
Orchestration of Blockchain-based Digital Twins⋆

Marco Benedetti, Marco Favorito and Matteo Nardelli

Banca d’Italia

Abstract
Digital Twins (DTs) provide virtual copies of physical systems, hence representing a fundamental building
block for Smart Manufacturing. The advent of blockchain offered new features for DTs, which can be
exposed as services through smart contracts whose interaction can be autonomous and event-based.
Although the literature highlights the importance of DTs collaboration, approaches to the automatic
composition of DTs in a blockchain-based scenario have only recently been investigated. In this paper,
we present a novel framework for DT service composition, where the blockchain plays a fundamental
role in data management, process design and process execution.

Keywords
Digital Twins, Blockchain, Service Composition

1. Introduction

The Fourth Industrial Revolution, also known as “Industry 4.0” [1] is a paradigm shift in
how industrial activities are conceived and executed, characterized by increased automation,
digitalization and inter-connectivity of industrial systems. In this context, Smart Factories [2]
refer to factories equipped with sensors, actors, and autonomous components, and made of
Cyber-Physical Systems (CPS). In CPS, the physical level and the digital level merge together,
both at the production process level as well as the product level. Digital Twins (DTs) [3, 4] are
a fundamental building block for Smart Manufacturing. They are virtual copies of machines
or systems that, driven by data collected from sensors in real time, mirror almost every facet
of a product, process, or service. They allow drawing intelligent conclusions from data by
identifying faults, recommending precautionary measures ahead of critical events, and, more
generally, allowing for better-informed decision-making. The use of DTs in the industry is
already a reality, as also demonstrated by ISO 23247 standards on DT creation [5]. Among the
first industrial applications, NASA used digital copies to monitor the status of its spacecrafts [6],
General Electric used them to track the operations of wind turbines [7], and Siemens applied
DTs for the power system and wastewater plant in Finland [8].

Recent research efforts look into novel architectures and techniques to orchestrate and
compose DTs in order to increase automation of industrial processes, e.g., [9, 10, 11, 12, 13, 14,
15, 16, 17].

DLT’23: 5th Distributed Ledger Technology Workshop, May 25–26, 2023, Bologna, Italy
⋆

All views are those of the authors and do not necessarily reflect the position of Bank of Italy.
$ marco.benedetti@bancaditalia.it (M. Benedetti); marco.favorito@bancaditalia.it (M. Favorito);
matteo.nardelli@bancaditalia.it (M. Nardelli)
� 0000-0001-9566-3576 (M. Favorito); 0000-0002-9519-9387 (M. Nardelli)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:marco.benedetti@bancaditalia.it
mailto:marco.favorito@bancaditalia.it
mailto:matteo.nardelli@bancaditalia.it
https://orcid.org/0000-0001-9566-3576
https://orcid.org/0000-0002-9519-9387
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

In particular, instead of designing the entire manufacturing process in a traditional way,
inspired by the Web Service Composition literature [18], Catarci et al. [11] envision a smart
manufacturing architecture where human designers can specify a target service and take
advantage of automatic composition to realize the corresponding physical processes. DTs
provide stateful services, wrapping the functionalities of physical systems and tasks of human
operators. The automatic composition allows expressing the target service as a composition
of the DTs’ services, by providing a solution that schedules the target service actions to the
available services provided by DTs. Recently, there has been also considerable interest in
applying blockchain technologies to smart factories [19] and in DT scenarios [20], to address
the lack of trust among stakeholders and traceability of data and industrial processes.

Nonetheless, previous works on blockchains and DTs do not focus on the automation of
the manufacturing process and how to orchestrate DTs and the available services. To the
best of our knowledge, the use of a service composition approach in a blockchain-based DTs
scenario has not been explored so far. Inspired by [11], in this paper, we propose a framework
for orchestrating DTs where the blockchain plays a fundamental role in (i) data management,
both of the manufacturing process and of the state of the DTs, (ii) process design based on the
Roman Model service composition technique [21, 22], and (iii) process execution by means
of automated event-based communication between smart contracts controlling the available
DTs. We imagine such a framework to be very useful in scenarios where there is the need for
a shared database with an objective immutable log on relevant facets of the execution of the
business process, and multiple parties involved with conflicting interests and trust issues [23].

2. Related Work

Industry 4.0 and Blockchain. The research community on business process management
(BPM) started to explore how blockchains can help rethink processes and their management.
Mendling et al. [24] propose a broad analysis of challenges and opportunities. In [25], blockchains
are used to improve information transparency and decentralization in a cloud manufacturing
scenario. With a special emphasis on Industry 4.0, Viriyasitavat et al. [26] suggest using the
blockchain to trace non-functional requirements of services, execution requests, and feedback;
the authors aim to build trust among services while reducing intermediation costs. Notably,
Weber et al. [27] solve the trust problem in collaborative process execution using blockchain,
which can either act as a choreography monitor, by storing the process execution status, or as
an active mediator among the participants, by coordinating the collaborative process execution.
Our contribution builds upon this idea.

DTs and Blockchain. A Digital Twin (DT) is a synchronized virtual replica of an underlying
product, process, or service, which can be used to analyze, manage, and optimize all opera-
tions on its real-world implementation [28, 29, 30, 31]. Blockchain-based DTs are receiving an
ever-growing interest, as they target several key challenges in DTs scenarios such as disparate
data silos, untrustworthy data dissemination, traceability, and the need for predictive main-
tenance [32]. When deployed into a DT environment, smart contracts can be used to track
data sharing, (e.g., [33, 34]), to trace the twins’ life cycle (e.g., [35, 36]), to store authorization
information for all involved parties (e.g., [37, 38]), or to automate event-based interaction

among machines (e.g., [39]). Notably, Angrish et al. [39] present a case study for Blockchain
in manufacturing, where the blockchain enables a decentralized and event-based interaction
among machines and humans. Although this work explores principles we adopt in our work, it
does not investigate service composition. Pittaras et al. [13] uses smart contract to expose DTs
actions, which can be executed upon the payment of a price expressed in tokens. Composition is
not the scope of their work. In this paper, we consider physical machines and real assets having
their own DTs with an associated smart contract on the blockchain. Therefore, we focus on
smart contracts to provide automation capabilities and to coordinate the execution of multiple
DTs (thus enabling the implementation of complex processes or services). Differently from
EtherTwin [38], we store “sensor data”—aggregated according to a finite-state machine (FSM)
specification—on-chain rather than on off-chain.

Service composition. The proliferation of vendors and the increase in the complexity of
manufacturing processes poses several challenges in achieving a modular and flexible implemen-
tation of such processes. As pointed out in [11], this view shares some analogies with the notion
of Web service composition. The problem of service composition has been largely considered in
the literature, starting from seminal manual approaches (e.g., [40, 41, 42]), which mainly focused
on modeling issues and on automated discovery using rich ontologies, to automatic approaches
based on planning (e.g., [43, 44]), knowledge representation (e.g., [45]), or automated synthesis
(e.g., [21]). We refer the interested reader to existing surveys for further details, e.g., [18, 46, 22].

Composition of DTs. Only recently, service composition has been proposed in a DT setting.
Sahal et al. [47] show the key importance of DTs collaboration for achieving higher quality
production. Besides introducing a lightweight framework of DTs collaboration, the authors
present several real use cases. Wilhelm et al. [48] cover this topic with a systematic literature
review. Inspired by the Roman Model [21, 49], Catarci et al. [11] envision an architecture human
designers take advantage of automatic composition to realize the physical manufacturing pro-
cesses. Leotta and Mecella [50] propose a conceptual architecture for the dynamic composition
of DTs. Also Pernici et al. [12] suggest combining Service Oriented Architectures with CPS;
nonetheless, they focus on exchanging data in a dynamic and adaptive way. Differently from
our approach, these works do not consider blockchain for exposing DTs functionalities and for
supporting event-based interaction.

3. Background

3.1. Blockchains and Smart Contracts

A blockchain is a distributed database technology that builds on a tamper-proof list of times-
tamped transaction records, organized as a sequence (or, chain) of immutable blocks. The chain
is distributed over a peer-to-peer network, where every node maintains the latest version of
it, acting as a state-machine replication mechanism. Since every node can create blocks in a
peer-to-peer network, they have to agree on the next block to add to the chain. This allows
implementing a trustless system. A smart contract [51] is a program living in the blockchain,
deployed with a specific type of transaction, and whose execution is triggered by means of
transactions addressed to it. Depending on the expressiveness of the programming language,
a smart contract can implement arbitrary business logic (e.g., conditional money transfer).

The smart contract code is deterministic and relies on a closed-world assumption: the only
information that is stored on the blockchain is available in the run-time environment.

3.2. The Roman Model

In the Roman model [21], the composition is as follows. Each available service is modeled as a
finite state machine (FSM): at each state, the service offers a certain set of actions, where each
action changes the state of the service in some way. Formally, a service is defined as a tuple
𝒮 = ⟨Σ, 𝜎0, 𝐹,𝐴, 𝛿⟩ where: Σ is the finite set of service states, 𝜎0 ∈ Σ is the initial state, 𝐹 ⊆ Σ
is the set of the service final states, 𝐴 is the finite set of service’s actions, 𝛿 ⊆ Σ×𝐴 → Σ is the
service’s deterministic and partial transition function. The designer is interested in generating
a new target service 𝒯 from the set of existing services, which is specified using an FSM, too.
The available services are grouped into community 𝒞 = {𝒮1, . . . ,𝒮𝑛}, where they share a
common set of actions 𝐴, i.e., the actions of the community. An orchestrator is an entity able
of scheduling services on a step-by-step basis and of coordinating the community services
to mimic the behavior of the target service. Formally, an orchestrator for a community 𝒞 is
a partial function 𝛾 : Σ1 × · · · × Σ𝑛 × 𝐴 → {1 . . . 𝑛}, with Σ𝑖 the set of states of 𝒮𝑖 ∈ 𝒞,
𝑖 ∈ {1 . . . 𝑛}. Intuitively, 𝛾 is a decision maker that keeps track of the evolution of the services
in the community up to a certain point and, in response to an incoming action request, returns
the index of the service where to dispatch the request. The composition problem amounts
to see whether the target service is realizable, i.e., there exists an orchestrator that properly
orchestrates the work of the component services for all the possible behaviors of the target
service. If an orchestrator 𝛾 satisfies such condition, we say that 𝛾 realizes 𝒯 . In this case, 𝛾 is
also called a composition of 𝒯 . Thus, a new service 𝒯 is synthesized using existing services.

4. Motivating Example

To better motivate the vision behind the orchestration of blockchain-based DTs, we consider the
example of a cutting machine used to craft 2D objects to be later assembled. A cutting machine
is usually an expensive equipment that a factory can buy or rent to provide its designers with a
tool enabling rapid prototyping. An authorized designer could submit a newly conceived chair
project to the cutting machine, which can - in turn - craft the individual components of the
chair from sheets of wood. The cutting process is not for free: e.g., the blade wears out during
cutting, raw materials may be out of stock. Monitoring the machine and its status is of utmost
importance, e.g., to perform predictive maintenance, avoid wastage, and optimize the production
process. The cutting machine can perform different kinds of tasks, so a programmable software
usually enables its operations. It can account for constraints on the blade trajectory, cutting size,
or waste optimization. Leveraging the smart manufacturing principles, the cutting machine
could be remotely controlled, exploiting the key principles introduced by DTs. This enables the
cutting machine to receive the processing logic from remote locations.

A complex manufacturing process usually requires combining and coordinating the execution
of multiple machines and actuators. DTs make it simple to combine and control the execution of
multiple physical devices, thus moving a step closer to the idea of cloud manufacturing [52, 53].
However, besides improving flexibility, this also raises concerns regarding trust, traceability,

𝑎0𝒮0 check

𝑏0𝒮1 cut

move

𝑐0𝒮2

𝑠1

𝑠2

load

release

𝑑0𝒮3

𝑑1 𝑑2

𝑑3

clean

paint

dry

(a) Available Services 𝒮0, 𝒮1, 𝒮2 and 𝒮3

𝑡0start

𝑡1 𝑡2

𝑡3 𝑡4

𝑡5

check

load

move
cut

move

release

(b) Target Service 𝒯

𝑜0start 𝑜1 𝑜2 𝑜3 𝑜4 𝑜5

check/𝒮0 load/𝒮2 move/𝒮1

cut/𝒮1

move/𝒮1 release/𝒮2

(c) Orchestration

Figure 1: Example of service orchestration: Fig. 1a shows the available services exposed by the DTs.
Fig. 1b shows the target service, whereas Fig.1c shows a possible orchestration for it.

and accountability. A blockchain can help to overcome these issues, by providing notarization
functionalities, data tracing, and tracking the actions performed on each DT (and, in turn,
on the physical machine). The blockchain enables the equipment (through its DT) to expose
its functions by means of smart contracts, which can grant access rights, list the available
operations, and enqueue requests for actions. Then, anyone accessing the smart contract can
use such a functionality by sending action requests. Ultimately, the DT will be responsible for
reading requests and enacting them on the physical device.

We consider DTs that use smart contracts to define the services (i.e., functionality) offered by
the physical machines. We reference them as available services. For example, Figure 1a reports
four of them: 𝒮0 can checks the machine state; 𝒮1 allows to program the blaze and perform
the cut; 𝒮2 enables loading and releasing raw material from the cutting machine; 𝒮3 is able
of cleaning, paint, and dry the processed material within the machine. To use and compose
these services, a user can define a so-called target service. This service does not exist in reality
but can be obtained by using the available services. Figure 1b shows a service 𝒯 defining a
simple cutting process. The framework we propose in Section 5 selects among the available
services and orchestrates the execution of actions on them aiming to implement the target
service. Figure 1c also shows the resulting orchestration for 𝒯 using 𝒮0, 𝒮1, and 𝒮2.

5. Framework

This section describes our framework for the orchestration of blockchain-based DTs. It can
be useful whenever, in a business process implementation, there is lack-of-trust among its
stakeholders. Therefore, full traceability and accountability is required to resolve disputes, or to
perform quality-of-service (QoS) tasks such as predictive maintenance or process optimization.

In this work, we imagine the framework in the context of a blockchain-based Industry 4.0
scenario, where the smart factory is endowed with a private permissioned smart-contract-
enabled blockchain layer used for data sharing and as a communication medium among its

Off-chain Layer

On-chain Layer

Device
Agents

Physical
Devices

Target
Agent

Process

Service
Smart

Contract

Service
Smart

Contract

Service
Smart

Contract

Target
Smart

Contract

Target
Service

Service
Registry
Contract

FSM Spec

Figure 2: High-level architecture of the proposed framework.

subsystems. The available machines and real assets have their own DT with an associated
smart contract on the blockchain (à la EtherTwin [38]). Our aim is to implement a target
manufacturing process by composing the existing machines; that is, to find an orchestrator
that realizes the process, as in the Roman model, and to deploy, as a smart contract, the process
implementation in the smart factory. The resulting smart contract acts as a mediator, driving the
process according to the process specification and the orchestrator’s logic. This smart contract
is conceptually very similar to the mediator contract used in [27]. Observe that our approach
can be generalized also to other scenarios.

5.1. High-level Overview

A high-level overview of the architecture is shown in Figure 2. The system is divided into
two layers: an off-chain layer, where the industrial process takes place and the physical assets
reside, and an on-chain layer, which serves as a trustless notarization layer and as a mean
of machine-to-machine communication between off-chain software components. Dedicated
software agents take care of synchronization and consistency resolution between the physical
devices (off-chain) and their virtual representatives (on-chain).

5.1.1. Off-chain Layer

In the off-chain layer, we have physical devices and the target services to implement, together
with the related agents (i.e., the device and target agents).

Physical devices are specialized machines available in the smart factory. Such devices can
execute functions and tasks useful for the realization of a target industrial process. We assume
their behavior can be abstracted into FSM specifications. Each physical device has its own DT,
acting as unique representative in the digital space. The device agent oversees the relationship
between the physical device and its DT. As such, it has the capability of requesting the execution
of tasks to its physical device, and retrieve the state of the machine from sensor data. In

particular, it is able to determine whether a requested action has been successfully completed.
Crucially, the device agent is the off-chain representative of its physical device, to be compared
with the service smart contract (defined below), which is the on-chain representative of the device.
Finally, the device agent is endowed with a blockchain identity (e.g., an Ethereum address), and
therefore is able to both read/write data from/to the blockchain.

The target service is the industrial process we wish to accomplish. This can be achieved
by opportunely instructing the device agents to ask for the execution of specific actions to
their physical devices. We assume the dynamics of the target service can be abstracted into
a FSM, where the labels of the transitions are associated with actions that can be executed
by the available machines. Note that the target service is not (necessarily) associated with a
physical entity but has to be intended as a specification of an industrial process that can be
implemented using the available services. Nevertheless, the outcome of the target service can be
a physical asset, e.g., a product that passes through an assembly line. We allow the target service
specification to represent different histories of execution. At runtime, the actual evolution of
the target service is determined by its stakeholders. The target agent is the DT for the target
service. It is analogous to the role of the device agent for physical devices and acts as a bridge
between the target service execution and the on-chain layer. In particular, it is the off-chain
representative of the target service, whereas the target smart contract (defined below) is the
on-chain representative of the process.

We omit the details about the interaction between the device agents and the physical agent, as
the actual technology stack being used can vary a lot among concrete instances of the proposed
framework.

5.1.2. On-chain Layer

The components that live in the on-chain layer are the service registry as well as the service
and the target smart contracts.

The service registry contract serves as an on-chain registry of the service (contracts) available
in the system. It accepts service registration requests from device agents (registerService()) and
allows retrieving the list of available services (getServices()). We assume the contract is already
deployed on the blockchain, and it is known to all stakeholders.

The service smart contract is the on-chain representative of a physical device. It is generated
and deployed by the device agent, which is also the owner of the contract. The device agent
can update the state of the contract so to reflect the actual off-chain state of the machine on the
on-chain layer. The smart contract can notify the device agent about action requests coming
from the target smart contract. The communication details are postponed to Section 5.1.3.

The target smart contract is the on-chain representative of the target agent. It is generated
and deployed by the target agent, and it contains the solution to the composition problem:
it implements an orchestrator that realizes the target service with the available services. As
such, it can accept action requests from the target agent, and dispatch the request to the service
contract determined by the orchestration policy. This contract also keeps track of the system
state and the state of the target service.

Intuitively, by means of the transactions addressed to the above-mentioned contracts, the
on-chain layer traces the target service life-cycle: the recording of the state of physical devices

(through their DTs), the creation of a target service instance, and the execution of the target
service by dispatching requests to the chosen available services.

5.1.3. Communication Patterns

In this section, we briefly explain the communication between the system participants.
Off-chain/Off-chain. In our abstract framework, we do not consider direct communication
between off-chain components; except for the communication between physical devices and
their DTs. However, in our framework we are not interested in modeling the actual working of
the machines. For the target service, the pair physical device/device agent appears as a unique
participant of the system.
On-chain/On-chain. Communication between smart contracts happens through function
calls. The contracts are referenced by their address. Being a purely reactive component, the
smart contract cannot exhibit proactive behavior: the first function call is always triggered by
either a device agent or the target agent.
Off-chain/On-chain. The communication between off-chain and on-chain layers is bidirec-
tional, although implemented in different ways. The off-chain/on-chain communication happens
through the submission of blockchain transactions (by device or target agents) and addressed
to their twin contract supposed to receive the message. The on-chain/off-chain communication
is built on the concept of blockchain events: the off-chain component keeps listening events
emitted by the blockchain1. The actual communication protocol employed by the participant
will be discussed in the next sections.

5.2. Workflow

In this section, we describe the workflow phases that bring the completion of the industrial
process, starting from the registration phase, where the services advertise themselves on-chain
as available; the composition phase, where the target agent retrieves the available services,
computes a solution to the composition problem, and deploys the computed orchestrator as
a smart contract (the target smart contract); the setup phase, where the target agent checks
and reserves the availability of the chosen services; and the execution phase, where the actual
target service gets executed and each requested action dispatched to the chosen service. An
overview of the setup and the execution phases is shown in Figure 3. The workflow assumes the
blockchain up and running, with an instance of the service registry contract already deployed.

5.2.1. Registration

The device agents register themselves to the service registry, aiming to be discoverable by
candidate target services. First, the device agent uses the FSM specification of the physical
device to generate a smart contract that keeps track of the state changes of the machine according
to its specification. In our prototype, we use a JSON format as specification language and Solidity
as smart contract programming language. The idea to generate smart contract code from a
1For example, in the Ethereum ecosystem, a blockchain node serves a JSON-RPC API over WebSockets that
allows to subscribe to specific events, emitted by smart contract code, using a publisher/subscriber pattern:
https://ethereum.org/en/developers/tutorials/using-websockets/#subscription-api

https://ethereum.org/en/developers/tutorials/using-websockets/#subscription-api

Target Agent Target Contract Service Contract i Device Agent i

call requestAuth()

call requestAuth()loop
services

emit AuthRequest

call grantAuth()

call grantAuth()

emit Ready

Setup
Phase

loop

Execution
Phase

call requestAction(a)

call requestAction(a)

emit ActionRequest

call notifyActCompl()

call notifyActCompl()

emit ActionResponse

Figure 3: Sequence diagram showing the interactions between the system participants for the setup
and the execution phases.

FSM specification is inspired by the FSolidM tool [54]. The generated contract code is then
compiled and deployed as a service smart contract. Then, the service smart contract is registered
to the service registry contract, using the registerServicefunction. Finally, the device agent
connects with the blockchain node and listens for events emitted by the service contract (see
Section 5.1.3).

5.2.2. Composition

The target agent retrieves from the service registry contract the available devices and their
FSM specifications, using the function getServices. Once downloaded all the specifications, the
target agent uses them, together with the FSM specification of the target service, to compute a
service composition. In case the target is realizable with the community of available services, the
composition algorithm outputs an orchestrator (i.e., a solution to the composition problem). The
actual algorithm can be, e.g., the ND-Simulation algorithm [22, Algorithm 1]). The orchestrator
is used to generate the source code of the target smart contract, which is then compiled and
deployed on the blockchain. Finally, the target agent connects to the blockchain waiting for
events coming from the target contract.

5.2.3. Setup

Once both the service contracts and the target contract are deployed, the target agent probes
the availability of the chosen services, to reserve their usage for the execution of the process. To
do so, the target agent calls the contract function requestAuthorization() of the target contract.
The function iterates over all the chosen services and forwards to each of them the availability
request by calling the function requestAuthorization(). If the service contract is already assigned
to another target contract, then the request will fail. Otherwise, the request is stored in the
contract state as “pending”, and the contract emits an event notifying the device agent about
the new availability request. The device agent can evaluate the request and apply its own
authorization policy, i.e., decide whether to grant the authorization to the target service to use
the device it represents. In case of success, the device agent grants the authorization by calling
the method grantAuthorization() of the service contract. In turn, the service contract notifies
the target contract whose request was pending by calling its function grantAuthorization().
When all services granted the authorization for being used, the target contract emits the event
Ready to notify the target agent that the execution of the target service can begin.

5.2.4. Execution

Once the target agent obtained the authorization for using the available services, it starts
requesting the execution of actions. To do so, it asks the target contract to dispatch the request
of the needed action to the chosen service according to the orchestration policy computed
in the composition phase. The target agent leverage the target contract to request action
aiming to improve traceability and accountability. Moreover, this approach has two further
benefits. First, it readily mirrors the case where the target agent is a DT of real industrial service,
whose actions cannot be completely automated. Second, it overcomes the limitation of current
blockchains that do not support fully autonomous and event-based smart contracts. The target
agent calls the function requestAction(action) of the target contract, which in turn calls the
requestAction(action) function of the chosen service contract. This function stores the action
request in the contract state as “pending” and emits the ActionRequest event to notify the
device agent that a new action request is pending. The device agent receives the event and
processes the action request by instructing the controlled physical device to execute it. When
the action is completed, the device agent calls notifyActionCompleted on its service contract,
which notifies completion on the target contract that, ultimately, emits the ActionResponse
event for the target agent. This sequence of events allows the device agent to notify the target
agent that the action previously requested has been fulfilled successfully. The target agent can
then request a new action to the target contract.

6. Discussion

This paper represents a preliminary work aimed to open future research directions in the
area of automatic composition of smart contract. Although such autonomous capabilities can
be of broad interest for generic blockchain-based applications, we believe that they could be
particularly relevant for industrial settings where automation, integration, and accountability

are of utmost importance. An example is discussed in Section 4.
To this end, we designed a very general framework (Section 5), which is well suited to host

different and more advanced smart contract composition techniques. As proof of concept, we
resort on the so-called Roman model, described in Section 3.2. Nonetheless, we envision
that novel approaches can be defined, which compose smart contracts aiming to address
functional and non-functional requirements. As suggested in Section 2, the literature on
service composition can provide insights on methodologies suited for this task.

Before concluding, we share some of the lessons learned on modeling smart contracts as
FSMs in the context of the Roman model. We believe that the classical Roman model has
some limitations in how complex smart contracts can be modeled, especially regarding state
variables with infinite (or very large, e.g., 32-bit integers) domains, or lack of message-based
communication modeling widely used in smart contracts. To address the above issues, it might
be interesting to explore the Colombo framework for web service composition [55]. On the
other hand, the simplicity of the Roman model can still be useful whenever a FSM can correctly
capture the behaviour of the smart contract, and it can be easily extracted (either from the
contract code or its specification).

7. Conclusion

This paper explores, for the first time, the use of a service composition approach in a blockchain-
based DT scenario. It proposes a framework to design systems that take advantage of a
blockchain as an immutable log of events, as a data-sharing platform, and as an enabler of
automated machine scheduling by exploiting service composition techniques.

Although it is a preliminary work, we argue that it lays the foundation for further develop-
ments in the automated composition of blockchain-based DTs. We foresee several interesting
research directions, including:

• Error Handling. An extension of the proposed framework that is able to capture
exception handling procedures [56]: if the target service terminates before a terminal
state has been reached, work done so far might have to be explicitly undone (by rollbacks
or compensation actions). Other exceptions to the “happy path” that might occur in a
real-world scenario are the denial or the revocation of the authorization for the target
process to use some device, the failure of action execution, and the use of timeouts to
detect unresponsive device agents.

• Advanced Composition. Different service composition approaches, or modeling for-
malisms, can help to overcome the limitations of the Roman Model, such as the limited
expressive power of the FSM model for services or the inability to model the stochas-
tic non-determinism of service dynamics. Markov Decision Processes could be used
to model stochastic services in place of FSMs (e.g., as [57, 15, 14] do). Composition on
non-functional requirements could be considered as well. The orchestration policy can be
computed, or updated at run-time, by taking into account QoS metrics. Past performance
of the available services can be inferred from the events stored in the blockchain.

• Use cases. Exploring new use cases in Industry 4.0, e.g., coming from the supply chain
industry (as in [27]), or in completely different domains where the blockchain-based

service composition might be an effective tool, e.g., in the Web3 ecosystem [58].

References

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, M. Hoffmann, Industry 4.0, Business & information
systems engineering 6 (2014) 239–242.

[2] D. Lucke, C. Constantinescu, E. Westkämper, Smart factory-a step towards the next
generation of manufacturing, in: Manufacturing systems and technologies for the new
frontier, Springer, 2008, pp. 115–118.

[3] Y. Lu, C. Liu, K. I. Wang, H. Huang, X. Xu, Digital twin-driven smart manufacturing:
Connotation, reference model, applications and research issues, Robotics Comput. Integr.
Manuf. 61 (2020) 101837.

[4] F. Tao, Q. Qi, Make more digital twins, 2019.
[5] ISO/DIS-23247-1, Automation systems and integration–digital twin framework for

manufacturing–part 1: Overview and general principles, 2020.
[6] E. Glaessgen, D. Stargel, The digital twin paradigm for future nasa and us air force vehicles,

in: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials
conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA, 2012, p.
1818.

[7] A. M. Lund, K. Mochel, J.-W. Lin, R. Onetto, J. Srinivasan, P. Gregg, J. E. Bergman, K. D.
Hartling, A. Ahmed, S. Chotai, et al., Digital twin interface for operating wind farms, 2018.
US Patent 9,995,278.

[8] M. Siemens, For a digital twin of the grid: Siemens solution enables a single digital grid
model of the finnish power system (2017). URL: https://assets.new.siemens.com/siemens/
assets/api/uuid:09c20834-4ed4-49d8-923d-ebcc541cab37/inno2017-digitaltwin-e.pdf.

[9] F. Tao, M. Zhang, Digital twin shop-floor: A new shop-floor paradigm towards smart
manufacturing, IEEE Access 5 (2017) 20418–20427.

[10] X. V. Wang, L. Wang, Digital twin-based WEEE recycling, recovery and remanufacturing
in the background of industry 4.0, Int. J. Prod. Res. 57 (2019) 3892–3902.

[11] T. Catarci, D. Firmani, F. Leotta, F. Mandreoli, M. Mecella, F. Sapio, A conceptual architec-
ture and model for smart manufacturing relying on service-based digital twins, in: ICWS,
IEEE, 2019, pp. 229–236.

[12] B. Pernici, P. Plebani, M. Mecella, F. Leotta, F. Mandreoli, R. Martoglia, G. Cabri, et al.,
Agilechains: agile supply chains through smart digital twins, in: Proc. Eur. Saf. Reliab.
Conf. Probab. Saf. Assess. Manag. Conf., Proceedings of the 30th European Safety and Reli-
ability Conference and 15th Probabilistic Safety Assessment and Management Conference,
Research Publishing Singapore, 2020, pp. 2678–2684.

[13] I. Pittaras, N. Fotiou, C. Karapapas, V. A. Siris, G. C. Polyzos, Secure, mass web of
things actuation using smart contracts-based digital twins, in: 2022 IEEE Symposium on
Computers and Communications (ISCC), 2022, pp. 1–6. doi:10.1109/ISCC55528.2022.
9912991.

[14] G. De Giacomo, M. Favorito, F. Leotta, M. Mecella, L. Silo, Digital twins composition via

https://assets.new.siemens.com/siemens/assets/api/uuid:09c20834-4ed4-49d8-923d-ebcc541cab37/inno2017-digitaltwin-e.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:09c20834-4ed4-49d8-923d-ebcc541cab37/inno2017-digitaltwin-e.pdf
http://dx.doi.org/10.1109/ISCC55528.2022.9912991
http://dx.doi.org/10.1109/ISCC55528.2022.9912991

markov decision processes, in: ITBPM@BPM, volume 2952 of CEUR Workshop Proceedings,
CEUR-WS.org, 2021, pp. 44–49.

[15] G. De Giacomo, M. Favorito, F. Leotta, M. Mecella, L. Silo, Modeling resilient cyber-
physical processes and their composition from digital twins via markov decision processes,
in: PMAI@IJCAI, volume 3310 of CEUR Workshop Proceedings, CEUR-WS.org, 2022, pp.
101–104.

[16] G. De Giacomo, M. Favorito, F. Leotta, M. Mecella, L. Silo, Digital twins composition
in smart manufacturing via Markov decision processes, Computers in Industry 149
(2023) 103916. URL: https://www.sciencedirect.com/science/article/pii/S0166361523000660.
doi:https://doi.org/10.1016/j.compind.2023.103916.

[17] G. De Giacomo, M. Favorito, F. Leotta, M. Mecella, F. Monti, L. Silo, Aida: A tool for
resiliency in smart manufacturing, in: CAiSE Forum, Lecture Notes in Business Information
Processing, Springer, 2023.

[18] A. L. Lemos, F. Daniel, B. Benatallah, Web service composition: a survey of techniques
and tools, ACM Computing Surveys (CSUR) 48 (2015) 1–41.

[19] J. Leng, S. Ye, M. Zhou, J. L. Zhao, Q. Liu, W. Guo, W. Cao, L. Fu, Blockchain-secured smart
manufacturing in industry 4.0: A survey, IEEE Trans. Syst. Man Cybern. Syst. 51 (2021)
237–252.

[20] S. Suhail, R. Hussain, R. Jurdak, C. S. Hong, Trustworthy digital twins in the industrial
internet of things with blockchain, IEEE Internet Comput. 26 (2022) 58–67.

[21] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella, Automatic composition
of e-services that export their behavior, in: International conference on service-oriented
computing, Springer, 2003, pp. 43–58.

[22] G. De Giacomo, M. Mecella, F. Patrizi, Automated service composition based on behaviors:
The roman model, in: Web Services Foundations, Springer, 2014, pp. 189–214.

[23] A. B. Pedersen, M. Risius, R. Beck, et al., A ten-step decision path to determine when to
use blockchain technologies, MIS Quarterly Executive 18 (2019) 99–115.

[24] J. Mendling, I. Weber, W. M. P. van der Aalst, J. vom Brocke, C. Cabanillas, F. Daniel, S. De-
bois, C. D. Ciccio, M. Dumas, S. Dustdar, A. Gal, L. García-Bañuelos, G. Governatori, R. Hull,
M. L. Rosa, H. Leopold, F. Leymann, J. Recker, M. Reichert, H. A. Reijers, S. Rinderle-Ma,
A. Solti, M. Rosemann, S. Schulte, M. P. Singh, T. Slaats, M. Staples, B. Weber, M. Weidlich,
M. Weske, X. Xu, L. Zhu, Blockchains for business process management - challenges and
opportunities, ACM Trans. Manag. Inf. Syst. 9 (2018) 4:1–4:16.

[25] C. Yu, L. Zhang, W. Zhao, S. Zhang, A blockchain-based service composition architecture
in cloud manufacturing, International Journal of Computer Integrated Manufacturing 33
(2020) 701–715.

[26] W. Viriyasitavat, L. Da Xu, Z. Bi, A. Sapsomboon, Blockchain-based business process man-
agement (bpm) framework for service composition in industry 4.0, Journal of Intelligent
Manufacturing 31 (2020) 1737–1748.

[27] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, J. Mendling, Untrusted business
process monitoring and execution using blockchain, in: BPM, volume 9850 of Lecture
Notes in Computer Science, Springer, 2016, pp. 329–347.

[28] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, F. Sui, Digital twin-driven product design,
manufacturing and service with big data, Int J Adv Manuf Technol 94 (2018) 3563–3576.

https://www.sciencedirect.com/science/article/pii/S0166361523000660
http://dx.doi.org/https://doi.org/10.1016/j.compind.2023.103916

doi:10.1007/s00170-017-0233-1.
[29] F. Tao, Q. Qi, L. Wang, A. Nee, Digital twins and cyber–physical systems toward smart

manufacturing and industry 4.0: Correlation and comparison, Engineering 5 (2019) 653–
661. doi:https://doi.org/10.1016/j.eng.2019.01.014.

[30] A. Rossmann, D. Hertweck, Digital twins: a meta-review on their conceptualization,
application, and reference architecture, in: Proceedings of the 55th Hawaii International
Conference on System Sciences (HICSS 2022), University of Hawai’i at Manoa, 2022, pp.
4518–4527.

[31] K. Y. H. Lim, P. Zheng, C.-H. Chen, A state-of-the-art survey of digital twin: techniques,
engineering product lifecycle management and business innovation perspectives, Journal
of Intelligent Manufacturing 31 (2020) 1313–1337. doi:10.1007/s10845-019-01512-w.

[32] S. Suhail, R. Hussain, R. Jurdak, A. Oracevic, K. Salah, C. S. Hong, R. Matulevičius,
Blockchain-based digital twins: Research trends, issues, and future challenges, ACM
Comput. Surv. 54 (2022).

[33] S. Huang, G. Wang, Y. Yan, X. Fang, Blockchain-based data management for digital twin
of product, Journal of Manufacturing Systems 54 (2020) 361–371.

[34] J. J. Hunhevicz, M. Motie, D. M. Hall, Digital building twins and blockchain for performance-
based (smart) contracts, Automation in Construction 133 (2022) 103981. doi:https://
doi.org/10.1016/j.autcon.2021.103981.

[35] C. P. Nielsen, E. R. da Silva, F. Yu, Digital twins and blockchain – proof of concept, Procedia
CIRP 93 (2020) 251–255. doi:https://doi.org/10.1016/j.procir.2020.04.104.

[36] H. R. Hasan, K. Salah, R. Jayaraman, M. Omar, I. Yaqoob, S. Pesic, T. Taylor, D. Boscovic,
A blockchain-based approach for the creation of digital twins, IEEE Access 8 (2020)
34113–34126.

[37] M. Dietz, B. Putz, G. Pernul, A distributed ledger approach to digital twin secure data
sharing, in: IFIP Annual Conference on Data and Applications Security and Privacy,
Springer, 2019, pp. 281–300.

[38] B. Putz, M. Dietz, P. Empl, G. Pernul, Ethertwin: Blockchain-based secure digital twin
information management, Inf. Process. Manag. 58 (2021) 102425.

[39] A. Angrish, B. Craver, M. Hasan, B. Starly, A case study for blockchain in manufactur-
ing:“fabrec”: A prototype for peer-to-peer network of manufacturing nodes, Procedia
Manufacturing 26 (2018) 1180–1192.

[40] B. Medjahed, A. Bouguettaya, A. K. Elmagarmid, Composing web services on the semantic
web, The VLDB journal 12 (2003) 333–351.

[41] J. Yang, M. P. Papazoglou, Service components for managing the life-cycle of service
compositions, Information Systems 29 (2004) 97–125.

[42] J. Cardoso, A. Sheth, Introduction to semantic web services and web process composition,
in: International Workshop on Semantic Web Services and Web Process Composition,
Springer, 2004, pp. 1–13.

[43] D. Wu, B. Parsia, E. Sirin, J. Hendler, D. Nau, Automating daml-s web services composition
using shop2, in: International semantic web conference, Springer, 2003, pp. 195–210.

[44] M. Pistore, A. Marconi, P. Bertoli, P. Traverso, Automated composition of web services by
planning at the knowledge level, in: IJCAI, volume 19, 2005, pp. 1252–1259.

[45] S. Mcllraith, T. C. Son, Adapting golog for composition of semantic web services, in: Proc.

http://dx.doi.org/10.1007/s00170-017-0233-1
http://dx.doi.org/https://doi.org/10.1016/j.eng.2019.01.014
http://dx.doi.org/10.1007/s10845-019-01512-w
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2021.103981
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2021.103981
http://dx.doi.org/https://doi.org/10.1016/j.procir.2020.04.104

International Conference on Knowledge Representation and Reasoning KRR, Toulouse,
France, 2002.

[46] R. Hull, Artifact-centric business process models: Brief survey of research results and
challenges, in: OTM Confederated International Conferences" On the Move to Meaningful
Internet Systems", Springer, 2008, pp. 1152–1163.

[47] R. Sahal, S. H. Alsamhi, K. N. Brown, Digital Twins Collaboration in Industrial Man-
ufacturing, Springer International Publishing, Cham, 2022, pp. 59–72. doi:10.1007/
978-3-031-11401-4_7.

[48] J. Wilhelm, C. Petzoldt, T. Beinke, M. Freitag, Review of digital twin-based interaction in
smart manufacturing: Enabling cyber-physical systems for human-machine interaction,
International Journal of Computer Integrated Manufacturing 34 (2021) 1031–1048. doi:10.
1080/0951192X.2021.1963482.

[49] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, M. Mecella, Automatic composition of
transition-based semantic web services with messaging, in: VLDB, volume 5, 2005, pp.
613–624.

[50] F. Leotta, M. Mecella, Realizing smart manufacturing architectures through digital twin
frameworks (2020).

[51] N. Szabo, Formalizing and securing relationships on public networks, First Monday 2
(1997).

[52] G. Adamson, L. Wang, M. Holm, P. Moore, Cloud manufacturing – a critical review of
recent development and future trends, International Journal of Computer Integrated
Manufacturing 30 (2017) 347–380. doi:10.1080/0951192X.2015.1031704.

[53] J. E. Kasten, Engineering and manufacturing on the blockchain: A systematic review, IEEE
Engineering Management Review 48 (2020) 31–47. doi:10.1109/EMR.2020.2964224.

[54] A. Mavridou, A. Laszka, Designing secure ethereum smart contracts: A finite state machine
based approach, in: Financial Cryptography, volume 10957 of Lecture Notes in Computer
Science, Springer, 2018, pp. 523–540.

[55] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, M. Mecella, Automatic composition
of transition-based semantic web services with messaging, in: VLDB, ACM, 2005, pp.
613–624.

[56] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, P. Traverso, Planning and monitoring
web service composition, in: Artificial Intelligence: Methodology, Systems, and Applica-
tions: 11th International Conference, AIMSA 2004, Varna, Bulgaria, September 2-4, 2004.
Proceedings 11, Springer, 2004, pp. 106–115.

[57] R. I. Brafman, G. De Giacomo, M. Mecella, S. Sardina, Service composition in stochastic
settings, in: Conference of the Italian Association for Artificial Intelligence, Springer, 2017,
pp. 159–171.

[58] G. Edelman, The father of web3 wants you to trust less, wired. com (2021).

http://dx.doi.org/10.1007/978-3-031-11401-4_7
http://dx.doi.org/10.1007/978-3-031-11401-4_7
http://dx.doi.org/10.1080/0951192X.2021.1963482
http://dx.doi.org/10.1080/0951192X.2021.1963482
http://dx.doi.org/10.1080/0951192X.2015.1031704
http://dx.doi.org/10.1109/EMR.2020.2964224

	1 Introduction
	2 Related Work
	3 Background
	3.1 Blockchains and Smart Contracts
	3.2 The Roman Model

	4 Motivating Example
	5 Framework
	5.1 High-level Overview
	5.1.1 Off-chain Layer
	5.1.2 On-chain Layer
	5.1.3 Communication Patterns

	5.2 Workflow
	5.2.1 Registration
	5.2.2 Composition
	5.2.3 Setup
	5.2.4 Execution

	6 Discussion
	7 Conclusion

