
An AMMminimizing user-level extractable value and
loss-versus-rebalancing
Conor McMenamin1, Vanesa Daza1,2

1Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
2CYBERCAT - Center for Cybersecurity Research of Catalonia

Abstract
We present V0LVER, an AMM protocol which solves an incentivization trilemma between users, passive
liquidity providers, and block producers. V0LVER enables users and passive liquidity providers to interact
without paying MEV or incurring uncontrolled loss-versus-rebalancing to the block producer. V0LVER
is an AMM protocol built on an encrypted transaction mempool, where transactions are decrypted
after being allocated liquidity by the AMM. V0LVER ensures this liquidity, given some external market
price, is provided at that price in expectancy. This is done by incentivizing the block producer to move
the pool price to the external market price. With this, users transact in expectancy at the external
market price in exchange for a fee, with AMMs providing liquidity in expectancy at the external market
price. Under block producer and liquidity provider competition, all the fees in V0LVER approach zero.
Without block producer arbitrage, V0LVER guarantees fall back to those of an AMM, albeit free from
loss-versus-rebalancing and user-level MEV.

Keywords
Extractable Value, Decentralized Exchange, Decentralized Finance, Blockchain

1. Introduction

AMMs have emerged as a dominant medium for decentralized token exchange. This is due to
several important properties making them ideal for decentralized liquidity provision. AMMs
are efficient computationally, have minimal storage needs, matching computations can be done
quickly, and liquidity providers (LPs) can be passive. Thus, AMMs are uniquely suited to the
severely computation- and storage-constrained environment of blockchains.

Unfortunately, the benefits of AMMs are not without significant costs. For users sending
orders to an AMM, these orders are typically front-run, sandwiched, back-run, or censored
by the block producer in a phenomenon popularized as MEV [1]. Current estimates for MEV
against AMM users on Ethereum are upwards of $600M [2, 3]. By the nature of AMMs and their
continuous liquidity curves, the amount of MEV extractable from an order is increasing in order
impact (related in large part to order size and slippage tolerance). Thus, MEV effectively upper-
bounds the trade size allowable on current AMMs when compared to the costs for execution
on MEV-protected centralized exchanges. This is a critical barrier for DeFi, and blockchain
adoption in general.

DLT 2023: 5th Distributed Ledger Technology Workshop, May 25–26, 2023, Bologna, Italy
$ conor.mcmenamin1994@gmail.com (C. McMenamin); vanesa.daza@upf.edu (V. Daza)
� 0000-0002-5280-3273 (C. McMenamin); 0000-0003-0583-7929 (V. Daza)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:conor.mcmenamin1994@gmail.com
mailto:vanesa.daza@upf.edu
https://orcid.org/0000-0002-5280-3273
https://orcid.org/0000-0003-0583-7929
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Toxicity of Uniswap V3 Order Flow [6]. This graph aggregates the PnL of all trades on
the Uniswap V3 WETH/USDC pool, measuring PnL of each order after 5 minutes, 1 hour, and 1 day.
These are typical time periods within which arbitrageurs close their positions against external markets.
This demonstrates the current losses being suffered by AMM pools are significant, consistent, and
unsustainable. As LVR is significant and consistent, a large part of these losses can be prevented by
minimizing LVR.

Another significant cost for AMMs is definitively formalized in [4] as loss-versus-rebalancing
(LVR). It is proved that as the underlying price of a swap moves around in real-time, the discrete-
time progression of AMMs leave arbitrage opportunities against the AMM. In centralized finance,
market makers (MMs) typically adjust to new price information before trading. This comes at
a considerable cost to AMMs (for constant function MMs (CFMMs), [4] derives the cost to be
quadratic in realized moves), with similar costs for AMMs derived quantitatively in [5]. These
costs are being realized by LPs in current AMM protocols. Furthermore, toxic order flow, of
which LVR is a prime example, is consistently profiting against AMM LPs (Figure 1). These
costs together are dooming DeFi, with current AMM design clearly unsatisfactory. In this paper,
we provide V0LVER, an AMM protocol which formally protects against both order-level MEV
and LVR.

1.1. Our Contribution

In this paper we introduce V0LVER 1, an AMM which provides arbitrarily high protection
against user-level MEV and LVR. V0LVER is the first AMM to align the incentives of the three,
typically competing, entities in AMMs; the user, the pool, and the block producer. This is done
by ensuring that at all times, a block producer is incentivized to move the pool to the price
maximizing LVR. When the block producer chooses a price, the block producer is forced to
assert this is correct, a technique introduced in [7]. Unfortunately, the protocol in [7] gives the
block producer total power to extract value from users, due to order information being revealed
to the block producer before it is allocated a trading price in the blockchain. To address this,
V0LVER is built on an encrypted mempool. Modern cryptographic tools allow us to encrypt
the mempool using zero-knowledge based collateralized commit-reveal protocols [8, 9, 10, 11],

1near-0 Extractable Value and Loss-Versus-Rebalancing⇝ V0LVER

delay encryption [12, 13] and/or threshold encryption [14]. We assume the existence of such
a mempool within which all sensitive order information is hidden until the order has been
committed a price against the AMM. Given these encrypted orders, we demonstrate that a
block producer forced to show liquidity to such an order maximizes her own utility by showing
liquidity centred around the external market price (bid below the price and offered above the
price).2

As such, the external market price is the price point maximizing the block producers LVR
extraction (due to the replicated LVR protection of [7]), around which profit is maximized when
forced to trade against some (varying) percentage of indistinguishable orders. This strictly
incentivizes block producers to move the price of a V0LVER pool to the external market price.
This provides users with an AMM where the expected trade price in the presence of arbitrageurs
is always the external market price, excluding fees, and the LVR against the pool is minimized
when these arbitrageurs are competing. Although batching orders against AMM liquidity has
been proposed as a defense against LVR [16], naively batching orders against an AMM still
allows a block producer to extract LVR by censoring user orders. In V0LVER, block producers
are effectively forced to immediately repay LVR, while being incentivized to include order
commitments in the blockchain and allocate liquidity to these orders through the AMM.

1.2. Organisation of the Paper

Section 2 provides an overview of existing work on LVR protection the use of encrypted
mempools for order submission. Section 3 provides the terminology, definitions, and existing
AMM protocols needed to introduce and formally reason about V0LVER. Section 4 outlines the
V0LVER protocol, first introducing the protocol model in Section 4.1. This is followed by an
exhaustive description of each of the states and actions possible within the V0LVER protocol in
Section 4.2, culminating in a unified description of V0LVER in Section 4.3. Section 5 details the
properties of V0LVER, proving that V0LVER does indeed prevent MEV at the user-/order-level,
while providing arbitrarily high LVR protection for the liquidity providers. Section 6 discusses
some important considerations for the deployment of V0LVER. The paper concludes in Section
7.

2. Related Work

As the phenomenon of LVR has only recently been identified, there are only two academic
papers on the subject of LVR protection [17, 7] to the best of our knowledge, with no work
protecting against both LVR and user-level MEV.

In [17], the AMM must receive the price of a swap from a trusted oracle before users can
interact with the pool. Such sub-block time price data requires centralized sources which
are prone to manipulation, or require the active participation of AMM representatives, a
contradiction of the passive nature of AMMs and their liquidity providers. We see this as an
unsatisfactory dependency for DeFi protocols.

2This holds true in many CFMMs, including the famous Uniswap V2 protocol [15]

Our work is based on some of the techniques of the Diamond protocol as introduced in [7].
The Diamond protocol requires block producers to effectively attest to the final price of the block
given the orders that are to be proposed to the AMM within the block. This technique requires
the block producer to know exactly what orders are going to be added to the blockchain. This
unfortunately gives the block producer total freedom to extract value from users submitting
orders to the AMM. With V0LVER, we address this issue while keeping the LVR protection
guarantees of Diamond.

Encrypting the transaction mempool using threshold encryption controlled by a committee
has been proposed in [14] and applied in [18]. In [18], a DEX involving an AMM and based
on frequent batch auctions [19] is proposed. This DEX does not provide LVR resistance, and
incentivizes transaction censorship when a large LVR opportunity arises on the DEX. This is
protected against in V0LVER.

3. Preliminaries

This section introduces the key terminology and definitions needed to understand LVR, and the
proceeding analysis. In this work we are concerned with a single swap between token 𝑥 and
token 𝑦. We use 𝑥 and 𝑦 subscripts when referring to quantities of the respective tokens. The
external market price of a swap is denoted by 𝜖, with the price of a swap quoted as the quantity
of token 𝑥 per token 𝑦.

3.1. Constant Function Market Makers

A CFMM is characterized by reserves (𝑅𝑥, 𝑅𝑦) ∈ R2
+ which describes the total amount of each

token in the pool. The price of the pool is given by pool price function 𝑃 : R2
+ → R taking as

input pool reserves (𝑅𝑥, 𝑅𝑦). 𝑃 () has the following properties:

(a) 𝑃 () is everywhere differentiable, with
𝜕𝑃

𝜕𝑅𝑥
> 0,

𝜕𝑃

𝜕𝑅𝑦
< 0.

(b) lim
𝑅𝑥→0

𝑃 = 0, lim
𝑅𝑥→∞

𝑃 = ∞, lim
𝑅𝑦→0

𝑃 = ∞, lim
𝑅𝑦→∞

𝑃 = 0.

(c) If 𝑃 (𝑅𝑥, 𝑅𝑦) = 𝑝, then 𝑃 (𝑅𝑥 + 𝑐𝑝,𝑅𝑦 + 𝑐) = 𝑝, ∀𝑐 > 0.

(1)

These are typical properties of price functions. Property (a) states the price of 𝑦 is increasing
in the number of 𝑥 tokens in the pool and decreasing in the number of 𝑦 tokens. Property (b)
can be interpreted as any pool price value is reachable for a fixed 𝑅𝑥, by changing the reserves
of 𝑅𝑦 , and vice versa. Property (c) states that adding reserves to a pool in a ratio corresponding
to the current price of the pool does not change the price of the pool. These properties trivially
hold for the Uniswap V2 price function of 𝑅𝑥

𝑅𝑦
, and importantly allow us to generalize our results

to a wider class of CFMMs.
For a CFMM, the feasible set of reserves 𝐶 is described by:

𝐶 = {(𝑅𝑥, 𝑅𝑦) ∈ R2
+ : 𝑓(𝑅𝑥, 𝑅𝑦) = 𝑘} (2)

where 𝑓 : R2
+ → R is the pool invariant and 𝑘 ∈ R is a constant. The pool is defined by a

smart contract which allows any player to move the pool reserves from the current reserves

(𝑅𝑥,0, 𝑅𝑦,0) ∈ 𝐶 to any other reserves (𝑅𝑥,1, 𝑅𝑦,1) ∈ 𝐶 if and only if the player provides the
difference (𝑅𝑥,1 −𝑅𝑥,0, 𝑅𝑦,1 −𝑅𝑦,0).

Whenever an arbitrageur interacts with an AMM pool, say at time 𝑡 + 1 with reserves
(𝑅𝑥,𝑡+1, 𝑅𝑦,𝑡+1), we assume as in [4] that the arbitrageur always moves the pool reserves to a
point which maximizes arbitrageur profits, exploiting the difference between the pool reserves
from the previous block at time 𝑡, and the external market price at time 𝑡 + 1, denoted 𝜖𝑡+1.
Therefore, under this assumption, the LVR between two blocks 𝐵𝑡 and 𝐵𝑡+1 where the reserves
of the AMM at the end of 𝐵𝑡 are (𝑅𝑥,𝑡, 𝑅𝑦,𝑡) and the external market price when creating block
𝐵𝑡+1 is 𝜖𝑡+1 is:

𝑅𝑥,𝑡 −𝑅𝑥,𝑡+1 + (𝑅𝑦,𝑡 −𝑅𝑦,𝑡+1)𝜖𝑡+1. (3)

In this paper, we consider only the subset of CFMMs in which, given the LVR extracted in
block 𝐵𝑡+1 corresponds to reserves (𝑅𝑥,𝑡+1, 𝑅𝑦,𝑡+1), 𝑃 (𝑅𝑥,𝑡+1, 𝑅𝑦,𝑡+1) = 𝜖𝑡+1. This holds for
Uniswap V2 pools, among others.

3.2. LVR-resistant AMM

We provide here an overview of Diamond [7], an AMM protocol which has been proven to
provide arbitrarily high LVR protection under block producer competition to retain LVR. We
also explain how Diamond manages to retain LVR from the block producers. In V0LVER, we
adapt these features for use on an encrypted transaction mempool, necessary to further provide
MEV-protection to user orders. This adaption is explained in Section 4.

A Diamond pool Φ is described by reserves (𝑅𝑥, 𝑅𝑦), a pricing function 𝑃 (), a pool invariant
function 𝑓(), an LVR-rebate parameter 𝛽 ∈ (0, 1), and conversion frequency 𝑇 ∈ N. The authors
also define a corresponding CFMM pool of Φ, denoted CFMM(Φ). CFMM(Φ) is the CFMM pool
with reserves (𝑅𝑥, 𝑅𝑦) whose feasible set is described by pool invariant function 𝑓() and pool
constant 𝑘 = 𝑓(𝑅𝑥, 𝑅𝑦). Conversely, Φ is the corresponding V0LVER pool of CFMM(Φ). The
authors note that CFMM(Φ) changes every time the Φ pool reserves change. This is due to the
expected increase in pool reserve value in a Diamond pool compared to its corresponding CFMM
pool over any time period. Specifically, for any time 𝑡, and Diamond pool reserves (𝑅𝑥,𝑡, 𝑅𝑦,𝑡)
at that time, 𝐸(𝑓(𝑅𝑥,𝑡+1, 𝑅𝑦,𝑡+1)) > 𝑓(𝑅𝑥,𝑡, 𝑅𝑦,𝑡).The protocol progresses in blocks, with one
reserve update possible per block.

For an arbitrageur wishing to move the price of CFMM(Φ) to 𝑝 from starting reserves
(𝑅𝑥,0, 𝑅𝑦,0), let this require Δ𝑦 > 0 tokens to be added to CFMM(Φ), and Δ𝑥 > 0 tokens
to be removed from CFMM(Φ). The same price in Φ is achieved by the following process:

1. Adding (1− 𝛽)Δ𝑦 tokens to Φ and removing (1− 𝛽)Δ𝑥 tokens.
2. Removing 𝛿𝑥 > 0 tokens such that:

𝑃 (𝑅𝑥,0 − (1− 𝛽)Δ𝑥 − 𝛿𝑥, 𝑅𝑦,0 + (1− 𝛽)Δ𝑦) = 𝑝. (4)

These 𝛿𝑥 tokens are added to the vault of Φ.

Vault tokens are periodically re-entered into Φ through a vault conversion process (effectively
an auction process), where the tokens being re-added are in a ratio which approximates the
external market price at the time.

When a vault conversion process takes place, all tokens are of the same denomination. Half
of the tokens in the vault are auctioned among blockchain participants, with bids denominated
in the other pool token. Under enough competition, the expected revenue of such an auction
approximates the true value of the tokens being sold. We assume such competition in this paper.
With this, the revenue of a vault conversion is approximately the same value as the remaining
vault tokens. As such, the ratio of vault tokens to auction revenue tokens represent the true
value of the token swap, and can then be added back into the pool.

The main result of [7] is the proving that given a block producer interacts with Φ when the
LVR parameter is 𝛽, and there is an LVR opportunity of 𝐿𝑉 𝑅 in 𝐶𝐹𝑀𝑀(Φ), the maximum
LVR in Φ is (1− 𝛽)𝐿𝑉 𝑅. This result is stated formally therein as follows:

Theorem 1. For a CFMM pool 𝐶𝐹𝑀𝑀(Φ) with LVR of 𝐿 > 0, the LVR of Φ, the corresponding
pool in Diamond, has expectancy of at most (1− 𝛽)𝐿.

In this paper, we use the same base functionality of Diamond to restrict the LVR of block
producers. Given a block producer wants to move the price of 𝐶𝐹𝑀𝑀(Φ) to some price 𝑝 to
extract maximal LVR 𝐿𝑉 𝑅, the maximal LVR in Φ of (1− 𝛽)𝐿𝑉 𝑅 is also achieved by moving
the price to 𝑝. An important point to note about applying LVR rebates as done in [7], is that
directly after tokens are placed in the vault, the pool constant drops. This must be considered
when calculating the profitability of an arbitrageur extracting LVR from a Diamond pool. We do
this when analyzing the profitability of V0LVER in Section 5. Importantly, tokens are eventually
re-added to the pool, and over time the expected value of the pool constant is increasing, as
demonstrated experimentally in [7].

4. Protocol Description

We now outline the model in which we construct V0LVER, followed by a detailed description
of V0LVER.

4.1. Model

In this paper we consider a blockchain in which all transactions are attempting to interact
with a single V0LVER pool between tokens 𝑥 and 𝑦. For ease of terminology, we assume block
producers execute any and all arbitrage opportunities that exist between the external markets,
and the V0LVER pool. In reality, this arbitrage can be performed by arbitrageurs who pay block
producers for the right to execute V0LVER transactions, although it is the block producer who
profits from this arbitrage given competition among arbitrageurs.

1. A transaction submitted by a player for addition to the blockchain while observing
blockchain height 𝐻 , is finalized in a block of height at most 𝐻 + 𝑇 , for some known
𝑇 > 0.

2. The token swap has an external market price 𝜖, which follows a Martingale process.
3. There exists a population of arbitrageurs able to frictionlessly trade at external market

prices, who continuously monitor and interact with the blockchain.

4. Encrypted orders are equally likely to buy or sell tokens at the external market price,
distributed symmetrically around the external market price.

5. Users submit market orders, specifying an amount of tokens to sell only.3

4.2. Protocol Building Blocks

This section outlines the terminology and functionalities used in V0LVER, a commit-reveal
AMM protocol. This section is intended as a reference point to understand the core V0LVER
protocol. Specifically, we describe the possible transactions in V0LVER, the possible states that
V0LVER orders/order commitments can be in, and the possible actions of block producers. As
in the protocol of Section 3.2, a V0LVER pool Φ with reserves (𝑅𝑥, 𝑅𝑦) is defined with respect
to a CFMM pool, denoted 𝐶𝐹𝑀𝑀(Φ), with reserves (𝑅𝑥, 𝑅𝑦), a pricing function 𝑃 () under
the restrictions of Section 3.1, and a pool invariant function 𝑓().

4.2.1. Allocation Pools.

Orders in V0LVER are intended to interact with the AMM pool with some delay due to the
commit-reveal nature of the orders. Therefore, we need to introduce the concept of allocated
liquidity (liquidity set aside specifically for an order, or set of orders) to be used when orders
eventually get revealed. To do this, we define an allocation pool. For orders of size either 𝑠𝑖𝑧𝑒𝑥
or 𝑠𝑖𝑧𝑒𝑦 known to be of maximum size 𝑚𝑎𝑥𝑥 or 𝑚𝑎𝑥𝑦 , the allocation pool consists of (𝜆𝑥, 𝜆𝑦)
tokens such that:

𝑓(𝑅𝑥, 𝑅𝑦) = 𝑓(𝑅𝑥 +𝑚𝑎𝑥𝑥, 𝑅𝑦 − 𝜆𝑦) = 𝑓(𝑅𝑥 − 𝜆𝑥, 𝑅𝑦 +𝑚𝑎𝑥𝑦). (5)

For a given set of user orders and a corresponding allocation pool, let the total tokens being
sold by the user orders be 𝛿𝑥 and 𝛿𝑦 , with 𝛿𝑥 > 𝛿𝑦𝑃 (𝑅𝑥, 𝑅𝑦). That is, there are more token 𝑥
being sold by users than the token 𝑦 required to match user orders against each other at the
pool price 𝑃 (𝑅𝑥, 𝑅𝑦). This is an an imbalance.

Such an imbalance requires some additional Δ𝑦 tokens from the allocation pool to satisfy
the imbalance. The execution price 𝑝𝑒 of these orders is such that (𝛿𝑦 +Δ𝑦)𝑝𝑒 = 𝛿𝑥, and must
satisfy:

𝑓(𝑅𝑥, 𝑅𝑦) = 𝑓(𝑅𝑥 + (𝛿𝑥 − 𝛿𝑦𝑝𝑒), 𝑅𝑦 −Δ𝑦). (6)

With these two restrictions, we can solve for Δ𝑦 and 𝑝𝑒 given our specific pool pricing and
invariant functions.4 An example of batch settlement against an allocation pool with a Uniswap
V2 pool as the corresponding CFMM pool is provided at the end of Section 4.

These restrictions for calculating the execution price and tokens to be removed from the
allocation pool are not defined with respect to the tokens in the allocation pool. However, by
definition of the allocation pool reserves, there are sufficient tokens in the allocation pool to
handle any allowable imbalance (anything up to 𝑚𝑎𝑥𝑥 or 𝑚𝑎𝑥𝑦).

3We omit a description of how to execute limit orders against allocation pools for ease of notation, leaving a
specification of limit order execution as an implementation exercise. As long as limit orders follow the same size
restrictions as specified in this paper, the properties of V0LVER outlined in Section 5 should not change.

4If 𝛿𝑥 < 𝛿𝑦𝑃 (𝑅𝑥, 𝑅𝑦), we must remove Δ𝑥 tokens from the allocation pool with 𝛿𝑦𝑝𝑒 = 𝛿𝑥 + Δ𝑥 satisfying
𝑓(𝑅𝑥, 𝑅𝑦) = 𝑓(𝑅𝑥 −Δ𝑥, 𝑅𝑦 + (𝛿𝑦 − 𝛿𝑥

𝑝𝑒
))

4.2.2. Transaction Specifications.

There are three types of transaction in our protocol. To define these transactions, we need an
LVR rebate function 𝛽 : {0, 1, ..., 𝑍} → [0, 1]. It suffices to consider 𝛽() as a strictly decreasing
function with 𝛽(𝑍) = 0.

1. Order. These are straightforward buy or sell orders indicating a limit price5, size, and
direction to be traded. Without loss of generality, all orders in our system are executable.

2. Order commitment transaction (OCT). These are encrypted orders known to be
collateralized by either 𝑚𝑎𝑥𝑥 or 𝑚𝑎𝑥𝑦 tokens. The exact size, direction, price, and sender
of an OCT sent from player P𝑖 is hidden from all other players. This is possible using
anonymous ZK proofs of collateral such as used in [10, 11, 8]), which can be implemented
on a blockchain in conjunction with a user-lead commit-reveal protocol, delay encryption
scheme [12, 13] or threshold encryption scheme [14, 18]. OCTs can be added (inserted) to
the blockchain at any time.

3. Update transaction. These transactions are executed in a block before any unallocated
OCT can be allocated liquidity (see Figure 2). Let the current block height be 𝐻 . Update
transactions take as input an allocation block height 𝐻𝑎 ≤ 𝐻 , and pool price 𝑝. Given an
allocation block height of 𝐻 ′

𝑎 in the previous update transaction, valid update transactions
require 𝐻𝑎 > 𝐻 ′

𝑎. All of the unallocated OCTs in blocks [𝐻 ′
𝑎 + 1, ...,𝐻𝑎] are then

considered as allocated. For any update transaction, we denote by 𝑇𝑎 ∈ Z≥0 the number
of OCTs being allocated.
Given update transaction inputs of (𝐻𝑎, 𝑝), implied price of the V0LVER poolΦ is adjusted
to 𝑝. If this requires (Δ𝑥,Δ𝑦) ∈ R2 to be added to the reserves of 𝐶𝐹𝑀𝑀(Φ), the block
producer provides (1− 𝛽(𝐻 −𝐻𝑎))(Δ𝑥,Δ𝑦) to Φ, as is done in Section 3.2.
The producer must then deposit (𝑇𝑎𝛽(𝐻 −𝐻𝑎)𝑚𝑎𝑥𝑦𝑝, 𝑇𝑎𝛽(𝐻 −𝐻𝑎)

𝑚𝑎𝑥𝑥
𝑝) to an allo-

cation pool denoted Φ𝐻𝑎 , with (𝑇𝑎(1− 𝛽(𝐻 −𝐻𝑎))𝑚𝑎𝑥𝑦𝑝, 𝑇𝑎(1− 𝛽(𝐻 −𝐻𝑎))
𝑚𝑎𝑥𝑥

𝑝)
being added to Φ𝐻𝑎 from the AMM reserves. As such, the allocation pool contains
(𝑇𝑎𝑚𝑎𝑥𝑦𝑝, 𝑇𝑎

𝑚𝑎𝑥𝑥
𝑝) tokens in total.

In other words, if the block producer wants to move the reserves of a V0LVER pool Φ to a
particular price 𝑝, the amount of tokens extractable from Φ is (1− 𝛽(𝐻 −𝐻𝑎)) of the tokens
extractable by moving the reserves of the corresponding CFMM pool, 𝐶𝐹𝑀𝑀(Φ), to 𝑝.

Then, if an allocation pool requires up to (𝑇𝑎𝑚𝑎𝑥𝑦𝑝, 𝑇𝑎
𝑚𝑎𝑥𝑥

𝑝) tokens to trade with orders
corresponding to the 𝑇𝑎 allocated OCTs, the block producer is forced to provide 𝛽(𝐻 −𝐻𝑎) of
the tokens in the pool, with starting bid and offer prices equal to the pool price set by the block
producer. This is used to incentivize the block producer to always choose a pool price equal to
the external market price.

4.2.3. Block Producer Action Set.

Every block, a block producer has four possible actions to perform on OCTs and their orders.
Orders in our system are batch-settled with other orders allocated at the same time, and against
the liquidity in the respective allocation pool.

1. Insert OCTs to the blockchain.

2. Allocate inserted OCTs. For a block producer adding a block at height 𝐻 to allocate
any number (including 0) inserted OCTs with inserted height of at most 𝐻𝑖, the block
producer must:

a) Submit an update transaction with inputs (𝐻𝑎 = 𝐻𝑖, 𝑝), for some 𝑝 > 0.
b) Allocate all unallocated OCTs with inserted height less than or equal to 𝐻𝑖.

3. Reveal order corresponding to an allocated OCT. When a decrypted order corresponding to
an OCT at height𝐻𝑎 is finalized on the blockchain within 𝑇 blocks after the corresponding
OCT is allocated, it is considered revealed.

4. Execute revealed orders. 𝑇 blocks after OCTs are allocated, any corresponding revealed
orders are executed at a single clearing price for orders allocated at the same time. The
final tokens in the allocation pool are redistributed proportionally to the allocating block
producer and V0LVER reserves.

4.3. Protocol Outline

Our protocol can be considered as two sub-protocols, a base protocol proceeding in rounds
corresponding to blocks in the blockchain (see Figure 2), and an allocation protocol (Figure 3).
As the blockchain progresses through the base protocol, at all heights 𝐻 > 0, block producers
have two key choices. The first is how many OCTs in the mempool to insert into the blockchain.
The second is whether or not to send an update transaction.

There are two scenarios for an update transaction with inputs (𝐻𝑎, 𝑝) and block height
of the previous update transaction 𝐻 ′

𝑎. Either 𝑇𝑎 = 0 or 𝑇𝑎 > 0. If 𝑇𝑎 = 0, the update
transaction is equivalent to an arbitrageur operation on a Diamond pool with LVR-rebate
parameter of 𝛽(𝐻 − 𝐻𝑎) (see Section 3.2). If 𝑇𝑎 > 0, the arbitrageur must also deposit
(𝑇𝑎𝛽(𝐻 − 𝐻𝑎))𝑚𝑎𝑥𝑦𝑝, 𝑇𝑎𝛽(𝐻 − 𝐻𝑎)

𝑚𝑎𝑥𝑥
𝑝) to the 𝐻𝑎 allocation pool Φ𝐻𝑎 , with (𝑇𝑎(1 −

𝛽(𝐻 −𝐻𝑎))𝑚𝑎𝑥𝑦𝑝, 𝑇𝑎(1− 𝛽(𝐻 −𝐻𝑎)
𝑚𝑎𝑥𝑥

𝑝) being added to Φ𝐻𝑎 from the AMM reserves.
After an allocation pool is created for allocated OCTs {𝑜𝑐𝑡1, ..., 𝑜𝑐𝑡𝑇𝑎}, the orders correspond-

ing to {𝑜𝑐𝑡1, ..., 𝑜𝑐𝑡𝑇𝑎} can be revealed for up to 𝑇 blocks. This is sufficient time for any user
whose OCT is contained in that set to reveal the order corresponding to the OCT. To enforce
revelation, tokens corresponding to unrevealed orders are burned (unable to be executed or
withdrawn). After all orders have been revealed, or 𝑇 blocks have passed, any block producer
can execute revealed orders against the allocation pool at a clearing price which maximizes
volume traded. Specifically, given an array of orders ordered by price, a basic smart-contract
can verify that a proposed clearing price maximizes volume traded, as is done in [10].

The final tokens in the allocation pool are redistributed to the allocating block producer and
V0LVER reserves. Adding these tokens directly to the pool (and not the vault as in the protocol
from Section 3.2) allows the pool to update its price to reflect the information of the revealed
orders.

4.3.1. Example: Executing Orders Against the Allocation Pool.

This example details how one would batch execute orders against an allocation pool Φ𝐻𝑎 ,
replicating liquidity in the corresponding CFMM pool of Φ, that is, CFMM(Φ). Let the total
tokens in the V0LVER pool Φ before allocation be (𝑅𝑥, 𝑅𝑦), with CFMM(Φ) the Uniswap V2

pool. As such, 𝑃 (𝑅𝑥, 𝑅𝑦) =
𝑅𝑥
𝑅𝑦

= 𝑝0. Let the allocated OCTs be selling 𝛿𝑥 and 𝛿𝑦 tokens, with
𝛿𝑦𝑝0 < 𝛿𝑥. That is, there is an imbalance of tokens at 𝑝0, with more token 𝑥 being sold than
token 𝑦 at the price 𝑝0. We will now derive the execution price 𝑝𝑒 for these orders.

Given 𝛿𝑦𝑝0 < 𝛿𝑥, this means some Δ𝑦 tokens from the allocation pool are required to fill
the imbalance. Firstly, given the execution price is 𝑝𝑒, we know (𝛿𝑦 + Δ𝑦)𝑝𝑒 = 𝛿𝑥. That is,
the execution price equals 𝛿𝑥

𝛿𝑦+Δ𝑦
. Secondly, the amount of 𝑥 tokens added to the allocation

pool is 𝛿𝑥 − 𝛿𝑦𝑝𝑒. As the allocation pool provides liquidity equivalent to batch executing the
orders against CFMM(Φ), this means the pool invariant function would remain constant if those
tokens were traded directly with CFMM(Φ). Specifically:

𝑅𝑥𝑅𝑦 = (𝑅𝑥 + (𝛿𝑥 − 𝛿𝑦𝑝𝑒))(𝑅𝑦 −Δ𝑦). (7)

From our first observation, we know Δ𝑦 = 𝛿𝑥
𝑝𝑒

− 𝛿𝑦 , which we can rewrite as 1
𝑝𝑒
(𝛿𝑥 − 𝛿𝑦𝑝𝑒).

This gives:

𝑅𝑥𝑅𝑦 = 𝑅𝑥𝑅𝑦 +𝑅𝑦(𝛿𝑥 − 𝛿𝑦𝑝𝑒)−𝑅𝑥
1

𝑝𝑒
(𝛿𝑥 − 𝛿𝑦𝑝𝑒)−

1

𝑝𝑒
(𝛿𝑥 − 𝛿𝑦𝑝𝑒)

2. (8)

Cancelling the first term on both sides, and dividing by (𝛿𝑥 − 𝛿𝑦𝑝𝑒) > 0 gives:

0 = 𝑅𝑦 −𝑅𝑥
1

𝑝𝑒
− 1

𝑝𝑒
(𝛿𝑥 − 𝛿𝑦𝑝𝑒). (9)

Isolating 𝑝𝑒, we get:

𝑝𝑒 =
𝑅𝑥 + 𝛿𝑥
𝑅𝑦 + 𝛿𝑦

. (10)

5. Protocol Properties

The goal of this section is to show that the expected execution price of any user order is the
external market price when the order is allocated, excluding at most impact and fees. Firstly,
note that an update transaction prior to allocation moves the pool reserves of a V0LVER pool
identically to an LVR arbitrage transaction in Section 3.2. If 𝑇𝑎 = 0, from [7] we know the block
producer moves the pool price to the max LVR price which is the external market price, and the
result follows trivially.

Now instead, assume 𝑇𝑎 > 0. Let the reserves of a V0LVER pool Φ before the update
transaction be (𝑅𝑥,0, 𝑅𝑦,0). Given an external market price of 𝜖, from Section 3.1 we know the
max LVR occurs by moving the pool reserves to some (𝑅𝑥,𝑚, 𝑅𝑦,𝑚) with 𝑅𝑥,𝑚

𝑅𝑦,𝑚
= 𝜖. Without loss

of generality, let 𝑅𝑥,0

𝑅𝑦,0
<

𝑅𝑥,𝑚

𝑅𝑦,𝑚
. Let the block producer move the pool price to 𝑝 corresponding

to reserves in the corresponding CFMM pool of (𝑅𝑥,𝑝, 𝑅𝑦,𝑝). For a non-zero 𝛽(), this means the
tokens in Φ not in the vault (as per the protocol in Section 3.2) are (𝑅′

𝑥,𝑝, 𝑅
′
𝑦,𝑝) = (𝑏𝑅𝑥,𝑝, 𝑏𝑅𝑦,𝑝)

for some 𝑏 < 1. This is because some tokens in Φ are removed from the pool and placed in the

vault, while maintaining
𝑅′

𝑥,𝑝

𝑅′
𝑦,𝑝

= 𝑝.
There are three payoffs of interest here. For these, recall that by definition of the external

market price, the expected imbalance of an encrypted order in our system is 0 at the external
market price.

1. Payoff of block producer vs. AMM pool (update transaction arbitrage): (1 −
𝛽())(𝑅𝑥,0 −𝑅𝑥,𝑝 + (𝑅𝑦,0 −𝑅𝑦,𝑝)𝜖).

2. Payoff of block producer vs. users: Against a block producer’s own orders, the block
producer has 0 expectancy. Against other player orders, the block producer strictly
maximizes her own expectancy when (𝑅𝑥,𝑝, 𝑅𝑦,𝑝) = (𝑅𝑥,𝑚, 𝑅𝑦,𝑚). This can be seen by
considering any other choice of reserves corresponding to a price not equal to 𝜖. In such
cases, because of our expectation that the imbalance of user orders is 0 only at 𝜖, the block
producer is either offering below 𝜖 against an expected buy imbalance, or bidding above 𝜖
against an expected sell imbalance.

3. Payoff of user orders vs. AMM pool: Consider a set of allocated orders executed
against the allocation pool, corresponding to the pool receiving 𝛿𝑥 and paying 𝛿𝑦 tokens.
By definition of the allocation pool, this (𝛿𝑥, 𝛿𝑦) is the same token vector that would
be applied to the CFMM pool with reserves (𝑏𝑅𝑥,𝑝, 𝑏𝑅𝑦,𝑝) if those orders were batch
executed directly against the CFMM. Let these new reserves be (𝑏𝑅𝑥,1, 𝑏𝑅𝑦,1). Thus the
profit of these orders is 𝑏(1− 𝛽())(𝑅𝑥,𝑝 −𝑅𝑥,1 + (𝑅𝑦,𝑝 −𝑅𝑦,1)𝜖).

Optimal strategy for block producer

Let the block producer account for 𝛼 ∈ [0, 1] of the user orders executed against the allocation
pool (Payoff 3). The maximum payoff of the block producer against the AMM pool is the
maximum of the sum of arbitrage profits (Payoff 1) and profits of block producer orders executed
against the pool (𝛼 of Payoff 3). Thus, the utility function to be maximized for the block producer
is:

(1− 𝛽())(𝑅𝑥,0 −𝑅𝑥,𝑝 + (𝑅𝑦,0 −𝑅𝑦,𝑝)𝜖)

+𝛼
(︀
𝑏(1− 𝛽())(𝑅𝑥,𝑝 −𝑅𝑥,1 + (𝑅𝑦,𝑝 −𝑅𝑦,1)𝜖)

)︀
.

(11)

By taking 𝛼𝑏(1− 𝛽())
(︀
𝑅𝑥,0 −𝑅𝑥,𝑝 + (𝑅𝑦,0 −𝑅𝑦,𝑝)𝜖

)︀
from the first term, and adding it to the

second term, we get

(1− 𝛼𝑏)(1− 𝛽())
(︀
𝑅𝑥,0 −𝑅𝑥,𝑝 + (𝑅𝑦,0 −𝑅𝑦,𝑝)𝜖

)︀
+𝛼𝑏(1− 𝛽())

(︀
𝑅𝑥,0 −𝑅𝑥,1 + (𝑅𝑦,0 −𝑅𝑦,1)𝜖

)︀
.

(12)

We know the second term is maximized for (𝑅𝑥,1, 𝑅𝑦,1) = (𝑅𝑥,𝑚, 𝑅𝑦,𝑚), as this corresponds
to LVR. Similarly, the first term is also maximized for (𝑅𝑥,𝑝, 𝑅𝑦,𝑝) = (𝑅𝑥,𝑚, 𝑅𝑦,𝑚). Given
(𝑅𝑥,𝑝, 𝑅𝑦,𝑝) = (𝑅𝑥,𝑚, 𝑅𝑦,𝑚), block producers have negative expectancy for 𝛼 > 0, as this
reduces the probability that (𝑅𝑥,1, 𝑅𝑦,1) = (𝑅𝑥,𝑚, 𝑅𝑦,𝑚) by increasing the likelihood of an
imbalance at 𝑝. As such, block producers are strictly incentivized to set 𝑝 = 𝜖, and not submit
OCTs to the protocol (𝛼 = 0) for Payoffs 1 and 3. Now consider the payoff for the block producer
against user orders (Payoff 2). We have already argued in the description of Payoff 2 that this is
maximized with (𝑅𝑥,𝑝, 𝑅𝑦,𝑝) = (𝑅𝑥,𝑚, 𝑅𝑦,𝑚).

Therefore, moving the pool price 𝑝 to 𝜖 is a dominant strategy for the block producer. Given
this, we can see that the expected execution price for a client is 𝜖 excluding impact and fees,
with impact decreasing in expectancy in the number of orders allocated. The payoff of the
V0LVER pool against the block producer via the update transaction is (1 − 𝛽()) of the LVR

in the corresponding CFMM pool (as by definition, (𝑅𝑥,𝑚, 𝑅𝑦,𝑚) correspond to the reserves
maximizing LVR in the corresponding CFMM pool). Furthermore, the payoff of the V0LVER
pool against other user orders is at least 0, as these trades happen on the allocation pool centred
around (bid below, and offered above) 𝜖.

5.1. Minimal LVR

In the previous section, it is demonstrated that user-level MEV is prevented in V0LVER, with
users trading at the external market price in expectancy, excluding impact and fees. However,
we have thus far only proved that LVR in a V0LVER pool is (1 − 𝛽()) of the corresponding
CFMM pool. As in [7], under competition among block producers, the LVR rebate function has
a strong Nash equilibrium at 𝛽(0), meaning LVR is also minimized.

To see this, we can use a backwards induction argument. Consider the first block producer
allowed to send an update transaction with 𝛽(𝐻 −𝐻𝑎) = 0 for a block at height 𝐻 (meaning
𝐻𝑎 = 𝐻 ′

𝑎 + 1). This block producer can extract all of the LVR, and is required to provide no
liquidity to the allocation pool. As LVR is arbitrage, all block producers do this.

A block producer at height𝐻−1 knows this. Furthermore, extracting (1−𝛽((𝐻−1)−𝐻𝑎)) >
0 of the LVR has positive utility for all block producers, while trading with 𝛽((𝐻−1)−𝐻𝑎) > 0
of allocated OCTs around the external market price also has a positive utility (Payoff 2 in Section
5). As such, sending an update transaction at height 𝐻 − 1 is dominant. Following this
argumentation, a block producer at height 𝐻 − 𝑖 ≥ 𝐻𝑎 always sends an update transaction as
they know the block producer at height (𝐻 + 1)− 𝑖 always sends an update transaction. This
means the block producer at height 𝐻 ′

𝑎 + 1 always sends an update transaction ∀ 𝐻 ′
𝑎, which

corresponds to an LVR rebate function value of 𝛽(0) in equilibrium.
In reality, frictionless arbitrage against the external market price in blockchain-based protocols

is likely not possible, and so LVR extraction has some cost. As such, the expected value for 𝛽()
may be less than 𝛽(0). Deploying V0LVER, and analyzing 𝛽() across different token pairs, and
under varying costs for block producers makes for interesting future work.

6. Discussion

If a V0LVER pool allows an OCT to be allocated with 𝛽() = 0, V0LVER effectively reverts
to the corresponding CFMM pool, with MEV-proof batch settlement for all simultaneously
allocated OCTs, albeit without LVR protection for the pool. To see this, note that as 𝛽() = 0,
the block producer can fully extract any existing LVR opportunity, without requiring a deposit
to the allocation pool. As such, the expected price of the allocation pool is the external market
price, with orders executed directly against the V0LVER reserves at the external market price,
excluding fees and impact. Importantly, there is never any way for the block producer to
extract any value from allocated orders. This is because the settlement price for an OCT is
effectively set when it allocated, before any price or directional information is revealed about
the corresponding order.

Allocation of tokens to the allocation pool has an opportunity cost for both the V0LVER pool
and the block producer, requiring the user to pay a fee to both (or just the block producer, who
would then be required to forward some of this fee to the pool). Users doing this anonymously is

𝐼𝑛 = [], 𝐻 = 0, 𝐻 ′
𝐴 = −1.initialize

Add OCTs to
OCT mempool 𝑀 . Insert OCTs 𝑋 ⊆ 𝑀 .

In.append(𝑋),
𝑀 = 𝑀∖𝑋 .

Choose price 𝑝1, and
allocation height 𝐻𝐴,
with 𝐻 ′

𝐴 < 𝐻𝐴 ≤ 𝐻 .

𝑌 = 𝐼𝑛[: (𝐻𝐴 −𝐻 ′
𝐴)].

If 𝐻𝐴 = 𝐻 , then 𝐼𝑛 = ∅.
Else, 𝐼𝑛 = 𝐼𝑛[(𝐻𝐴 −𝐻 ′

𝐴) + 1 :].
Call ALLOCATE(𝐻,𝐻𝐴, 𝑌, 𝑝1).
Set 𝐻 ′

𝐴 = 𝐻𝐴.

End of Block
𝐻 = 𝐻 + 1.

update txno update tx ..

Figure 2: Flow of V0LVER protocol, excluding the allocation protocol (see Figure 3 for the allocation
protocol). The double-border rectangle is the initialization state, thin single-border rectangles are state
updates on-chain, while thick-bordered rectangles are block producer decisions/computations off-chain.
The circle state is controlled by the network. Note that 𝐼𝑛, the array of inserted but unallocated OCTs,
is an ordered array of sets of OCTs. For 1 < 𝑎 ≤ 𝑙𝑒𝑛(𝐼𝑛), 𝐼𝑛[: 𝑎] returns an ordered sub-array of
𝐼𝑛 elements at indices [1, ..., 𝑎], while 𝐼𝑛[𝑎 :] returns an ordered sub-array of 𝐼𝑛 elements at indices
[𝑎, ..., 𝑙𝑒𝑛(𝐼𝑛)].

important to avoid MEV-leakage to the block producer. One possibility is providing an on-chain
verifiable proof of membership to a set of players who have bought pool credits, where a valid
proof releases tokens to cover specific fees, as in [11, 10]. Another possibility is providing a
proof to the block-producer that the user has funds to pay the fee, with the block-producer
paying the fee on behalf of the user. A final option, based on threshold encryption, is creating a
state directly after allocation before any more allocations are possible, in which allocated funds
are either used or de-allocated. All of these proposals have merits and limitations, but further
analysis of these are beyond the scope of this work.

7. Conclusion

V0LVER is an AMM based on an encrypted transaction mempool in which LVR and MEV are
protected against. V0LVER aligns the incentives of users, passive liquidity providers and block
producers. This is done by ensuring the optimal block producer strategy under competition
among block producers simultaneously minimizes LVR against passive liquidity providers and
MEV against users.

Interestingly, the exact strategy equilibria of V0LVER depend on factors beyond instantaneous
token maximization for block producers. This is due to risks associated with liquidity provision

Let 𝑇𝐴 =
∑︀

𝑋∈𝑌 |𝑋|,
max order sizes 𝑚𝑎𝑥𝑥, 𝑚𝑎𝑥𝑦 .ALLOCATE(𝐻,𝐻𝐴, 𝑌, 𝑝1)

Let LVR of CFMM(Φ) at 𝑝1 be 𝐿.
Give (1− 𝛽(𝐻 −𝐻𝐴))𝐿 to block producer.
Move Φ price to 𝑝1.

Create allocation pool Φ𝐻𝐴
,

with reserves (𝑇𝐴.𝑚𝑎𝑥𝑦𝑝1, 𝑇𝐴
𝑚𝑎𝑥𝑥

𝑝1
).

Take (1− 𝛽(𝐻 −𝐻𝐴)) from 𝜑,
and 𝛽(𝐻 −𝐻𝐴) from block producer.

Reveal Orders

Select clearing price 𝑝𝑐, with
𝑝𝑐 maximizing volume of
revealed 𝑌 orders against Φ𝐻𝐴

.

Verify 𝑝𝑐.
Execute revealed 𝑌 orders against Φ𝐻𝐴

at 𝑝𝑐.
Return Φ𝐻𝐴

funds to Φ, block producer,
in ratio 1− 𝛽(𝐻 −𝐻𝐴) : 𝛽(𝐻 −𝐻𝐴).

Figure 3: Flow of allocation protocol for V0LVER pool 𝜑, initialized every time the ALLOCATE() function
is called in Figure 2. The Reveal Orders state happens by some block after height 𝐻 . As in the previous
figure, the double-border rectangle is the initialization state, thin single-border rectangles are state
updates on-chain, while thick-bordered rectangles are block producer decisions/computations off-chain.

and arbitrage costs. On one hand, allocating OCTs after setting the pool price to the external
market price, and providing some liquidity to OCTs around this price should be positive
expectancy for block producers. Similarly, increasing the number of OCTs should also reduce
the variance of block producer payoffs. On the other hand, there are caveats in which all OCTs
are informed and uni-directional. Analyzing these trade-offs for various risk profiles and trading
scenarios makes for further interesting future work.

8. Acknowledgements

This paper is part of a project that has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement number 814284, and is supported
by the AEI-PID2021-128521OB-I00 grant of the Spanish Ministry of Science and Innovation.

References

[1] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, A. Juels, Flash
Boys 2.0: Frontrunning, Transaction Reordering, and Consensus Instability in Decentral-
ized Exchanges, https://arxiv.org/abs/1904.05234, 2019. arXiv:1904.05234, accessed:
19/04/2023.

[2] K. Qin, L. Zhou, A. Gervais, Quantifying Blockchain Extractable Value: How dark is
the forest?, in: 2022 IEEE Symposium on Security and Privacy (SP), 2022, pp. 198–214.
doi:10.1109/SP46214.2022.9833734.

[3] Flashbots, https://explore.flashbots.net, 2022. Accessed: 11/10/2022.

https://arxiv.org/abs/1904.05234
http://arxiv.org/abs/1904.05234
http://dx.doi.org/10.1109/SP46214.2022.9833734
https://explore.flashbots.net

[4] J. Milionis, C. C. Moallemi, T. Roughgarden, A. L. Zhang, Quantifying Loss in Automated
Market Makers, in: Proceedings of the 2022 ACM CCS Workshop on Decentralized Finance
and Security, DeFi’22, Association for Computing Machinery, New York, NY, USA, 2022, p.
71–74. URL: https://doi.org/10.1145/3560832.3563441. doi:10.1145/3560832.3563441.

[5] A. Capponi, R. Jia, The Adoption of Blockchain-based Decentralized Exchanges, https:
//arxiv.org/abs/2103.08842, 2021. Accessed: 10/02/2023.

[6] @thiccythot, https://dune.com/thiccythot/uniswap-markouts, 2022. Accessed: 10/02/2023.
[7] C. McMenamin, V. Daza, B. Mazorra, Diamonds are Forever, Loss-Versus-Rebalancing

is Not, https://arxiv.org/abs/2210.10601, 2022. doi:10.48550/ARXIV.2210.10601, ac-
cessed: 04/03/2023.

[8] C. McMenamin, V. Daza, Dynamic, private, anonymous, collateralizable commitments
vs. mev, https://arxiv.org/abs/2301.12818, 2022. doi:10.48550/ARXIV.2301.12818, ac-
cessed: 31/03/2023.

[9] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza, Zerocash:
Decentralized Anonymous Payments from Bitcoin, in: 2014 IEEE Symposium on Security
and Privacy, IEEE Computer Society, New York, NY, USA, 2014, pp. 459–474.

[10] C. McMenamin, V. Daza, M. Fitzi, P. O’Donoghue, FairTraDEX: A Decentralised Ex-
change Preventing Value Extraction, in: Proceedings of the 2022 ACM CCS Workshop
on Decentralized Finance and Security, DeFi’22, Association for Computing Machin-
ery, New York, NY, USA, 2022, p. 39–46. URL: https://doi.org/10.1145/3560832.3563439.
doi:10.1145/3560832.3563439.

[11] Tornado Cash, https://tornadocash.eth.link/, 2023. Accessed: 31/03/2023.
[12] J. Burdges, L. De Feo, Delay encryption, in: A. Canteaut, F.-X. Standaert (Eds.), Advances

in Cryptology – EUROCRYPT 2021, Springer International Publishing, Cham, 2021, pp.
302–326.

[13] J. H. Chiang, B. David, I. Eyal, T. Gong, Fairpos: Input fairness in proof-of-stake with
adaptive security, https://eprint.iacr.org/2022/1442, 2022. Accessed: 23/03/2023.

[14] A. Asayag, G. Cohen, I. Grayevsky, M. Leshkowitz, O. Rottenstreich, R. Tamari, D. Yakira,
Helix: A Fair Blockchain Consensus Protocol Resistant to Ordering Manipulation, IEEE
Transactions on Network and Service Management 18 (2021) 1584–1597. doi:10.1109/
TNSM.2021.3052038.

[15] H. Adams, N. Zinsmeister, D. Robinson, Uniswap V2 Core, 2020. URL: https://uniswap.org/
whitepaper.pdf.

[16] G. Ramseyer, M. Goyal, A. Goel, D. Mazières, Batch exchanges with constant function
market makers: Axioms, equilibria, and computation, https://arxiv.org/abs/2210.04929,
2022. doi:10.48550/ARXIV.2210.04929, accessed: 26/03/2023.

[17] B. Krishnamachari, Q. Feng, E. Grippo, Dynamic Automated Market Makers for Decen-
tralized Cryptocurrency Exchange, in: 2021 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), 2021, pp. 1–2. doi:10.1109/ICBC51069.2021.9461100.

[18] Penumbra, https://penumbra.zone/, 2023. Accessed: 23/03/2023.
[19] E. Budish, P. Cramton, J. Shim, The High-Frequency Trading Arms Race: Frequent Batch

Auctions as a Market Design Response *, The Quarterly Journal of Economics 130 (2015)
1547–1621. URL: https://doi.org/10.1093/qje/qjv027. doi:10.1093/qje/qjv027.

https://doi.org/10.1145/3560832.3563441
http://dx.doi.org/10.1145/3560832.3563441
https://arxiv.org/abs/2103.08842
https://arxiv.org/abs/2103.08842
https://dune.com/thiccythot/uniswap-markouts
https://arxiv.org/abs/2210.10601
http://dx.doi.org/10.48550/ARXIV.2210.10601
https://arxiv.org/abs/2301.12818
http://dx.doi.org/10.48550/ARXIV.2301.12818
https://doi.org/10.1145/3560832.3563439
http://dx.doi.org/10.1145/3560832.3563439
https://tornadocash.eth.link/
https://eprint.iacr.org/2022/1442
http://dx.doi.org/10.1109/TNSM.2021.3052038
http://dx.doi.org/10.1109/TNSM.2021.3052038
https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper.pdf
https://arxiv.org/abs/2210.04929
http://dx.doi.org/10.48550/ARXIV.2210.04929
http://dx.doi.org/10.1109/ICBC51069.2021.9461100
https://penumbra.zone/
https://doi.org/10.1093/qje/qjv027
http://dx.doi.org/10.1093/qje/qjv027

	1 Introduction
	1.1 Our Contribution
	1.2 Organisation of the Paper

	2 Related Work
	3 Preliminaries
	3.1 Constant Function Market Makers
	3.2 LVR-resistant AMM

	4 Protocol Description
	4.1 Model
	4.2 Protocol Building Blocks
	4.2.1 Allocation Pools.
	4.2.2 Transaction Specifications.
	4.2.3 Block Producer Action Set.

	4.3 Protocol Outline
	4.3.1 Example: Executing Orders Against the Allocation Pool.

	5 Protocol Properties
	5.1 Minimal LVR

	6 Discussion
	7 Conclusion
	8 Acknowledgements

