of consensus algorithms. PoS was initially designed to
improve the energy consumption derived from PoW [6]. Since its first implementation, PoS has
evolved and many researchers have been discussing different approaches, such as Chain-based
PoS, Nominated PoS (NPoS), BFT-based PoS, Delegated proof of stake (DPoS), and Liquid proof of
stake (LPoS). For a description on how these algorithms work, we refer the reader to [7, 8, 9, 10].
Even the exact definition of stake varies among different implementations: for instance, some
cryptocurrencies use the concept of coin age, the product of the number of tokens with the
amount of time that a single user has held them, rather than merely the number of tokens, to
define a validator’s stake [11]. In order to make our study more general, we will not focus our
attention on a specific variant of PoS consensus algorithm. Instead, we have developed a PoS
simulator whose behavior depends upon several parameters, and may be adapted to simulate
any specific PoS-based algorithm. By tweaking these parameters, we can observe how the
distribution of cryptocurrency tokens evolves over time. This tool can be used to investigate
which combinations of parameter values allow to obtain a “fair” distribution of wealth, in which
no one gets richer or poorer by the mere act of validating blocks.

The rest of this paper is structured as followed. In Section 2 we recall some works from
the literature, that investigate on the distribution of wealth among blockchain validators. In



Section 3 we describe the operation of our PoS simulator. In Section 4 we show some examples
of simulations that can be performed with it, and we discuss the outputs of such simulations.
Finally, in Section 5 we draw some conclusions and delineate some directions for future research.

2. Some Related Works

In this section we recall some works published in the literature, that are somehow related with
the topic under study. However, as it will be apparent in a moment, our perspective is a bit
different, and we believe that our approach may be of some interest to design and/or test the
behavior of PoS-based consensus algorithms.

Some scientific studies about the distribution of wealth among the top richest users of PoW
and PoS-based blockchains have been performed [12, 13, 14, 15]. For example, [16, 17, 18]
showed that the distributions of the top richest balances might be modeled with Zipf’s law.
Additionally, the Gini coefficients were computed for each user to measure wealth inequality.
Moreover, in [16] the authors showed that the wealth of top Bitcoin holders grows faster than
the wealth of low balance accounts; this phenomenon is well known as preferential attachment,
and it plays an important role in the formation of the wealth distribution.

In [19], the authors analyze the distribution of the top richest accounts in cryptocurrencies like
Bitcoin, Ethereum, and selected ERC20 tokens. Their analysis involves the data sets snapshotted
at different dates with a given time interval. These data sets are used to measure different
statistical and concentration metrics – Shannon entropy, Gini index, and Nakamoto coefficient
– and analyze their evolution over time, tying to answer the following research question: Are
there any quantitative differences between top account balances held in cryptocurrency “coins” with
respect to those held in other types of “tokens”?. It was observed that tokens are, in general, much
more centralized than coins, with higher Gini coefficients and smaller Nakamoto coefficients.

All these researches focus on the top richest accounts, and hence might be of particular
interest to DLTs where a group of top cryptocurrency holders fulfills a special role. Examples
include Decentralized Autonomous Organizations (DAOs) – in which a committee of top token
holders is responsible for DAO governance or treasury management – and Delegated Proof-of-
Stake (DPoS) blockchains – where a relatively small committee of block validators issue ledger
updates or distributed random number generators based on the threshold signature scheme.
Since these kinds of analyses require to download and process large amounts of data, they
necessarily limit their scope to the top richest users.

Other works focused on the (de)centralization of blockchains, intended as the number of
players controlling them. In [20], the authors provided their analysis using three different
metrics (Gini coefficient, Shannon entropy, and Nakamoto coefficient) and their evolution over
time. It was found that the degree of decentralization in Bitcoin is higher and more volatile, while
the degree of decentralization in Ethereum (when still adopting the PoW consensus mechanism)
is smaller and more stable. Jensen et al. [21] analyzed decentralization of governance token
distribution in four decentralized finance (DeFi) applications on the Ethereum blockchain using
Gini and Nakamoto coefficients. Their results indicated that the token distributions for all four
DeFi applications are characterized by high Gini coefficients. Similar methods were used in
[18], where PoW and PoS cryptocurrencies were compared, analyzing the decentralization of



Bitcoin and Steem [22] using Shannon entropy.
Other papers deal with the centralization/decentralization of PoS-based blockchains. For

example, in [19] the authors analyze the time-dependent statistical properties of top cryp-
tocurrency holders for 14 different distributed ledger projects. The provided metrics include
approximated Zipf coefficient, Shannon entropy, Gini coefficient, and Nakamoto coefficient.
It is thus shown that there are quantitative differences of centralization levels between coins
(cryptocurrencies operating on their own independent network) and tokens (which operate on
top of a smart contract platform).

However, it is important to note that (de)centralization and wealth distribution may be in
some cases related, but they are indeed different phenomena. Further, the data about wealth
distribution usually presented in the literature do not represent the wealth of individual cryp-
tocurrency owners but rather the wealth distribution among the cryptocurrency wallets. Apart
from the difficulty of establishing the owner of a wallet, a user may be in possession of multiple
wallets. Clearly, all these hindrances make it difficult to interpret the results of the analyses.

In this paper we take a different approach with respect to the above cited papers. Instead
of analyzing existing data about cryptocurrencies or tokens distributions in blockchains, we
study under which conditions a PoS-based consensus algorithm allows to obtain a fair wealth
distribution over time. By fair we mean that who is richer has more possibilities to be chosen to
be a validator, but in the long run their wealth does not increase (nor decrease) due to the mere
activity of validation. Stated otherwise, the validation activity alone should not increase nor
decrease anyone’s amount of cryptocurrency. To do so, we do not look only at the top 30-50-100
richest cryptocurrency holders, but we consider the distribution of wealth among all the users of
the blockchain – to be precise, all users who aspire to be selected as block validators. While the
Gini coefficient can be considered a centralization measure, we will use it instead as an indicator
of wealth distribution among a population (the blockchain users), as is done in economics
studies. Our aim is to help researchers analyze the behavior of existing implementations of
PoS consensus algorithms, and the designers of PoS-based consensus algorithms in finding the
values of parameters that make the protocol fair and sustainable in the long term. We do so
by proposing a PoS simulator, that allows one to tweak several parameters of the consensus
algorithm. Starting from an initial token supply, the simulator computes the evolution of wealth
distribution over time, measuring its fairness by means of Gini coefficient. We believe that
fairness is a necessary condition for the consensus protocol to be sustainable over time. In fact,
a protocol that concentrates wealth in the hands of few makes a permissionless blockchains
a centralized system, controlled by an oligarchy. This entails that users may no longer trust
the system, and therefore abandon it. So, in our opinion, fairness implies sustainability in the
long run. Let us note that some authors have adopted a more extreme point of view about
PoS: in [23], for example, it is stated that “Proof-of-stake is introducing a set of significant new
flaws in both monetary and governance models. Such systems are plutocratic, oligopolistic,
and permissioned”. Even without being so extreme, it is true that PoS essentially means “proof
of wealth”, since blockchain protocol’s rules, upgrades, and changes are directly linked to its
participants’ stake (that is, their wealth). Other authors have proposed significant modifications
to the PoS protocol, to make it more democratic and sustainable [24, 25].



Parameter Name Meaning
numberOfPeers The number of participants in the blockchain. More precisely,

the number of participants that aim to be selected as validators
numberOfCorruptedPeers The number of peers that are corrupted, that is, that will be fined

because they do not validate correctly the block
numberOfValidators The number of peers that are chosen to validate a block
minNumberOfTokensPerPeer The minimum number of tokens assigned to each peer during

the distribution of the initial token supply
maxNumberOfTokensPerPeer The maximum number of tokens assigned to each peer during

the distribution of the initial token supply
stakeablePercentage The percentage of tokens in the current supply of the peers, that

can be put into the stake
numberOfRewardTokens The number of tokens given as a reward to the validators that

correctly validate the current block
percentageOfPenalty The percentage of tokens removed from the amount of tokens

staked by the corrupted validators
numberOfIterations The number of iterations to be simulated, that corresponds to

the number of blocks validated

Table 1
The set of parameters currently managed by the PoS simulator, and their definition

3. A Proof-Of-Stake Simulator

In order to address the research problem illustrated in the previous section, we have developed
a simulator in the R language [26], that exploits the DescTools package [27] to compute the
Gini coefficient :

𝐺 =
1

2𝑁

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

|𝑥𝑖 − 𝑥𝑗 |

where 𝑁 is the number of elements in the population (in our case, the number of blockchain
users), and 𝑥𝑖, for 1 ≤ 𝑖 ≤ 𝑁 , is the monetary value associated to the 𝑖-th element (in our
case, the number of cryptocurrency coins available to the 𝑖-th user). The Gini coefficient is an
inequality measure widely used in economics and social statistics. For example, it is used to
measure the inequality of incomes – or of wealth – among the citizens of a country. It takes
values from 0, which corresponds to a complete decentralization (that is, a fair distribution) of
wealth, to 1, that corresponds to absolute centralization. Anywhere below 0.3 is considered
strongly egalitarian; anything above 0.5 is considered dangerous and divisive. More in general,
the Gini coefficient is a measure of the inequality of a statistical distribution.

The simulator, whose source code is available at [28], is not intended as a complete solution
but rather as a generic skeleton to be customized according to the precise implementation
of the consensus algorithm to be analyzed. In this view, in the next section we provide some
examples of analysis performed on a hypothetical implementation of PoS. The simulator allows
to track the distribution of tokens (intended here as cryptocurrency coins) over time, for a
given PoS consensus algorithm, under a specified choice of parameters. The parameters that
can be set are indicated in Table 1.



Algorithm 1 Pseudo-code of the simulated hypothetical PoS implementation
1: Number the peers from 1 to numberOfPeers
2: corruptedPeers← random subset of peers of size numberOfCorruptedPeers
3: tokenDistribution← random assignment, to each peer, of a number of tokens in the range

[minNumberOfTokensPerPeer ... maxNumberOfTokensPerPeer]
4: Sort tokenDistribution in non-decreasing order
5: Print the value of all parameters
6: Print and plot the initial tokenDistribution
7: for iteration← 1 to numberOfIterations do
8: for each peer 𝑖 do

◁ Compute the number of tokens that the 𝑖-th peer can put in stake
9: stakeableTokens[𝑖]← ⌊(stakeablePercentage/100)*tokenDistribution[𝑖]⌋

10: end for
11: stakeableTotal←

∑︀numberOfPeers
𝑖=1 stakeableTokens[𝑖]

12: Define stake as an array of numberOfPeers elements, all initialized to 0
◁ Determine the set of validators

13: validators← ∅
14: 𝑖← 1
15: while 𝑖 ≤ numberOfValidators do
16: 𝑟 ← random number in the range [1 ... stakeableTotal]

◁ Determine which peer becomes a validator
17: 𝑗 ← the smallest index such that

∑︀𝑗
𝑘=1stakeableTokens[𝑗] > 𝑟

18: if stake[𝑗] = 0 then ◁ If the 𝑗-th peer was not previously selected as validator
19: validators← validators ∪{𝑗} ◁ Add it to the set of validators
20: stake[𝑗]← stakeableTokens[𝑗] ◁ Put its stakeable tokens in the stake
21: 𝑖← 𝑖+ 1 ◁ Proceed with the choice of the next validator
22: end if
23: end while

◁ Determine the set of corrupted validators
24: corruptedValidators← validators ∩ corruptedPeers

◁ Remove staked tokens from the token distribution
25: For each peer 𝑖, let tokenDistribution[𝑖]← tokenDistribution[𝑖]− stake[𝑖]

◁ Add rewards to honest validators, and apply penalty to corrupted validators
26: for 𝑖← 1 to numberOfPeers do
27: if the 𝑖-th peer is a honest validator then
28: stake[𝑖]← stake[𝑖]+ numberOfRewardTokens
29: end if
30: if the 𝑖-th peer is a corrupted validator then
31: stake[𝑖]← ⌊stake[𝑖]*percentageOfPenalty/100⌋
32: end if
33: end for

◁ Update token distribution
34: For each peer 𝑖, let tokenDistribution[𝑖]← tokenDistribution[𝑖]+ stake[𝑖]
35: end for
36: Print and plot the final tokenDistribution



The current version of the simulator (April 2023) operates as illustrated in the pseudo-code
of Algorithm 1. In the first two lines, the set of corrupted peers is randomly chosen among
the peers, which are numbered from 1 to numberOfPeers. These corrupted peers will be the
peers that fail to correctly validate the block (if selected as validators), for example because
their software has been infected by a malware, or because their computer is controlled by a
malicious hacker. In our hypothetical implementation of PoS these corrupted peers will incur
in a penalty, that is, a percentage of the tokens they have put into the stake will be removed
from their wallet. At line 3, the initial supply of tokens is distributed: each peer will receive
a number of tokens randomly sampled in a uniform way in the interval [minNumberOfTo-
kensPerPeer..maxNumberOfTokensPerPeer]. In order to simplify visualization of the initial
supply in the form of an histogram, at line 4 the sequence of token amounts is sorted in a
non-decreasing order. The histogram is then plotted (line 6), and the values assigned to the
aforementioned parameters are printed as a reference (lines 5–6).

At this point the main loop (lines 7–35), which consists of numberOfIterations iterations,
starts. In each iteration, the simulator first computes (through the for loop at lines 8–10) the
number of tokens that each peer can put into the stake. This number is computed as the
stakeablePercentage of tokens possessed by the peer, rounded to the smallest integer (line 9).
Then the total number of stakeable tokens is computed (line 11) so that in lines 13–23 the set of
validators can be determined, with a probability which is proportional to the number of tokens
that each peer is willing to put into the stake. At line 12, the stake is defined as an array of
numberOfPeers elements, all initialized to 0; the value stake[𝑖] will be the number of tokens put
into the stake by the 𝑖-th peer. The selection of each validator occurs as follows. First, at line 16
an integer number 𝑟 is randomly picked from the range [1..stakeableTotal], where stakeableTotal
is the total number of tokens that can be put into the stake – that is, the total number of
tokens that all peers are willing to put into the stake. Think at the range [1..stakeableTotal] as
a linear segment, composed by the concatenation of the segments whose lengths are given by
the number of tokens that the corresponding peers put into the stake; the value 𝑟 determines
one of these smaller segments, chosen at random in proportion to its length. This segment is
found at line 17, by computing the smallest index 𝑗 such that

∑︀𝑗
𝑘=1stakeableTokens[𝑗] > 𝑟. If

the 𝑗-th peer was not previously selected as validator (line 18), then it is added to the set of
validators (line 19), and the tokens it is willing to put into the stake are actually moved to the
stake (line 20). Otherwise, a new iteration of the while loop at lines 15–23 is executed with the
same value of variable 𝑖, so that a new value of 𝑟 is randomly chosen and the selection process
for the 𝑖-th validator is repeated. In total, numberOfValidators validators are chosen. At line
24, the set of validators thus found is intersected with the set of corrupted peers – that were
identified at line 2 – to determine the set of corrupted validators. Finally, the token distribution
is updated as follows. First, the tokens put into the stake are subtracted from the current
token distribution (line 25); then, the stake is modified by adding the rewards to the honest
validators (line 28), and applying the fines (in terms of percentageOfPenalty) to the corrupted
validators (line 31). Finally, the token distribution is updated by adding the new values from
the stake (line 34), and a new iteration of the outer loop can start. When all iterations have
been performed, an histogram of the final token distribution is plotted.

Notice that a number of simplifying assumptions have been made in our simulator:



• The set of corrupted peers is identified once for all at the beginning of execution (line 2
of Algorithm 1); these are the peers that will be punished in case they are selected to
validate a block. Of course it is debatable whether a peer will always behave dishonestly;
for example, its behavior may temporarily run out of control because of a malware
infection, which is later removed. A more general scheme would thus be to allow the set
of validators vary over time, according to some defined (programmable) strategy.

• Even the number of peers is fixed during the simulation, which may not be realistic.

• Also the fact that all peers have the same probability of behaving dishonestly is debatable:
on one side who is richer will probably be more prone to hacker attacks, but on the other
side they will also have stronger security controls over their hardware and software, thus
making the probability of a successful attack low.

• The initial distribution of tokens among the peers is made by sampling in a uniform
way in the range [minNumberOfTokensPerPeer..maxNumberOfTokensPerPeer]; more
sophisticated initial token supplies could be considered.

• The percentage of tokens that each peer is willing to put into the stake is the same for all
peers; it is set by assigning a value – between 0 and 100 – to the variable stakeablePer-
centage, at the beginning of the simulation. The same applies to the percentage of tokens
which are taken from corrupted validators: such a percentage is fixed at the beginning of
the simulation, by assigning a value between 0 and 100 to variable percentageOfPenalty.

• A fixed reward, indicated by the value assigned to variable numberOfRewardTokens, is
payed to honest validators. More sophisticated reward mechanisms, that may possibly
yield to different rewards for different validators, can be conceived.

• Only the Gini coefficient is computed. Other indicators, such as the approximated Zipf
coefficient, Shannon entropy, and Nakamoto coefficient, may be of interest.

During the execution, the simulator can print several kinds of information. For example, it
can print (and plot) the initial token supply, as well as the token distribution, the stake, the
set of chosen validators, and the set of corrupted validators at each iteration. The information
currently printed about the token distribution is the following: total number of tokens, average
number of tokens possessed by the peers, standard deviation of the distribution, and Gini
coefficient; optionally, the amount of tokens assigned to each peer can also be printed. At the
end of the simulation, information about the final token distribution is printed and plotted by
default. All this information can also be saved to files for further processing.

4. Some Examples of Simulation

In this section we illustrate some examples of execution of our simulator, under two different
choices for the values of parameters listed in Table 1. As stated in previous sections, we have
not focused on a particular real implementation of PoS. Instead, in this paper we assume that
the PoS-based consensus algorithm operates as follows. There is a list of peers, users of the



Parameter Name 1st experiment 2nd experiment
numberOfPeers 1000 1000
numberOfCorruptedPeers 10 400
numberOfValidators 20 100
minNumberOfTokensPerPeer 1 1
maxNumberOfTokensPerPeer 1000 1000
stakeablePercentage 50% 50%
numberOfRewardTokens 10 1
percentageOfPenalty 50% 50%
numberOfIterations 100 1000

Table 2
Values assigned to the parameters for the described experiments

blockchain that aim to be selected as validators, which are numbered from 1 to numberOfPeers.
This list is static, that is, it does not vary over time; moreover, we disregard other potential
users – not willing to become validators – of the system. Among these peers there is a subset
of corrupted peers, that also does not change over time. Corrupted means that for some reason,
if selected as validators, these peers will fail to correctly validate the current block; in such a
case a penalty is applied, removing part (a percentage) of the cryptocurrency tokens they have
put into the stake. Each peer receives an initial supply of cryptocurrency tokens, randomly
sampled from a fixed range [minNumberOfTokensPerPeer ... maxNumberOfTokensPerPeer].
While this range is fixed, let us observe that by making it large enough it is possible to simulate
very unbalanced supplies of tokens among the peers.

The PoS-based protocol runs for a specified number of iterations. At each iteration, every
peer is randomly selected to become a validator, with a probability which is proportional to
the amount of tokens it is willing to stake; such amount is determined – for every peer – as
a fixed percentage of the amount of tokens present in its wallet. The algorithm selects in
this way numberOfValidators validators. By intersecting the set of validators with the set
of corrupted peers, the set of corrupted validators is found. Finally, the token distribution
is updated: each honest validator is returned the tokens it had staked, plus a fixed amount,
whereas each corrupted validator is returned a portion of the tokens it had staked, that is, those
that remain after applying a penalty to the staked amount. The penalty applied is modeled as
a reduction by a fixed percentage, which is assumed to be the same for all corrupted validators.

Table 2 reports the values assigned to the parameters during our simulations.
In our first experiment we performed just 100 iterations – that is, the validation of 100

blocks – with 1000 peers, of which only 10 (corresponding to 1% of the total) are corrupted.
The number of validators required to validate a block is 20. Each peer will put 50% of its wallet
balance in stake; if it is a honest validator, at the end of the iteration it will receive a reward of
10 tokens, otherwise a penalty of 50% will be applied to the amount of tokens it has put in
stake. Figure 1 reports the histograms of the initial (left) and final (middle) token distribution
for this experiment. The initial distribution contains 493, 913 tokens, that is, an average of
494 tokens per peer. The standard deviation is about 286, and the Gini coefficient is 0.33. So,
albeit the richest peer has 1000 times the amount of tokens possessed by the poorest, the
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Figure 1: Initial token distribution for the first experiment (left), and token distributions after 100
(middle) and after 1000 (right) iterations.

overall distribution can be considered fair. After 100 iterations, the final distribution contains
1, 488, 692 tokens (about three times the initial amount), that is, an average of 1489 tokens
per peer. The standard deviation is about 288, and the Gini coefficient is 0.11. Thus, albeit
the histogram in the middle of Figure 1 would seem to suggest that the algorithm behavior is
stable, the Gini coefficient indicates that the wealth distribution has changed, becoming a bit
more equidistributed. This is confirmed by letting the simulation run up to 1000 iterations: in
this case, the final distribution (see the rightmost histogram of Figure 1) contains 10, 436, 554
tokens (about 21 times the initial amount), that is, an average of 10437 tokens per peer. The
standard deviation is about 723, and the Gini coefficient is 0.02. Clearly, this protocol – with
these parameter values, and these reward and penalty policies – is not sustainable in the long
term: while every peer becomes richer, the difference between the richest and the poorest tend
to diminish over time, with the likely effect that the richer peers will abandon the system as
soon as they realize it.

In the second experiment, we tried once again with 1000 peers (see Table 2). This time,
however, as many as 400 of them are corrupted (that is, 40% of the total). We set to 100 the
number of validators, in the spirit of making block validations more participated, albeit this
may pose technical difficulties for the underlying peer-to-peer network communications. In
fact, while in theory the size of block producing committee can be unbounded, in practice
the procedure of signing new blocks is limited by the bandwidth, as the number of messages
exchanged among the committee members grows like a square of its size. As a consequence, in
most practical applications the block-producing committee has from 10 to 50 members. Also in
this experiment, each peer will put 50% of its wallet balance in stake; if it is a honest validator,
at the end of the iteration it will receive a reward of just 1 token, otherwise a penalty of 50%
will be applied to the amount of tokens it has put in stake. The rationale behind these choices
is to try not to make grow the total amount of tokens in the system, and hence the amount of
tokens owned by each peer. The initial distribution is comparable to the one of the previous
experiment. It contains 492, 279 tokens, that is, an average of 492 tokens per peer; the standard
deviation is about 292, and the Gini coefficient is 0.34. Figure 2 reports the histograms of the
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Figure 2: Initial token distribution for the second experiment (left), and final token distribution after
1000 iterations (middle). The rightmost histogram is the same final distribution, sorted by number of
tokens in non-decreasing order.

initial (on the left) and final (in the middle) token distribution after 1000 iterations. The final
distribution contains 966, 737 tokens (about two times the initial amount, and about 65% of
the total number of tokens of the second experiment, after the same number of iterations),
that is, an average of 967 tokens per peer. This time the standard deviation has raised to about
687, and the Gini coefficient is 0.40, showing that the distribution of tokens has become a
little bit less democratic, but quite comparable with the initial distribution. Comparing the two
histograms in the middle of Figures 1 and 2, and zooming in the histogram of Figure 2, we can
see that the difference among the two is that the second one contains a lot of low bars; these
correspond to the corrupted peers, that have been penalized each time they have been selected
as validators. This situation is made more evident by sorting the bars in non-decreasing order,
obtaining the rightmost histogram of Figure 2. The value 0.40 of the Gini coefficient, compared
with the initial value 0.34, seems to indicate that this second version of the PoS algorithm is
more stable than the first one, and indeed we could suggest that having a stable Gini coefficient
is a necessary – but probably not sufficient – condition for the protocol to be sustainable in
the long term. In any case, also this version of the consensus algorithm has some problems:
even being rewarded with just 1 token, honest peers tend to become increasingly richer over
time; indeed, the only mechanism that drains tokens from the system is the penalization of
corrupted peers. Letting these two forces act for enough time, it is very likely that corrupted
peers will sooner or later run out of money, whereas the honest peers will incur once again in
the original problem of wealth distribution. This indicates that a more elaborated system of
interacting forces must be designed; and a corresponding more elaborated simulator must be
programmed, to perform tests and experiments. Are perhaps PoS-based blockchains complex
systems, whose dynamics and long-term behaviors must be studied using theoretical tools
coming from economics and physics, as well as elaborated simulators?



5. Conclusions and Directions for Future Work

In this paper we have described a simulator of PoS-based consensus algorithms. The simulator
is not intended to be a complete solution but rather as a generic skeleton to be customized
according to the precise implementation of the consensus algorithm to be analyzed. Adopting
this point of view, we have provided some examples of analysis performed on a hypothetical
implementation of PoS. The simulator allows to tweak several parameters of the consensus
algorithm and observe how the distribution of tokens among the users evolves over time.
The final aim is to help researchers analyze the behavior of existing implementations of PoS
consensus algorithms, and the designers of such algorithms to find the values of parameters
that make the protocol fair and sustainable in the long term.

The presented work can be extended in several ways. First of all, we have developed our
simulator in R because this language allows to perform statistical computations and operations
on vectors in a very simple and natural way. However, being an interpreted language, the
performances are not exciting. Even using some specific packages to perform parallel com-
putations, such as parallel, one cannot hope to achieve the same performance of compiled
languages created specifically for scientific computing, such as Julia [29].

Another possible extension concerns the indices and coefficients used to analyze wealth
distributions, as well as the information which is printed at the beginning of the simulation,
at the end, and after each iteration. As we have seen, many papers in the literature use also
Shannon entropy and Nakamoto coefficient to perform their analyzes; at the moment our
simulator only uses the Gini coefficient – we have started from this one because it is widely
adopted in economics studies about wealth distributions. Adding the computation of further
coefficients is not difficult, and will certainly be done in a future version of the simulator.
Similarly, it would be possible to determine, by linear regression, the Zipf’s law coefficients
that best approximate the wealth distribution under study.

When designing a cryptocurrency, initial supply and subsequent distribution are fundamental
problems to tackle and consider. Due to Proof-of-Stake’s intrinsic initial supply requirements,
blockchain networks implementing PoS as a distributed consensus mechanism present an
important pre-mined initial distribution, in terms of coin percentage of the entire network. In
this paper we have ignored this aspect, and we have simply assumed that each user initially
obtains a number of tokens which is included in a pre-set interval (see line 3 of Algorithm 1).
While this means that our simulator is only able to analyze situations where the blockchain
has already been running for some time, it is not clear to the author whether the simulator
should really consider also the start-up period in which the creators of the blockchain distribute
cryptocurrency coins to the prospective users, according to some political, monetary, and
marketing strategy.

Finally, while the current paper focused on the PoS simulator and on the reasons that led
to its development, a clear direction for future research is to use (more elaborated versions
of) it for investigating which combinations of parameters, and which policies – implementing
forces that increase or decrease the number of tokens in the system, and their assignment to
the peers – make it possible to obtain a variant of PoS that is fair and hence sustainable in
the long run. As we said at the end of the previous section, this study will probably involve
tools commonly used in the theory of complex systems, and will require the implementation of



much more sophisticated simulators than the one presented in this paper.
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