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Abstract
Autonomous systems interacting and collaborating need to understand their individual and collective
goals as well as their individual capabilities. This keynote outlined challenges and approaches to enable
systems to collaborate. Additionally we explore approaches to enable systems to learn and exploit the
diverse knowledge of the individual agents in a collaborative manner.
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The rise of computing systems is unbroken, spreading from our wrist, pockets, to our cars,
houses, and even cities [1]. Individual smart devices are being deployed and distributed around
our environment with their very individual goals, resources, and capabilities [2, 3]. Systems
therefore collaborate only on accident or if they have explicitly been designed to do so [4]. This
leads to many systems operating with limited performance as they interfere with each other in
the environment. The potential of collaboration with initially unknown systems, that might be
able to support each other, is completely untapped. In previous work we relied on common
implementations and knowledge when utilising nature-inspired approaches. In contrast, we aim
to close the gap and enable systems to acknowledge each other and build upon their individual
knowledge and capabilities in more recent and ongoing work.

1. Working together

Over the past few years we explored problems requiring multiple autonomous systems to
collaborate in order to maximise the performance of the collective system. The problem in
question is the online multi-object 𝑘-coverage problem [5]. Here, moving objects can appear and
disappear at random in an environment. Multiple (𝑘) mobile observers, governed by autonomous
software agents, are tasked with keeping these objects within their field of view. However,
neither the location or movement patterns of the objects nor the amount or position of the other
observers are known to the each system. This gives rise to a trade-off between exploration of
the environment in order to find and locate new targets, and following the known objects in
order to maximise their coverage.

In our initial work, we utilised direct communication in order to attract additional systems
to cover specific objects. While simply broadcasting information worked well, to reduce the
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communication effort required systems to have knowledge about others in their respective
environments in order to target their advertisement [5]. As an alternative to direct message
exchanges, [6] utilised Reynolds’ flocking mechanism and adjusted the cohesion and separation
parameter dependent on the number of agents in the environment. For this, entropy was used
as a mechanism to attract and repel other agents.

[7] explored approaches where the agents willingness to interact is utilised to make local
decisions. This willingness is influenced by the motion of the target. Specifically, the willingness
of an agent to cover another object is proportional to the similarity of the direction of movement.
This way we can expect the agent to cover the object for an extended period of time. [8], inspired
by the feeding techniques of humpback whales and hyenas, enabled individual agents to take
different tasks depending on how others are currently operating. Here, agents will deliberately
observe the environment when all objects are covered sufficiently. This leads to higher detection
rates and better assignment of agents to individual objects while keeping over-provisioning
low. [9] investigated from where coordination control should be coming and created dedicated
observer and tracker agents. Observers are tasked to roam the environment to detect new
objects while tracker are dedicated to follow those object and provision them accordingly.
Tracker agents are either controlled by observers or can be operate autonomously. Finally, [10]
developed an near-optimised approach to solve the online multi-object 𝑘-coverage problem
utilising linear programming in an aggregate computing framework.

2. Learning together

In all these cases, agents needed to know about each other. This would require developers
of different agents to agree on and adhere to common interfaces and standards. In order
to overcome this issue, future autonomous systems are required to have an awareness of
other agents. [11, 3, 12] described different levels of such an awareness. The awareness of
others can vary from simple stimulus-, time-, interaction-, to more complex goal-awareness.
However, for a simple interaction, we can argue that at least time-awareness is required in
order to anticipate external stimuli. With more awareness and deeper understanding of the
situation (e.g. interaction- and goal-awareness), autonomous systems can operate towards
collaborative behaviour. We later expanded the concept towards competence-awareness [13] to
give autonomous systems the awareness of competences of themselves and others. Only with
knowledge of the potential capabilities of others, we can start exploring possible collaborative
actions purposefully and beyond random action exploration.

To overcome collaborative challenges, we recently started to explore potentials of collabora-
tive multi-agent learning. Here we explore various strands of research around deep learning and
aim to bring those strands together [14]. Specifically, we explore federated learning together
with early exits and split computing. Federated learning are techniques where the knowledge of
individual learners can be combined in a larger model [15]. By sharing the trained models only,
rather than the actual training input, privacy concerns can be mitigated. This is beneficial when
the individual learners are unknown or change at runtime. Usually, the tasks for which the
networks are trained are known to all agents. However individual agents could utilise available
data to estimate the tasks for which a network has been trained by another agent, allowing one



agents to draw conclusion about the inference capabilities of another agent. Overall, trustwor-
thiness and correctness can be verified by the individual agents upon receiving the networks by
utilising previous training data before merging received networks with local networks.

Early exits is a concept allowing deep neural networks to not execute all neural layers but
stop execution at earlier neural layers either because satisfactory results are achieved or if later
layers should be executed at another computing location (e.g. from transferring computation
from the edge to the cloud) [16]. We specifically work towards approaches where we utilise
early exits in combination with federated learning. While general knowledge is shared with
other agents, specific knowledge is retained at the individual agent. By sharing the general
knowledge, inference can be improved overall. Specialising the individual agents further
increases performance under the assumption of observations remaining the same (or similar)
for the different agents. In future work, we are interested in collaborative agents, able to request
support from others in case their own inference result is unsatisfactory. Instead of transmitting
all information or even raw input data, only intermediate results from the early exits are being
shared among the agents, reducing the amount of information transmitted while preserving
important privacy aspects.
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