
The Referendum Problem in Anonymous Voting for
Decentralized Autonomous Organizations
Artem Grigor1,†, Vincenzo Iovino1,*,† and Giuseppe Visconti2,†

1Aragon ZK Research
2University of Salerno

Abstract
A natural approach to anonymous voting over Ethereum assumes that there is an off-chain aggregator
that performs the following task. The aggregator receives valid signatures of YES/NO preferences from
eligible voters and uses them to compute a zk-SNARK proof of the fact that the majority of voters have
cast a preference for YES or NO. Then, the aggregator sends to the smart contract the zk-SNARK proof,
the smart contract verifies the proof and can trigger an action (e.g., a transfer of funds). It is believed that
as the zk-SNARK proof guarantees anonymity, the privacy of the voters is preserved by attackers not
colluding with the aggregator. Moreover, if the SNARK proof verification is efficient the GAS cost will be
independent on the number of participating voters and signatures submitted by voters to the aggregator.

In this paper we show that this naive approach to run referenda over Ethereum can incur severe
security problems. We propose both mitigations and hardness results for achieving voting procedures in
which the proofs submitted on-chain are either ZK or succinct.

Keywords
blockchain, e-voting, zero-knowledge, consensus

1. Introduction

The main use of Voting on Ethereum network are to facilitate functioning of Decentralized Au-
tonomous Organizations (DAOs). DAOs are members-owned communities without centralized
leadership. Most of the DAOs that operate over the Ethereum network and are governed by
simple smart contracts. One of the main DAOs’ functionalities is to peform on-chain actions
such as transfers of funds to an account if a sufficient number of DAO’s members vote for that.

One of the main types of voting procedures for DAOs is the referendum. In a referendum, a
transfer (or any other on-chain action) is accepted and executed if there is support from the
majority of the voters, where voters can choose between supporting (casting YES options) and
opposing (casting NO option). Moreover, it is common for each voter to have a specific weight
based on the amount of their funds (token). For simplicity, hereafter we will suppose that each
voter has the same weight.

Recently, it is becoming more and more important for DAOs to be able to hold anonymous
referendum.[1] However, to tally such referendum a large amount of GAS needs to be consumed

5th Distributed Ledger Technology Workshop (DLT 2023), May 25–26, 2023, Bologna, Italy
*Corresponding author.
†
These authors contributed equally.
$ artem@aragon.org (A. Grigor); vincenzo@aragon.org (V. Iovino); peppevisconti93@gmail.com (G. Visconti)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:artem@aragon.org
mailto:vincenzo@aragon.org
mailto:peppevisconti93@gmail.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

on the Ethereum network, making voting financially impractical.1 To address this problem,
some researchers and engineers (e.g., [2, 1]) are proposing solutions that minimise the GAS
consumption on-chain as follows. The voting procedure is done off Ethereum chain (e.g., on
another Blockchain) where voters sign and cast YES/NO options without incurring any GAS
costs, and then an aggregator computes a non-interactive zero-knowledge (NIZK, in short) proof
𝜋 of the correct result of the election. The NIZK security guarantees that if the proof is accepted
by the corresponding NIZK Verifier, the result is correct. This allows to only send result and
its NIZK proof to the Verifier smart contract on the Ethereum network, thus reducing and
transferring the GAS costs from voters to the aggregator.

More precisely, the system works as follows. The public-keys (PKs) of the 𝐷 eligible voters
are arranged in a Merkle Tree [3] whose root 𝐶 is called the census. Each voter signs his own
preference using their own PK and sends it to an aggregator. Suppose that 𝑘0, 𝑘1 voters submit
a NO and YES preference respectively. The aggregator creates a NIZK proof to prove knowledge
of 𝑘0 signatures for NO and 𝑘1 signatures for YES, where each signature is verified to correspond
to one of the PKs in the Merkle tree with census 𝐶 . Moreover, the proof guarantees that the
signatures come from distinct eligible voters.

Using general-purpose succinct NIZK proofs (called SNARKs) [4, 5], the scheme can be further
improved to minimize GAS consumption on Ethereum. For instance, in the Groth’s SNARK
[4] the proof can be verified using 3 pairings and 𝑡 exponentiations where 𝑡 is the number of
elements of the public statement. Which would allow to have GAS cost independent of the
referendum size.

Recursive proofs. We motivated the problem in the context of recorded voting in which the
aggregators can completely break the privacy of the voters. This is without loss of generality, in
fact our analysis and results also applies to solutions in which the aggregators receive instead
anonymous proofs of membership (rather than plain signatures). Restricting the attention to non-
anonymous solutions makes our results stronger. Currently many engineers and researchers
are actively working on recursive proofs [6, 7] and one of the natural applications of them is
to minimize the GAS costs of anonymous voting solutions [1]. Our results show that while
recursive proofs can still be useful to minimize GAS costs of anonymous voting solutions for
web3, it is not clear how to use them to achieve constant GAS time limit.

The problem. At first sight it may seem that zk-SNARKs allow to minimize GAS cost while
preserving verifiability and privacy. However, this is because we overlook the following problem:

What if there are several proofs with conflicting result received by the smart
contract? In this case, which result should be accepted by the smart contract?

First of all, we clarify why there can be no single aggregator authorized by the contract
to submit proofs, which allows us to reason that we could have multiple conflicting proofs
submitted to the contract. In the rest of this paper we will investigate how to manage these
conflicting proofs.

1GAS is a measure of computation cost on Ethereum in abstract units. If multiplied by GAS cost it provides the real
cost of the execution of a transaction in Eth units.

Observe that we have two mutually exclusive cases.

• There is a single aggregator authorized by the contract to send data to the smart contract.
We show that such case is insecure as the authorized aggregator has the capacity to cheat
and thus for the security of our system we need to consider an alternative case.
In order to see this, let us consider a case when there is at least one valid signature for
either YES or NO. Let 𝑃 be the authorized aggregator. Then 𝑃 can simply submit an
arbitrary result. For instance, despite receiving (𝑘1, 𝑘2) signatures for YES and NO, the 𝑃
can send to the contract proof that there are (𝑘′1, 𝑘

′
2) signatures for YES and NO, where

𝑘′1 ≤ 𝑘1, 𝑘
′
2 ≤ 𝑘2. Which gives 𝑃 the ability to sway results in arbitrary directions in 𝑆2.

So, using SNARK proofs does not guarantee the correctness of the submitted election
results by 𝑃 .
This implies that we still need to trust the authorised aggregator 𝑃 .

• There is no single aggregator authorized by the contract to submit proofs. In this case, it
can be that two aggregators, 𝑃1 and 𝑃2, submit different proofs. This can be achieved by
both 𝑃1 and 𝑃2 omitting different voters’ ballots from their proofs. This implies that we
might end up in a situation where there are multiple conflicting proofs submitted to the
contract, which we will investigate further in the paper.

2. The referendum problem in web3 voting for DAOs

Suppose the eligible voters are 𝐴, 𝑉,𝑅,𝐶,𝑀,𝐵, 𝐽, 𝑆.
In the following we suppose that there are different aggregators running on nodes 𝑁1, 𝑁2,
Suppose that the smart contract receives from node 𝑁1 a SNARK proof 𝜋1 of the claim that

the result of the referendum is (3, 2), that is 3 votes for YES and 2 for NO signed by different
eligible voters in the census.2

The knowledge soundness of the SNARK guarantees that there actually exist 3 signatures
for YES and 2 for NO and that those signatures are from different eligible voters. Suppose that
these signatures for YES correspond to (𝐴, 𝑉,𝑅) and the ones for NO to (𝐶,𝑀), precisely let
us suppose that the aggregator running on node 𝑁1 produced the proof 𝜋1 after having received
3 YES signatures from (𝐴, 𝑉,𝑅) and 2 NO signatures from (𝐶,𝑀).

The smart contract cannot accept the first incoming proof: indeed, it might be the case that
node 𝑁1 received instead 3 signatures for YES from (𝐴, 𝑉,𝑅) and 5 signatures for NO from
(𝐶,𝑀,𝐵, 𝐽, 𝑆) and 𝑁1 did not take in account the signatures of (𝐵, 𝐽, 𝑆) for the computation
of the proof 𝜋1. So the smart contract actually needs to wait for more incoming proofs3 𝜋2, ..., 𝜋𝑛
for some 𝑛 ≥ 1 in a given window of time. Then, from the 𝑛 received proofs the smart contract
must decide the result of the election (YES, NO or TIE).

Our setting and threat model. In our setting nodes are computers over the world that can
submit information to the smart contract. Since the smart contract has no authentication, the
2Hereafter, we implicitly suppose that the claim is with respect to a known census but we omit this detail for
simplicity.

3Hereafter, we will sometimes assume that a proof is associated with a claim of the form (𝑘0, 𝑘1), for two integers
𝑘1, 𝑘2 ≥ 0.

smart contract may not know which information comes from which node. In our setting, we
assume that an attacker has the following capabilities:

1. The attacker can control multiple nodes. For each controlled node, the attacker waits for
signatures from voters (both honest and dishonest voters) and can use them to generate
proofs to send to the smart contract.

2. The attacker can observe signatures sent by honest voters to other nodes, not under the
attacker’s control, and replay them to the attackers’ controlled nodes. That is the attacker
can do copy-and-paste attacks.

3. The attacker is capable of corrupting a subset of voters.

Moreover, we clarify that means for a node to be honest. We provide this notion for respec-
tively two different protocol classes. One class of protocols prescribes that honest voters must
send their votes to a fixed node (or set of nodes). In this case, with a slight abuse of notation,
we can say that this node specified by the protocol is the honest node, meaning that it is the
node to which honest voters are required to send their votes (if a voter does not send his own
vote to that node, such voter acts maliciously). The other class of protocols instead just gives
freedom to the voters to either send their own vote to the smart contract directly (in this case
the voter acts as a node) or use any other node over the network as an aggregator. In this case, a
node is honest if it acts as an aggregator prescribed by the protocol. In this context, a dishonest
node could for example compute proofs with respect to a smaller subset of signatures, possibly
removing signatures to its like.

Policy and properties. We term policy the procedure that the smart contract implements to
decide the result of the election (YES or NO or TIE) based on the 𝑛 received proofs.

A good policy could be one that satisfies the following property 𝑃1. Before defining 𝑃1, we
need some definition and notational conventions. Consider the set 𝑆𝑌 (𝑆𝑁) of voters who cast a
vote for YES (NO) to some node (any computer in the world). Then 𝑆𝑌 (resp. 𝑆𝑁) includes 𝑣 iff
a voter 𝑣 sent a YES (resp. NO) to some (possibly dishonest) node. Let Bad = 𝑆𝑌 ∩ 𝑆𝑁 , that is
the set of bad voters who cast a vote both for YES and NO, and let us denote by 𝑆′

𝑌 = 𝑆𝑌 −Bad
and 𝑆′

𝑁 = 𝑆𝑁 − Bad the new sets in which we remove the bad voters. So for example, if voter
𝑣 is the only one who sent both YES and NO votes to different nodes, then 𝑆′

𝑌 and 𝑆′
𝑁 are

identical to 𝑆𝑌 and 𝑆𝑁 except that they do not include 𝑣. Then, the property 𝑃1 is formalized
as follows.

• Property 𝑃1: a policy is good if the decision output by the policy is equal to YES if
|𝑆′

𝑌 | > |𝑆′
𝑁 |, is equal to NO if |𝑆′

𝑁 | > |𝑆′
𝑌 | and is equal to TIE if |𝑆′

𝑌 | = |𝑆′
𝑁 |.

What property 𝑃1 entails in the real world. As stated, property 𝑃1 may seem nonsensical
or unachievable: indeed, requiring that the decision output by the policy should be related to all
votes recorded on any node over the world seems too strong. The justification of the property is
that we can instead assume that if a vote was recorded over a node 𝑁 , the node 𝑁 will commit
to this vote on-chain by sending a proof computed with a set of signatures that includes the one
corresponding to this vote (and possibly others). Observe that, in order to make this reasoning
sound, we must assume that our proofs are binding in the following sense. Proof for a given

claim is binding if it can be opened (by revealing the random coins and the witness used to
produce it) only with a unique set of signatures compatible with that claim.4 Henceforth, we
will assume that the proofs computed by honest nodes have such property.

Therefore, we can assume that the sets 𝑆𝑌 and 𝑆𝑁 have been committed to the smart contract
and so it is meaningful to require that the smart contract should accept the decision given by
property 𝑃1 that in this case would be relative to votes that are recorded on the smart contract
itself (and not on arbitrary nodes spread over the world).

Finally, a natural question is the following: why in protocols in which honest voters have
a fixed node (or set of nodes) to which to send their votes, property 𝑃1 should be regarded
as good? More precisely, if there is an honest node, why should be the decision based on
votes recorded outside such an honest node? The reason is that the smart contract has no
authentication and thus has no possibility of establishing who is the honest node. For this
reason, property 𝑃1 seems reasonable even for this class of protocols. Later on, we will discuss
an alternative property that is restricted to only this class of protocols.

Unsatisfactory solution 1. One can think that the following policy is somehow ”good”: from
the many accepted proofs consider the one with the highest number of total votes and outputs
the result given in that proof.

Consider as before a node 𝑁1 that receives 3 YES votes from (𝐴, 𝑉,𝑅) and 5 NO votes from
(𝐶,𝑀,𝐵, 𝐽, 𝑆) and computes a proof 𝜋1 for the claim (3, 2) from the YES votes of (𝐴, 𝑉,𝑅)
and the NO votes of (𝐶,𝑀) without taking in account the NO signatures of (𝐵, 𝐽, 𝑆) for the
computation of 𝜋1. Consider now a node 𝑁2 that received YES votes from (𝐴, 𝑉,𝑅,𝐶) and NO
votes from (𝑀,𝐵, 𝐽) and sends the corresponding proof 𝜋2 of the result (4, 3) to the smart
contract. Observe that 𝐶 has been malicious because he sent to 𝑁1 a NO vote and to 𝑁2 a YES
vote. Suppose that a third node 𝑁3 received YES votes from (𝐴) and NO from (𝐵, 𝐽, 𝑆).

Node 𝑁3 based on these signatures sends to the smart contract a proof 𝜋3 of the result (1, 3).
Suppose that the time window to submit proofs ended and no more proofs can be sent to the
smart contract that must compute the final decision based on all proofs received until now. The
smart contract received the following pairs of proofs and claims:

• Proof 𝜋1 for (3, 2) from 𝑁1 computed with YES votes of (𝐴, 𝑉,𝑅) and NO votes of
(𝐶,𝑀).

• Proof 𝜋2 for (4, 3) from 𝑁2 computed with YES votes of (𝐴, 𝑉,𝑅,𝐶) and NO votes of
(𝑀,𝐵, 𝐽).

• Proof 𝜋3 for (1, 3) from 𝑁3 computed with YES vote of (𝐴) and NO votes of (𝐵, 𝐽, 𝑆).

So the proof with the highest number of votes is the second and this corresponds to a YES
result that will be the result announced by the smart contract. Observe that only 𝑁1 has been
malicious in removing the NO signatures of (𝐵, 𝐽, 𝑆). The other nodes acted honestly based on
the signatures they received. Consider what each voter did:

• 𝑉,𝑅: sent a YES vote to nodes 𝑁1, 𝑁2 and nothing else.
• 𝑀 : sent a NO vote to nodes 𝑁1, 𝑁2 and nothing else.

4SNARK proofs can be combined with commitments to satisfy this property.

• 𝐴: sent a YES vote to all nodes 𝑁1, 𝑁2, 𝑁3 and nothing else.
• 𝐶 : sent a NO vote to node 𝑁1 and a YES vote to node 𝑁2 and nothing else.
• 𝑆: sent a NO vote to both 𝑁1 and 𝑁3 and nothing else.
• 𝐵, 𝐽 : sent a NO vote to all nodes 𝑁1, 𝑁2, 𝑁3 and nothing else.

Thus, removing the bad voter 𝐶 that voted both for YES and NO, we have that (𝐴, 𝑉,𝑅) voted
only for YES (possibly replicating the votes to different nodes) and the voters (𝑀,𝐵, 𝐽, 𝑆) voted
only for NO (possibly with replication). Therefore, the actual result should be NO according to
property 𝑃1 but the policy outputs YES.

In the previous counter-example, we were implicitly assuming that honest voters have no
fixed set of nodes to which to send their votes. However, the counter-example can be also
requested for protocols in which the honest voters have a fixed node (or set of nodes) to which
to send their votes. In fact, suppose that honest voters are prescribed to send their votes to node
𝑁3. In that case, whenever before we said that, for instance, 𝐴 sent a YES vote to all nodes,
we actually mean that 𝐴 honestly sent the YES vote to just node 𝑁3. Then attacker copied
this vote and replicated it on nodes 𝑁1 and 𝑁2. Whenever we said that, for instance, 𝑀 sent
a NO vote to nodes 𝑁1, 𝑁2 we actually mean that the attacker corrupts 𝑀 so, having access
to 𝑀 ’s secret key, the attacker can generate any signatures on behalf of 𝑀 and send them to
𝑁1, 𝑁2. So, in the previous counter-example, we would have that (𝑀,𝐶, 𝑉,𝑅) were corrupted
and (𝐴,𝑆,𝐵, 𝐽) were honest.

Unsatisfactory solution 2. One can think of the following alternative solution to the ref-
erendum problem. We restrict attention to protocols in which honest voters send their votes
to a single honest node. We provide such an assumption as a set of honest nodes can be for
simplicity reduced to a single honest node using consensus algorithms.

Then, we can propose the following alternative property 𝑃2.

• Property 𝑃2: a policy is good if the decision output by the policy corresponds to the result
consistent with the signatures received by the trusted node removing bad voters who
sent to the trusted node votes for both YES and NO. That is if the trusted node (recall that
we are assuming for simplicity that the set of trusted nodes reduces to a single trusted
node) received 𝑚 signatures for YES and 𝑛 for NO and 𝑚 > 𝑛 the result is YES, etc.

Then, one can think that the following policy is good for property 𝑃2: from the many accepted
SNARK proofs consider the one with the highest number of total votes and outputs the result
given in that proof. Notice that the policy is the same as before but we now request that it
satisfy a different property.

We show that this policy is still not good with respect to property 𝑃2. In fact, in the previous
counter-example, we can think of node 𝑁3 as being the honest one.

Then, the voters (𝐴,𝑆,𝐵, 𝐽) are honest because they never send contradictory results to
different nodes. However, we assumed that some of them sent votes not just to node 𝑁3 but
also to others (e.g., 𝐴 sends votes not just to 𝑁3 but also to 𝑁1, 𝑁2).

This can be seen as contradicting the honesty of such voters. This is instead not correct: it
could be that such voters have been honest in sending their own signatures of just the node 𝑁3

but the attacker(s) did copy-and-paste attacks to copy such signatures also on other nodes.

So, according to our policy, the smart contract will select the second proof for the result (4, 3)
and so will output YES. But, by definition of property 𝑃2 the result would have been the one
contained in node 𝑁3 and 𝑁3 received a single signature for YES from (𝐴) and 3 signatures for
NO from (𝑆,𝐵, 𝐽), so the result should have actually been NO.

Alternative formulation of the previous attack. The previous attack can be reformulated
as follows. There is an honest party representing a node (or set of nodes) that implements a
public blockchain; in the previous formulation, this is the node 𝑁3.

The voters (𝐴,𝑆,𝐵, 𝐽) are honest and in particular, (𝐴) sent a YES signature to the blockchain
and the others send a NO signature. The node running this blockchain then sends a proof 𝜋
for the result (1, 3) to the smart contract (this proof corresponds to proof 𝜋3 in our previous
formulation of the attack).

Then, there is an attacker that can corrupt the other eligible voters (𝑉,𝑅,𝑀,𝐶) and read the
public blockchain. The attacker can generate proof for the result (4, 3) using YES signatures
of (𝑉,𝑅,𝐴,𝐶) and NO signatures of (𝑀,𝐵, 𝐽). Note that 𝐴,𝐵, 𝐽 are not corrupted but the
attacker can generate signatures for them by just copying their signatures from the public
blockchain.

The attacker sends such proof 𝜋′ to the smart contract (this corresponds to the proof 𝜋2 in
the previous formulation of the attack). Now according to the policy (the one that selects the
proof with the highest number of total votes), the result YES corresponding to the tally (4, 3) is
selected rather than NO corresponding to the tally (1, 3) appearing on the public blockchain.

Is property 𝑃2 preferable to property 𝑃1? One can think that intuitively property 𝑃2

is somehow preferable because it selects a result consistent with a public blockchain whose
"truth" is agreed upon by honest parties. Unfortunately, we show that if property 𝑃2 is what we
really want, we end up restricting the class of solutions we can adopt to solve the referendum
problem.

Imagine that our SNARKs have the following magic aggregation property better explained
by example. Suppose that a proof 𝜋1 of the result (1, 2) was computed by YES signature of
(𝐴) and NO signatures of (𝑉,𝑀) and that a proof 𝜋2 of the result (2, 1) was computed by YES
signatures of (𝐴,𝑀) and NO signature of (𝑆).

Then, from these two proofs, anyone can compute a new proof 𝜋 of the result (1, 2) corre-
sponding to single YES signature of (𝐴) and NO signatures of (𝑉, 𝑆). Note that we removed
any signature of 𝑀 from the counting because 𝑀 can be seen as a bad voter who voted both
YES and NO and we did not count twice 𝐴 (𝐴 might be honest but subject to a copy-and-paste
attack). Suppose also that the new proof somehow preserves privacy and is still succinct.

This ideal cryptographic primitive can be seen as a solution to the referendum problem while
preserving privacy and succinctness. Indeed, consider the example in the paragraph of the
”Unsatisfactory Solution 1” and suppose that 𝑁2 is the honest node to which honest voters send
their votes.

From the 3 proofs 𝜋1, 𝜋2, 𝜋3, anyone can generate a single proof 𝜋 of the result (3, 3) corre-
sponding to YES signatures of (𝐴, 𝑉,𝑅) and NO signatures of (𝐵, 𝐽, 𝑆) where the NO signatures
of 𝑀 has been removed because 𝑀 voted both YES and NO.

Then, notice that a policy that uses these aggregatable SNARKs to select the result would
output as result TIE. Unfortunately, according to property 𝑃2 the result should instead be YES
because the honest node 𝑁2 received 1 signature for YES and 3 signatures for NO.

Therefore we have that either 𝑃2 is not a wished property or this ideal aggregatable SNARK
primitive would not help. Observe that this problem would also occur if we considered an ideal
aggregatable variant of SNARKs that does not remove bad voters.

Summarizing the problem. The issues analyzed before arise from the fact that the smart
contract has no possibility of checking which node is honest and moreover, there is no blockchain
that acts as a single source of truth.

It seems perfectly legitimate to assume that a voter can replicate his own vote to different
nodes. But even if we considered this as a malicious action to be prohibited, we cannot check
that. Indeed, a SNARK proof hides who voted for which preference and from which entity the
signatures were collected. So, enforcing that replication is not carried out by any eligible voter
seems to clash with privacy and succinctness. Observe that our problem is seemingly a variant
of the Byzantine agreement problem.

Recasting. If recasting is allowed, for example for coercion-resistance, we cannot even deem
a voter to be bad if he sent contradictory results to different nodes. In that case, it seems even
harder to handle the result of the referendum. Since in this note, we attempted to show negative
counter-examples on the feasibility of handling referenda with privacy and succinctness, we
can for simplicity assume that recasting is not allowed.

3. Impossibility results

3.1. Impossibility for aggregatable NIZK

Hereafter, we assume the reader familiar with the notion of NIZK [8, 4]. Consider the following
notion of aggregatable non-interactive proof.

Definition 1. A non-interactive proof system (𝐾,𝑃, 𝑉), where 𝐾 is the algorithm to generate the
CRS, 𝑃 is the prover and 𝑉 the verifier, is aggregatable if it is endowed with an efficient aggregator
algorithm Agg that satisfies the following property.

Let 𝑖 ∈ {1, 2}. In the following let 𝜎 be the CRS output of 𝐾 on the security parameter.
Let 𝜋1 be a proof computed by 𝑃 with CRS 𝜎 and claim that there is a single YES signature and

0 NO signatures computed with witness consisting of a YES signature of voter 𝑖 computed with its
secret-key Sk𝑖.

Let 𝜋2 be a proof computed by 𝑃 with CRS 𝜎 and claim that there is a single YES signature and
0 NO signatures computed with witness consisting of a YES signature of voter 1 computed with its
secret-key Sk1.

Let 𝜋′ be the output of Agg(𝜎, 𝜋1, 𝜋2).
Let 𝑐1 be the claim that there is a single YES signature and 0 NO signatures and let 𝑐2 be the

claim that there are two YES signatures and 0 NO signatures.
Then the following properties hold.

• Property 𝐹1. If 𝑖 = 1 then: 𝑉 (𝜎, 𝑐1, 𝜋
′) = 1 and 𝑉 (𝜎, 𝑐2, 𝜋

′) = 0.

• Property 𝐹2. If 𝑖 = 2 then: 𝑉 (𝜎, 𝑐2, 𝜋
′) = 1.

Observe now that if SNARK satisfied the above notion of aggregation then it could be used
in the obvious way to guarantee Property 1 discussed in Section 2. In the rest of this section,
we prove the following theorem.

Theorem 1. There exists no aggregatable NIZK.

Proof 1. To show that an aggregatable non-interactive proof system cannot be zero-knowledge we
now construct an adversary Adv against the ZK property. Recall that Adv is given access to an
oracle 𝑂 that can be either the honest prover oracle, that we will denote 𝑃 ′, or the simulator oracle,
that we will denote 𝑆′.
Adv takes as input a CRS 𝜎 and does the following.
Adv picks 𝑖 at random from the set {1, 2}. Adv computes the pairs of public- and secret- keys for

voters 1, 2 and YES signatures 𝜎1, 𝜎2 for them. Adv computes the census based on the public-keys
of the two voters and witness 𝑤 consisting of 𝜎𝑖.

Let 𝑐1 be the claim that there is a single YES signature and 0 NO signatures and let 𝑐2 be the
claim that there are two YES signatures and 0 NO signatures.

Adv asks to the oracle a proof for the claim 𝑐1 and witness 𝑤 and gets 𝜋1 from the oracle.
Adv computes 𝜋2 invoking the prover on the CRS 𝜎, the claim 𝑐1 and the witness 𝜎1. Adv also

computes 𝜋′ ← Agg(𝜎, 𝜋1, 𝜋2).
If 𝑉 (𝜎, 𝑐1, 𝜋

′) = 1 and 𝑉 (𝜎, 𝑐2, 𝜋
′) = 0, Adv outputs 1 to denote that he guesses that the oracle

was 𝑃 ′, outputs 0 otherwise to denote that he guesses that the oracle was 𝑆′.
Analysis of Adv.
Let 𝐻 be the event that Adv outputs 1. Let 𝐸 be the event that the oracle is equal to 𝑆′ and the

CRS 𝜎 was simulated. Let 𝐹 be the event that the oracle is 𝑃 ′ and CRS 𝜎 is honestly computed.
Then, it holds the following. By property 𝐹1 we have that (𝐴) Prob[𝐻|𝐹 ∧ 𝑖 = 1] = 1, and

(𝐵) Prob[𝐻|𝐹 ∧ 𝑖 = 2] = 0.
Since 𝜋1 is independent on 𝑖 when 𝑂 = 𝑆′ then (C) Prob[𝐻|𝐸 ∧ 𝑖 = 1] = Prob[𝐻|𝐸 ∧ 𝑖 = 2].
By ZK, |Prob[𝐻|𝐸 ∧ 𝑖 = 1]−Prob[𝐻|𝐹 ∧ 𝑖 = 1]| = 𝑛2, for some negligible function 𝑛2 of

the security parameter and then, by (𝐴), it follows that (𝐴′) Prob[𝐻|𝐸 ∧ 𝑖 = 1] = 1 + 𝑛1.
By ZK, |Prob[𝐻|𝐸 ∧ 𝑖 = 2]−Prob[𝐻|𝐹 ∧ 𝑖 = 2]| = 𝑛3, for some negligible function 𝑛3 of

the security parameter and then, by (𝐵), it follows that (𝐵′) Prob[𝐻|𝐸 ∧ 𝑖 = 2] = 𝑛3.
Therefore, (𝐴′), (𝐵′), (𝐶) imply 1 + 𝑛1 = 𝑛3, a contradiction.

On Fully Homomorphic NIZKs of [9]. It may seem that our theorem contradicts the
existence of fully homomorphic NIZKs of [9]. However, the latter notion only applies to
recursive circuit composition in which the output of two or more circuits is given as input to an
upper level circuit; this is weaker than needed by our notion of aggregatable NIZKs.

3.2. A mitigation to the referendum problem: trading privacy for succinctness

The above impossibility result can be somehow bypassed as follows.

Each eligible voter 𝑣, beyond a signature, also sends to the node a value of the form
Hash(Sk𝑣, 𝑖𝑑) where id is the identifier of the election and Sk𝑣 is his own secret-key. Each
proof is accompanied by two lists, resp. the YES list and the NO list, of values of the form
Hash(Sk𝑣, id), wherein the first list includes the values corresponding to voters who cast a
preference for YES and in the second list one includes the values corresponding to voters who
cast a preference for NO.

So a proof for 2 YES from (𝐴,𝑀) and 2 NO from (𝐶, 𝐽) would come with the two lists
(Hash(Sk𝐴, id),Hash(Sk𝑀 , id)) and (𝐻𝑎𝑠ℎ(Sk𝐶 , id), 𝐻𝑎𝑠ℎ(Sk𝐽 , id)). Moreover, the two lists
are hashed into a digest 𝐻 and the SNARK circuit needs to check if 𝐻 corresponds to the two
lists and that for each element ℎ in the list the secret-key in the pre-image of ℎ corresponds to
one of the right eligible voters and if this voter signed a YES ℎ is in the first list and if this voter
signed a NO ℎ is in the second list.

In this way, if a YES vote for 𝐶 is counted in another proof the NO list in the second proof
will have the same value Hash(Sk𝐶 , id) from the YES list in the first proof and this bad voter
can be removed without disclosing his identity. After having removed all bad voters from all
proofs, the smart contract can just take the union of all non-bad voters for YES and NO and
tally them.

Note that the information submitted by each aggregator would grow linearly with the number
of voters. Moreover, observe that the above approach does not contradict the impossibility
result of aggregatable ZK proofs. Indeed, in the impossibility result, we are supposing the
statements to consist of only the claimed result and so be of size independent of the number of
voters who cast a vote. Instead, in the proposed mitigation the statement includes as auxiliary
information a list of values that depend on all the secret-keys of voters who cast a vote.

3.3. Impossibility for succinct aggregatable non-interactive proofs

Consider the following generalization of the previous notion of aggregatable non-interactive
proofs.

Definition 2. A non-interactive proof system (𝐾,𝑃, 𝑉) is aggregatable if it is endowed with an
efficient aggregator algorithm Agg that satisfies the following property.

Let 𝑆 be a set of voters. In the following let 𝜎 be the CRS output of 𝐾 on the security parameter.
Let 𝑐1 be the claim that there are |𝑆| YES signatures for voters in 𝑆 and 0 NO signatures, let 𝑐2

be the claim that there is a single YES signature and 0 NO signatures, and let 𝑐3 be the claim that
there are |𝑆|+ 1 YES signatures and 0 NO signatures.

Let 𝜋1 be a proof computed by 𝑃 with CRS 𝜎, claim 𝑐1 and witness consisting of YES signatures
of all voters 𝑖 ∈ 𝑆 computed with their respective secret-keys {Sk𝑖}𝑖∈𝑆 .

For all 𝑗 ∈ [𝐷], where 𝐷 is the total number of eligible voters in the census, it holds the following.
Let 𝜋2 be a proof computed by 𝑃 with CRS 𝜎, claim 𝑐2 and witness consisting of a YES signature

of voter 𝑗 computed with its secret-key Sk𝑗 .
Let 𝜋′ be the output of Agg(𝜎, 𝜋1, 𝜋2).
Then the following properties hold.

• Property 𝐹1. If 𝑗 ∈ 𝑆 then: 𝑉 (𝜎, 𝑐1, 𝜋
′) = 1 and 𝑉 (𝜎, 𝑐3, 𝜋

′) = 0.

• Property 𝐹2. If 𝑗 /∈ 𝑆 then: 𝑉 (𝜎, 𝑐3, 𝜋
′) = 1.

It is easy to show that a SNARK, satisfying the latter notion of aggregatability, might be used to
guarantee Property 1 discussed in Section 2 in the obvious way, so it would solve the referendum
problem. In the rest of this section we prove that no non-interactive proof system can be both
aggregatable (in the sense of Def. 2) and succinct.

Kolmogorov Complexity. We now recall some basic facts about Kolmogorov
Complexity.[10]

Definition 3. Let 𝑛 be an integer > 0. A string 𝑤 ∈ {0, 1}⋆ has Kolmogorov complexity ≥ 𝑛 if
there exists no computer program of length < 𝑛 that (without any input) outputs 𝑤. In symbols we
write 𝐾𝐶(𝑤) ≥ 𝑛.

A string 𝑤 ∈ {0, 1}⋆ has conditional Kolmogorov complexity ≥ 𝑛 given another string 𝑦 ∈
{0, 1}⋆ if there exists no computer program of length < 𝑛 that, on input 𝑦, outputs 𝑤. In symbols
we write 𝐾𝐶(𝑤|𝑦) ≥ 𝑛.

The following lemma follows from the pigeon principle.

Lemma 1. Let 𝑛 > 0. The set {0, 1}𝑛 contains at least one string 𝑤 such that 𝐾𝐶(𝑤) ≥ 𝑛.
Moreover, this holds even conditioning on any other string 𝑦 ∈ {0, 1}⋆, that is the set {0, 1}𝑛
contains at least one string 𝑤 such that 𝐾𝐶(𝑤|𝑦) ≥ 𝑛.

Theorem 2. A non-interactive proof system that is aggregatable in the sense of Def. 2 cannot
have proofs of length sublinear in the total number of eligible voters.

Proof 2. In the following we let 𝑠 be the list of all pairs of public- and secret-keys of all voters.
Observe that the census can be computed from 𝑠.

For any string 𝑥 ∈ {0, 1}⋆, the hamming weight hw(𝑥) is the number of bits of 𝑥 that are equal
to 1.

Given CRS 𝜎, and 𝑠 consider a string 𝑤 ∈ {0, 1}𝐷 such that 𝐾𝐶(𝑤|𝜎, 𝑠) ≥ 𝐷. The existence
of such string is guaranteed by Lemma 1.

For any 𝑧 ∈ {0, 1}𝑛, in the following we write 𝑃 (𝜎, (0, hw(𝑧)), 𝑧) to denote a proof computed
for the claim that there are 0 NO signatures and hw(𝑧) YES signatures computed with the YES
signatures of voters in the set {𝑖|𝑧𝑖 = 1}.

Consider the following program 𝐴 that depends on constants hw(𝑤), the total number of eligible
voters 𝐷, proof 𝜋1 ← 𝑃 (𝜎, (0, hw(𝑤), 𝑤), and takes as input CRS 𝜎 and string 𝑠 defined above.

𝐴[hw(𝑤),𝑚, 𝜋1](𝜎, 𝑠) computes the following.

• For all 𝑗 ∈ [𝐷] set 𝑒𝑗 ∈ {0, 1}𝑛 to be the string that is 1 in position 𝑗 and 0 elsewhere.
• Use 𝑠 to get the set of all public- and secret-keys of all 𝐷 eligible voters, and compute the

Merkle root census 𝐶 for them.
• Compute the YES signatures {𝜎𝑗}𝑗∈[𝐷] of all eligible voters.
• For 𝑗 from 1 to 𝑛 does the following.

– Compute 𝜋2 ← 𝑃 (𝜎, (0, 1), 𝑗).

– Compute 𝜋′ ← Agg(𝜎, 𝜋1, 𝜋2).

– Set 𝑧𝑗 = 1 if and only if 𝑉 (𝜎, (0, hw(𝑤) + 1), 𝜋′) = 0.

Output 𝑧

By properties 𝐹1, 𝐹2 of Def. 2, 𝐴 outputs 𝑧 = 𝑤. The length of 𝐴 is bounded by the length of 𝜋1,
the length of hw(𝑤), the constant 2 log(𝐷) needed to perform the loops and another constant 𝑐.
So, |𝐴| ≤ |𝜋1|+ |hw(𝑤)|+ 2 log(𝐷) + 𝑐, that is, asymptotically, ≤ |𝜋1|+ 4 log(𝐷) that implies
𝐾𝐶(𝑤|𝜎, 𝑠) ≤ |𝜋1|+ 4 log(𝐷).

By the fact that 𝐾𝐶(𝑤|𝜎, 𝑠) ≥ 𝐷 we have that |𝜋1| + 4 log(𝐷) ≥ 𝐷 and thus |𝜋1| ≥
𝑛− 4 log(𝐷).

We conclude that there is no aggregatable non-interactive proof that has proofs of length sublinear
in the total number of eligible voters in the census.

References

[1] Nouns DAO, Private Voting Research Sprint, https://prop.house/nouns/
private-voting-research-sprint, 2023.

[2] Arnacube, R. B. Pau Escrich, A. Kampa, Ovote: Off-chain voting with on-chain trust-
less execution, https://github.com/aragonzkresearch/research/blob/main/drafts/ovote.pdf,
2023.

[3] R. C. Merkle, A digital signature based on a conventional encryption function, in:
C. Pomerance (Ed.), Advances in Cryptology – CRYPTO’87, volume 293 of Lecture Notes in
Computer Science, Springer, 1988, pp. 369–378.

[4] J. Groth, On the size of pairing-based non-interactive arguments, in: M. Fischlin, J. Coron
(Eds.), Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer Science, Springer,
2016, pp. 305–326.

[5] R. Gennaro, C. Gentry, B. Parno, M. Raykova, Quadratic span programs and succinct
NIZKs without PCPs, in: T. Johansson, P. Q. Nguyen (Eds.), Advances in Cryptology –
EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, Springer, 2013, pp.
626–645. doi:10.1007/978-3-642-38348-9_37.

[6] Polygon Hermez, use recursion to build ZK EvM, https://docs.hermez.io/zkEVM/Overview/
Overview/#hybrid-mode-for-on-chain-data-availability, 2023.

[7] Scroll, ZKEvM, https://scroll.io/blog/zkEVM, 2023.
[8] A. De Santis, S. Micali, G. Persiano, Non-interactive zero-knowledge proof systems, in:

C. Pomerance (Ed.), Advances in Cryptology – CRYPTO’87, volume 293 of Lecture Notes in
Computer Science, Springer, 1988, pp. 52–72.

[9] P. Ananth, A. Deshpande, Y. T. Kalai, A. Lysyanskaya, Fully homomorphic nizk and niwi
proofs, Cryptology ePrint Archive, Paper 2019/732, 2019. URL: https://eprint.iacr.org/2019/
732, https://eprint.iacr.org/2019/732.

[10] M. Li, P. Vitanyi, An introduction to Kolmogorov complexity and its applications, Springer
Verlag, 1997.

https://prop.house/nouns/private-voting-research-sprint
https://prop.house/nouns/private-voting-research-sprint
https://github.com/aragonzkresearch/research/blob/main/drafts/ovote.pdf
http://dx.doi.org/10.1007/978-3-642-38348-9_37
https://docs.hermez.io/zkEVM/Overview/Overview/##hybrid-mode-for-on-chain-data-availability
https://docs.hermez.io/zkEVM/Overview/Overview/##hybrid-mode-for-on-chain-data-availability
https://scroll.io/blog/zkEVM
https://eprint.iacr.org/2019/732
https://eprint.iacr.org/2019/732
https://eprint.iacr.org/2019/732

	1 Introduction
	2 The referendum problem in web3 voting for DAOs
	3 Impossibility results
	3.1 Impossibility for aggregatable NIZK
	3.2 A mitigation to the referendum problem: trading privacy for succinctness
	3.3 Impossibility for succinct aggregatable non-interactive proofs

	Bibliography

