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Abstract
This paper describes the extension of the Artificial DNA (ADNA) towards the abstract ADNA (A2DNA)
and a knowledge base. It also presents and analyzes the determinator that specifies the A2DNA to a
hardware specific ADNA using the knowledge base. The ADNA represents a building plan that enables
an embedded system to build and organize itself. In its current state the ADNA demands high amounts
of knowledge on the target hardware’s available sensors already in the design phase. Thus, it becomes
rigid and cannot be adapted easily to change in the hardware. The A2DNA solves this problem by
describing demands about the required sensors using so called abstract sensors instead of being tied to a
specific sensor like the ADNA. The determinator then specifies the A2DNA at the build and initialization
phase directly on the hardware into an ADNA. To achieve this it uses a semantic knowledge base which
provides both descriptions of the hardware’s available sensors and knowledge on their relations in form
of equations.
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1. Introduction

Real-time embedded systems equipped with sensors and actuators are becoming more and
more commonplace. This leads to an expansion of their areas for application, which in turn
demand more complex systems. As a means to study these systems, the research field of Organic
Computing has been established by [1]. Organic Systems are characterized by self-* properties
described in [2], such as self-organization, self-configuration, self-improvement and self-healing.
An exemplary system for these self-* properties is the Artificial Hormone System (AHS) with
the Artificial DNA (ADNA) developed by [3]. While the ADNA is a fine approach, it demands
knowledge on the target hardware, like sensors and actuators, already at design time. Therefore,
the ADNA is strongly influenced by the hardware without providing much information on the
hardware itself. In this paper, we present our contribution to ongoing research on the AHS and
ADNA, the enhancement of the ADNA with a semantic knowledge base on sensors, actuators
and their interdependencies towards the abstract ADNA (A2DNA). Further, we present and
analyze an algorithm that specifies A2DNA into a system specific ADNA when initializing the
AHS on the target system.
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The paper is structured as follows: First, we provide a brief overview of the ADNA’s
current state. Second, we describe the A2DNA’s core ideas. Next, we present and analyze
the determinator’s algorithm. Finally, we discuss the A2DNA and our results and provide an
outlook into the A2DNA’s future developments.

2. State of the ADNA

The AHS, as described in [4] and [3], is a decentralized, self-organizing, self-configuring,
self-improving and self-healing mechanism that assigns task to processing elements (PEs) in
embedded real-time systems. Inspired by the hormone system of higher mammals where cells
communicate by sending hormones via the bloodstream, the PEs send short messages, so-called
hormones, to communicate and decide the task assignment among themselves. On its own, the
AHS has no knowledge of the system it has to realize. Any knowledge including the required
tasks, their communicative interconnections and the PEs’ initial suitability for each task is
provided by the ADNA. When a task is assigned to a PE, the PE derives the parametrization
from its local copy of the ADNA. This process is shown in Figure 1. The ADNA is based on
the observation that most embedded systems can be assembled from a limited number of basic
elements, e.g. sensors, actuators, arithmetic/logic units, etc. Thus, it is possible to compose a
given embedded system by combing a sufficient multiset of these elements and providing a
fitting parameterization for each element.

When designing an ADNA, the available sensors and actuators in the used hardware strongly
influence the ADNA’s final shape. As an example consider the control loop in Fig. 2 and its
netlist in Fig. 3. In this description, the sensor/actuator building blocks are mapped to specific
sensors/actuators on the hardware. Not only the available sensors/actuators have to be known
at this design stage, any change on the hardware, even reindexing, may result in an ADNA
incompatible to the hardware. Thus, the ADNA cannot be used on another hardware without
an external adaptation, making it rigid and bound to hardware.

3. Extension to the A2DNA

As a solution to the ADNA’s rigidness, we propose the abstract ADNA (A2DNA). On the one
hand, the A2DNA aims loosen the bindings between a specific ADNA1 and the hardware. On
the other hand, it should provide more knowledge on the sensors2 and their attributes’ relations
such that the ADNA may be specified only when initializing the system.

Figure 4 shows the process of specifying an A2DNA for a given hardware. The
A2DNA demands sensors in order to be used on the hardware while hardware knowledge
is provided by the description of the available sensors. Both use so called abstract sensors to
describe their sensors. A determinator specifies the A2DNA for the described hardware, resulting
in an ADNA, using its knowledge on the relations between the abstract sensor’s attributes. The
knowledge about the relations is provided in form of equations. Both the sensor description
and equations form the knowledge base.

1For simplicity’s sake we keep referring to it as ADNA.
2In the following, we mainly focus on sensors to provide a basic understanding of the A2DNA.
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Figure 1: ADNA architecture, from [3]

3.1. Abstracting the Sensors

In contrast to the ADNA where a sensor is described by a sensor building block’s Resource ID
parameter, a sensor in an A2DNA is described by an abstract sensor building block listing the
required attributes.

Inspired by the ADNAs described in [3], we use the following three attributes for the abstract
sensors. Firstly, we distinguish sensors form each other by the physical quantities 𝒬 they
measure. Secondly, since some quantities are vectors we have to take into account the sensor’s
relative direction 𝒟. As a naming convention, we choose the local frame described by [6], an
example is shown in Figure 5. Finally, we have to differentiate between the sensor’s target 𝒯 ,
i.e. does the sensor provide data about the system, the surroundings or only a part of either.
Given that, each attribute provides different information, the sets are disjoint. The abstract
sensor block structure and a parameterization are shown in Figure 6.

Definition 1 (Abstract sensor). An abstract sensor 𝑠 = (𝑞𝑠, 𝑑𝑠, 𝑡𝑠) ∈ 𝒬 × 𝒟 × 𝒯 is defined
as triple of measured physical quantity 𝑞𝑠 ∈ 𝒬, the measurement’s direction 𝑑𝑠 ∈ 𝒟 and
measurement’s target 𝑡𝑠 ∈ 𝒯 .



 

 

ALU 
 

   (Id = 1, parameter = Minus) 

 

PID 
 

(Id = 10, parameters = P,I,D, 
period)

 

Sensor 
 

(Id = 500, parameters = 
resource, period) 

 

Actor 
 

(Id = 600, parameter = 
resource)

 

Constant 
 

(Id = 70, parameter = 
constant value, period) 

1 

1 1 1 1 
1 

1 
   

   
   

  
2 

Figure 2: A closed control loop consisting of basic elements, from [5]

dna.dna
1  = 70  (1:2.2) 100 25    // constant setpoint value, period 25 msec
2  = 1   (1:3.1) -         // ALU, control deviation (minus)
3  = 10  (1:4.1) 4 5 6 25  // PID (4, 5, 6), period 25 msec
4  = 600         1         // actor, resource id = 1
5  = 500 (1:2.1) 2 25      // sensor, resource id = 2, period 25 msec

ADNA line:       linenumber = id destinationlink parameters //comment
destinationlink: (destchannel:destlinenumber.sourcechannel...)
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Figure 3: The netlist and parameterization of the closed control loop from 2, from [5]

Example 1. The system (car) shown in Figure 5 may have the abstract sensors (velocity, 𝑥-direction,
car) and (velocity, 𝑦-direction, car) that describe real sensors measuring the car’s velocity in direction
of the x and y axis respectively. But our A2DNA in Figure 6 requires the abstract sensor (velocity,
𝑥𝑦-direction, car).

3.2. Knowledge base

So far, the described attributes lack any meaning or use for the determinator since it has no
knowledge on any given connections between the attribute’s values. This knowledge is provided
to the determinator through equations and serves as the backbone of its knowledge base. These
equations include relations, e.g. velocity being the temporal derivation of traveled distance
or that the velocities projected onto the x and y axes enable the calculation of the velocity
projected onto the xy axis. With such knowledge, the determinator can infer what sensors are
implicitly given on the hardware.

Definition 2 (Equation). Let {𝑘0, 𝑘1, . . . , 𝑘𝑗} be sub set of either 𝒬 or 𝒟 or 𝒯 with 𝑗 ≥ 1. An
equation 𝑒𝑞 := 𝑘0 = OP𝑗

𝑖=1 𝑘𝑖 describes the relation between an attribute 𝑘0 and the attributes
𝑘1, . . . , 𝑘𝑗 . The 𝑗-nary operator OP denotes a specific building block3 that derives the value of the
attribute 𝑘0 from the values of the attributes 𝑘1, . . . , 𝑘𝑗 .

3The block’s exact structure must not be known in the equation, just what block or set of blocks will be needed.
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Example 2 (Equation). To our car system in Example 1 we can convey the relation4 between the
required 𝑥𝑦-direction and available 𝑥- and 𝑦-directions with the equation:

𝑥𝑦-direction =
𝑥-direction + 𝑦-direction√

2
(1)

For example consider that our sensors measure the car’s velocity in 𝑥-and 𝑦-direction as 1 and 3
𝑚/𝑠 respectively. Then, a sensor in 𝑥𝑦-direction would measure a velocity of 2

√
2 𝑚/𝑠.

In the next examples, we abbreviate the operation 𝑎+𝑏√
2

to OP𝑥𝑦(𝑎, 𝑏).

Therefore, we can define a knowledge base as follows:

Definition 3 (Knowledge base). A knowledge base 𝒦 = (𝒮, ℰ) consists of a set of available
sensors on the hardware 𝒮 and a set of known relations (equations) ℰ .

Example 3 (Knowledge base). Combining the abstract sensors and equation from the
Examples 1 and 2, the car system shown in Figure 5 may have a simple knowledge base5:

𝒦 = ({(v, 𝑥, c), (v, 𝑦, c)}⏟  ⏞  
𝒮

, {𝑥𝑦 = OP𝑥𝑦(𝑥, 𝑦)}⏟  ⏞  
ℰ

)

4While this relation is true for the any two projections onto orthogonal directions and their resulting diagonal
direction, we limit it to 𝑥 and 𝑦 in the scope of our example.

5For the sake of readability, we applied the abbreviations velocity to v and car to c and dropped the -direction suffix.



Figure 5: A system (car) with its own coordinate axes (car frame) and a world frame, adapted from [7]

Abstract Sensor
(Id = 599, parameters =

quantity, direction, target)

1 = 599 v xy car // abstract sensor,

quantity = velocity, direction = xy, target = car

Figure 6: An abstract sensor block and as A2DNA describing a car’s velocity in xy-direction

3.3. Determinator

Utilizing the knowledge base 𝒦, the determinator has now the tools to infer which abstract
sensors in the A2DNA can be determined.

3.4. Applying equations to sensors

First we have to define how the determinator infers new knowledge on the sensors.

Definition 4 (Applying equations). Let 𝑆 be a set of sensors and 𝑒𝑞 := 𝑘0 = OP𝑗
𝑖=1 𝑘𝑖 an

equation. We say that the set of sensors 𝑆′ = 𝑆 ∪ {𝑠} results from applying the equation 𝑒𝑞 to the



set 𝑆 if we have one of the following cases6:

• If there exists a set 𝑍 = {(𝑘𝑖, 𝑑, 𝑡)|1 ≤ 𝑖 ≤ 𝑗} ⊆ 𝑆, fixed by 𝑘1, . . . , 𝑘𝑗 in 𝑒𝑞, then add
𝑠 = (𝑘0, 𝑑, 𝑡).

• If there exists a set 𝑍 = {(𝑞, 𝑘𝑖, 𝑡)|1 ≤ 𝑖 ≤ 𝑗} ⊆ 𝑆, fixed by 𝑘1, . . . , 𝑘𝑗 in 𝑒𝑞, then add
𝑠 = (𝑞, 𝑘0, 𝑡).

• If there exists a set 𝑍 = {(𝑞, 𝑑, 𝑘𝑖)|1 ≤ 𝑖 ≤ 𝑗} ⊆ 𝑆, fixed by 𝑘1, . . . , 𝑘𝑗 in 𝑒𝑞, then add
𝑠 = (𝑞, 𝑑, 𝑘0).

An application is denoted as 𝑠 = 𝑒𝑞(𝑆).
We also say that applying 𝑒𝑞 to 𝑆 yields 𝑠.

Remark 1. When applying an equation two of the yielded sensor’s attributes are defined by the
sensors in 𝑍 and the remaining attribute is defined by the equation.

Remark 2. If multiple subsets 𝑍 fulfill the condition, then applying an equation 𝑒𝑞 on the same
set 𝑆 may yield different sensors 𝑠. Thus, we may have to apply 𝑒𝑞 once for every 𝑍 .

Remark 3. We may also apply an equation to 𝑆 if for all 𝑍 that fulfill the condition, their yielded
𝑠 is already in 𝑆.

Example 4. Recall the car system from Example 1 and its knowledge base from Example 3

𝒦 = ({(v, 𝑥, c), (v, 𝑦, c)}, {𝑥𝑦 = OP𝑥𝑦(𝑥, 𝑦)}).

Applying the equation 𝑥𝑦 = OP𝑥𝑦(𝑥, 𝑦) on the set 𝑆 = {(v, 𝑥, c), (v, 𝑦, c)} results in the set
𝑆′ = {(v, 𝑥, c), (v, 𝑦, c), (v, 𝑥𝑦, c)}, thus yielding the sensor 𝑠 = (v, 𝑥𝑦, c). We have inferred the
existence of a car velocity sensor in 𝑥𝑦-direction, the sensor our A2DNA required.

This definition can be extended for multiple applications.

Definition 5 (Produces). Let 𝑆0 and 𝑆𝑚 be sets of sensors. We say that 𝑆0 produces 𝑆𝑚 if for
𝑚 ≥ 1 exist equations 𝑒𝑞0, . . . , 𝑒𝑞𝑚−1 and sets of sensors 𝑆1, . . . , 𝑆𝑚−1, s.t. applying the equation
𝑒𝑞𝑖 to the set 𝑆𝑖 results in the set 𝑆𝑖+1.

With this definition, we can now define when an abstract sensor is determinable, i.e. the
determinator can infer the existence of a specific composition for an abstract sensor utilizing
the knowledge base 𝒦.

Definition 6 (Determinable). We say a sensor 𝑠 is determinable in a given knowledge base
𝒦 = (𝒮, ℰ) iff 𝑠 ∈ 𝒮 or 𝒮 produces a set 𝑆′, s.t. 𝑠 ∈ 𝑆′.

6Since all attributes in an equation are from the same set, we only have this three cases.



Example 5. Consider again the knowledge base

𝒦 = ({(v, 𝑥, c), (v, 𝑦, c)}, {𝑥𝑦 = OP𝑥𝑦(𝑥, 𝑦)}).

Both (v, 𝑥, c) and (v, 𝑦, c) are in 𝒮 , thus they are determinable in 𝒦. In Example 4, we see
how application of one equation yields the sensor (v, 𝑥𝑦, c). Since 𝒮 produces a set 𝑆′ with
(v, 𝑥𝑦, c) ∈ 𝑆′, this sensor is also determinable in 𝒦.

Since the determinator knows how to construct a determinable sensor, we can consider any
determinable sensor part of the sensors available on the hardware. This provides us with another
definition for a sensor’s determinability.

Corollary 1 (Determinable). Let 𝒦 = (𝒮, ℰ) be a knowledge base and 𝑠 /∈ 𝒮 a sensor. If there
are a set of sensors 𝑍 and an equation 𝑒𝑞 ∈ ℰ , s.t. 𝑠 = 𝑒𝑞(𝑍) and ∀𝑧 ∈ 𝑍 : 𝑧 is determinable in 𝒦,
then 𝑠 is determinable in 𝒦.

Since all sensors in 𝑍 are determinable in 𝒦, we know for each sensor 𝑧 ∈ 𝑍 which equations
we have to apply to produce a set 𝑆′, s.t. 𝑧 ∈ 𝑆′. Applying all these equations sequentially on 𝒮
results in 𝒮 ′, s.t. 𝑍 ⊆ 𝒮 ′. Since applying 𝑒𝑞 to 𝑍 yields 𝑠, applying 𝑒𝑞 to 𝑆′ results in 𝑆′′ with
𝑠 ∈ 𝑆′′, thus 𝑠 is determinable in 𝒦. □

Example 6. Consider a knowledge base 𝒦′ = (𝒮 ′, ℰ ′) slightly different to the previous, where
we still have (v, 𝑥, c) ∈ 𝒮 ′ and 𝑥𝑦 = OP𝑥𝑦(𝑥, 𝑦) ∈ ℰ , but first have to determine (v, 𝑦, c). If we
determine (v, 𝑦, c) in 𝒦′, then, by Corollary 1 and Example 5, we know that we can also determine
(v, 𝑥𝑦, c).

Finally, we can define the set of all sensors determinable in 𝒦.

Definition 7 (All determinable sensors). Let 𝒦 = (𝒮, ℰ) be a knowledge base. Let 𝒫𝒦 be set
produced by 𝒮 , s.t. applying any equation to 𝒫𝒦 yields a sensor 𝑠 already in 𝒫𝒦. Hence, every
possible application of an equation in ℰ to 𝒫𝒦 results in 𝒫𝒦.
We refer to 𝒫𝒦 as the set of all determinable sensors in 𝒦.

Example 7. Consider again the knowledge base

𝒦 = ({(v, 𝑥, c), (v, 𝑦, c)}, {𝑥𝑦 = OP𝑥𝑦(𝑥, 𝑦)}).

From Example 4, we know that 𝒮 produces the set 𝑆′ = {(v, 𝑥, c), (v, 𝑦, c), (v, 𝑥𝑦, c)}. 𝑆′ = 𝒫𝒦
because applying our only equation 𝑥𝑦 = OP𝑥𝑦(𝑥, 𝑦) to 𝑆′ yields (v, 𝑥𝑦, c) ∈ 𝑆′. Thus 𝑆′ is the
set of all determinable sensors in our small knowledge base 𝒦.

4. Determinability algorithm

With the A2DNA’s general concepts defined, we can now focus on the determinators exact
functionality. As a proof of concept, we describe a naive algorithm for checking the
determinability of a set of sensors 𝑍 . This algorithm constructs the set of all determinable
sensors 𝒫𝒦 (see Definition 7) inductively, then checks for each 𝑠 ∈ 𝑍 if it is also in 𝒫𝒦. By



definition all sensors in 𝒮 are determinable, thus we initialize 𝒫 as 𝒮 . Now we try to apply
each equation as often as it yields a new sensor not in 𝒫 to 𝒫 . If at least one equation yielded a
new sensor, then we have expanded 𝒫 and need to retry our equations. If no equation yielded
new sensors, then 𝒫 has become 𝒫𝒦 and we can proceed to the next step. For each 𝑠 ∈ 𝑍 , we
check if 𝑠 ∈ 𝒫𝒦. If at least one is not, we immediately return false. If all sensors were in 𝒫𝒦,
we return true.

Before we can analyze Algorithm 1, we need to clarify how we check if 𝑒𝑞 is applicable to 𝒫 .
By Remark 1, we only have to check for each possible pair of the two attributes not affected
by the equation if there is a set of possible sensors that fulfills the condition. This leads to
Algorithm 2 which returns for all pairs of the unaffected attributes’ values if all sensors for the
application of 𝑘0 = OP𝑗

𝑖=1 𝑘𝑖 are in 𝒫 . For the description we focus without loss of generality7

on the case 𝑘0 ∈ 𝒬. First, we generate a hash map 𝐴 where all pairs of (𝑑, 𝑡) ∈ 𝒟 × 𝒯 serve as

Input: Knowledge base 𝒦 = (𝒮, ℰ) and a set of sensors 𝑍
Output: Boolean
𝒫 = 𝒮 ;
found_new_sensors = true;
while found_new_sensors:

found_new_sensors = false;
foreach 𝑒𝑞 ∈ ℰ :

while Applying 𝑒𝑞 to 𝒫 yields a new sensor:
found_new_sensors = true;
𝒫 = 𝑒𝑞(𝒫);

foreach 𝑠 ∈ 𝑍: if 𝑠 /∈ 𝒫 : return false;
return true;

Algorithm 1: Determinability check

keys. The values represent the number of sensors found. Second, we iterate through 𝒫 . On the
one hand, if a sensor (𝑘𝑖, 𝑑𝑠, 𝑡𝑠) is found, we increase the value of the pair (𝑑𝑠, 𝑡𝑠) by one. If,
on the other hand, the sensor (𝑘0, 𝑑𝑠, 𝑡𝑠) is found8, the value of the pair (𝑑𝑠, 𝑡𝑠) is reduced by
one. Thus, only if for a fixed pair (𝑑, 𝑡) all sensors (𝑘1, 𝑑, 𝑡), . . . (𝑘𝑗 , 𝑑, 𝑡) are in 𝒫 and (𝑘0, 𝑑, 𝑡)
is not in 𝒫 , the entry 𝐴[(𝑑, 𝑡)] will have the value 𝑗 and the equation will be applicable9.

Theorem 1 (Complexity of Algorithm 2). Algorithm 2 has a complexity of

𝒪
(︁
(|𝒫|+ |𝒩 |)|𝒩 |

)︁
with |𝒩 | = max{|𝒬|, |𝒟|, |𝒯 |}.

In each case, we generate a hash map with a size of at most |𝒩 |2 entries. This has a run time
of 𝒪(|𝒩 |2). Next, we iterate through 𝒫 and check for every entry if it has any 𝑘𝑖. Since, all
7All cases behave the same just focus on different pairs.
8Therefore we can no longer apply the equation.
9Note that all pairs in 𝐴 where the value is exactly 𝑗 have a set of sensors 𝑍 and the sensor 𝑠 is not part of the set.



Input: An equation 𝑘0 = OP𝑗
𝑖=1 𝑘𝑖 and a set of sensors 𝒫

Output: All pairs where the equation is applicable
switch type(𝑘0):

case 𝑘0 ∈ 𝒬:
Generate a hash map 𝐴 with every pair (𝑑, 𝑡) ∈ 𝒟 × 𝒯 as a key and initialize the
values as 0;

foreach (𝑞𝑠, 𝑑𝑠, 𝑡𝑠) ∈ 𝒫 :
if 𝑞𝑠 ∈ {𝑘1, . . . , 𝑘𝑗}: 𝐴[(𝑑𝑠, 𝑡𝑠)]+ = 1;
elif 𝑞𝑠 == 𝑘0: 𝐴[(𝑑𝑠, 𝑡𝑠)]− = 1;

case 𝑘0 ∈ 𝒟:
Generate a hash map 𝐴 with every pair (𝑞, 𝑡) ∈ 𝒬× 𝒯 as a key and initialize the
values as 0;

foreach (𝑞𝑠, 𝑑𝑠, 𝑡𝑠) ∈ 𝒫 :
if 𝑑𝑠 ∈ {𝑘1, . . . , 𝑘𝑗}: 𝐴[(𝑞𝑠, 𝑡𝑠)]+ = 1;
elif 𝑑𝑠 == 𝑘0: 𝐴[(𝑞𝑠, 𝑡𝑠)]− = 1;

case 𝑘0 ∈ 𝒯 :
Generate a hash map 𝐴 with every pair (𝑞, 𝑑) ∈ 𝒬×𝒟 as a key and initialize the
values as 0;

foreach (𝑞𝑠, 𝑑𝑠, 𝑡𝑠) ∈ 𝒫 :
if 𝑡𝑠 ∈ {𝑘1, . . . , 𝑘𝑗}: 𝐴[(𝑞𝑠, 𝑑𝑠)]+ = 1;
elif 𝑡𝑠 == 𝑘0: 𝐴[(𝑞𝑠, 𝑑𝑠)]− = 1;

return 𝐴;

Algorithm 2: Check if 𝑘0 = OP𝑗
𝑖=1 𝑘𝑖 yields a new sensor

𝑘0, 𝑘1, . . . , 𝑘𝑗 form a subset of either 𝒬, 𝒟 or 𝒯 , we have to check at most |𝒩 | values. Thus,
this step is at most 𝒪(|𝒫||𝒩 |). Therefore, Algorithm 2 has a complexity of 𝒪((|𝒫|+ |𝒩 |)|𝒩 |).
□ With this part analyzed, we can finally analyze Algorithm 1’s complexity.

Theorem 2 (Complexity of Algorithm 1). Algorithm 1 has a complexity of

𝒪
(︁
|𝒫𝒦||𝑍|+ (|𝒫𝒦|+ |𝒩 |)|𝒩 ||ℰ||𝒫𝒦|

)︁
with |𝒩 | = max{|𝒬|, |𝒟|, |𝒯 |}.

First we copy 𝒮 , this has a complexity of 𝒪(|𝒮|). Next, we have a nested loop. The outermost
loop only terminates if we have not determined any new sensor in the previous iteration, hence
𝒫 is maximal and has become 𝒫𝒦. In the worst case, each iteration may only add one new sensor,
thus the loop has at most |𝒫𝒦| − |𝒮| iterations. Because of |𝒮| ≤ |𝒫|, this has a complexity of
𝒪(|𝒫𝒦|). The next layer iterates through all equations, therefore it has a complexity of 𝒪(|ℰ|).
In the innermost loop, we apply an equation to 𝒫 as often as it yields a sensor not in 𝒫 . All such



applications are calculated by Algorithm 2. By Theorem 1 and since for each call of Algorithm 2
𝒫 is at most 𝒫𝒦, this loop has a complexity of 𝒪((|𝒫𝒦|+ |𝒩 |)|𝒩 |). All in all, the nested loop’s
complexity is 𝒪(|𝒩 ||ℰ||𝒫𝒦|(|𝒫𝒦|+ |𝒩 |)).

The final loop iterates once through𝑍 and checks if a certain element is in𝒫 , this costs at most
𝒪(|𝑍||𝒫𝒦|). Therefore, Algorithm 1 has a complexity of 𝒪(|𝒫𝒦||𝑍|+(|𝒫𝒦|+ |𝒩 |)|𝒩 ||ℰ||𝒫𝒦|)
□

Corollary 2 (Complexity of Algorithm 1). Algorithm 1 has a complexity polynomial in its
input.

Algorithm 1’s input 𝑛 consists of 𝒦 = (𝒮, ℰ) and 𝑍 . We can derive the sets 𝒬,𝒟 and 𝒯 from
this input by iterating once through each of 𝒮 and ℰ adding each new entry to its respective set.
Thus, all three sets are linear in size to 𝑛 and the largest of them 𝒩 has size 𝑛. Since we can
determine at most all possible abstract sensors, 𝒫𝒦 ⊆ 𝒬×𝒟×𝒯 . Thus, 𝒫𝒦 is at most cubic in
size to 𝑛. All in all, we can broadly limit our complexity to 𝒪(𝑛3 ·𝑛+(𝑛3+𝑛)·𝑛·𝑛·𝑛3) = 𝒪(𝑛8).
Therefore, the complexity is polynomial in the input size 𝑛. □

4.1. Specification algorithm

We can adapt Algorithm 1 by adding a hash map that stores for each sensor 𝑠 not in 𝒮 , which
equation application added 𝑠 to 𝒫 . Note that multiple equations may exist that applied result in
adding a specific sensor. If we now want to specify an abstract sensor in the A2DNA, then we
just have to substitute each sensor in the A2DNA with either a sensor in 𝒮 or with the operator
and sensors implied by the equation. If any substituted sensor is still not in 𝒮 , we repeat the
substitution until all sensors are in 𝒮 .

Example 8. Consider again the knowledge base

𝒦 = ({(v, 𝑥, c), (v, 𝑦, c)}, {𝑥𝑦 = OP𝑥𝑦(𝑥, 𝑦)})

and the A2DNA fragment in Figure 6. The determinator has derived the specification for the
abstract sensor with ID 1. We have to use a building block for OP𝑥𝑦 and connect the sensor blocks
for the car’s velocity in 𝑥- and 𝑦-direction. An exemplary ADNA and net list are sketched in
Figure 7.

5. Conclusion

In this paper, we have proposed a solution to the ADNA’s rigidness and lack of semantic
knowledge about the hardware by extending the ADNA to the A2DNA with its own knowledge
base. We have described how the A2DNA connects back to the ADNA by specifying the
A2DNA and have provided a first algorithm in polynomial time for this task. The A2DNA and
the knowledge base strength the system’s self-explaining property by providing a more nuanced
understanding of the system’s hardware. Additionally, if the determinator has specified an
abstract sensor with a combination of sensors, it can also explain the functionality of these



OP
(Id=3,

parameters = operation)

Sensor
(Id = 1,

parameters = resource)

Sensor
(Id = 2,

parameters = resource)

1 = 500 (1:3.1) 1 // sensor, resource id for the x-direction sensor

2 = 500 (1:3.2) 2 // sensor, resource id for the y-direction sensor

3 = 2 xy // operation, performs the axes addition

Figure 7: A simplified representation of Figure 6’s specified A2DNA.

structures. Similarly, a hardware extension or new equations are easily communicable to the
knowledge base. The A2DNA also allows the system to better adapt to the loss of sensors. If the
access to a sensor is lost, the determinator can specify the A2DNA on its ’new’ reduced hardware
at run time and adapt to the changes. Thus, providing the base for a better self-healing.

For the future we plan to provide a first full implementation of the A2DNA, the knowledge
base and the determinator. OWL by [8] and its C# API by [9] for SPARQL seem a promising
base for such an implementation10. In the first stages, the knowledge base will be provided
by experts but we plan to later supplement this expert knowledge with learning algorithms.
Finally, we plan to determine more precise boundaries for the time complexity and perform a
space complexity analysis.
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