
Post-Moore’s Law Fusion: High-Bandwidth Memory,
Accelerators, and Native Half-Precision Processing for
CPU-Local Analytics

Viktor Sanca1,∗, Anastasia Ailamaki1,2,†

1EPFL, Lausanne, Switzerland
2Google, Sunnyvale, USA

Abstract
Modern data management systems aim to provide both cutting-edge functionality and hardware efficiency. With the advent
of AI-driven data processing and the post-Moore Law era, traditional memory-bound scale-up data management operations
face scalability challenges. On the other hand, using accelerators such as GPUs has long been explored to offload complex
analytical patterns while trading-off data movement over an interconnect. GPUs typically provide massive parallelism and
high-bandwidth memory, while CPUs are near-data processors and coordinators that are often memory-bound.

In this work, we provide a first look over an architecture that mixes the best of the CPU and GPU world: high-bandwidth
memory (HBM), core-local accelerators for matrix multiplications (AMX), and native half-precision data processing inside
4th Generation Intel Xeon Scalable processors known as Sapphire Rapids. We analyze the system, provide an overview of
its hierarchical NUMA architecture, focus on individual components, and explore their interplay and how they impact the
traditional DRAM bandwidth wall on typical data access patterns and novel AI-DB interactions of vector data processing.

Keywords
Modern Hardware, Data Analytics, CPU, NUMA, HBM, Core-Local Accelerators, AI for DB, Vector Data Processing

1. Introduction: Evolving
Scalability

Data management has long focused on bringing both per-
formant and efficient, hardware-conscious solutions and
adapting to the ways and the requirements the data has to
be analyzed to be useful and extract insights. Moore’s law
and the improvements in processing technology allowed
scaling-down chips and circuits, leading to moving the
peripheral interconnect (PCIe) and memory controller
(MC) from the Northbridge (1) to being integrated with
the CPU (2), depicted in Figure 1. This CPU evolution
allowed for avoiding the Front-Side Bus data transfer
overheads. Along with the advent of high-capacity main
memory and multi-socket, multi-core systems sparked
optimizations for shifting the bottleneck from being IO
to memory-bound. This was reflected in the emerging
database system designs that used vectorization [1] and

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — Workshop on Accelerating Analytics and Data
Management Systems (ADMS’23), August 28 - September 1, 2023, Van-
couver, Canada
∗Corresponding author.
†
Work done entirely at EPFL.
Envelope-Open viktor.sanca@epfl.ch (V. Sanca); anastasia.ailamaki@epfl.ch
(A. Ailamaki)
GLOBE https://viktorsanca.com (V. Sanca)
Orcid 0000-0002-4799-8467 (V. Sanca); 0000-0002-9949-3639
(A. Ailamaki)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

HBM HBM

HBMHBM

Cores Cores

Cores Cores
MC

MC 

MC

MC

NUMA 0 NUMA 1

NUMA 3NUMA 2

PCIe

PCIe 

PCIe

PCIe

C
a

ch
e

C
a

ch
e

C
a

ch
e

C
a

ch
e

Accelerators Accelerators

Accelerators Accelerators

CPU Socket

Cores
MC 

NUMA 0

PCIe 

C
a

ch
e

CPU Socket

Cores
MC 

NUMA 0

PCIe 

C
a

ch
e

CPU Socket

N
o

rt
h

b
ri

d
g

e

1

2

3

Figure 1: Moore’s Law effect: 1) Northbridge scaled to 2) In-
tegrated memory controller scaled to 3) Multi-die chip design.
Instead of only being present in multi-socket systems, NUMA
evolved to include socket-local granularity.

compilation [2, 3] in contrast to the Volcano-style itera-
tion model to reduce the overheads of previous systems
that were appropriate and tuned to the previously avail-
able hardware systems and memory hierarchies [4].

Similarly, when GPUs became more prevalent and
driven by the machine learning community, data manage-

mailto:viktor.sanca@epfl.ch
mailto:anastasia.ailamaki@epfl.ch
https://viktorsanca.com
https://orcid.org/0000-0002-4799-8467
https://orcid.org/0000-0002-9949-3639
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


ment research focused on using them as data processing
accelerators [5, 6, 7], being especially useful for compu-
tationally and random-access-heavy operators such as
joins [8]. The advent of accelerators has resulted in sys-
tems with computational, memory, and interconnect het-
erogeneity, consequentially resulting in system designs
aimed to reduce their complexity for practical use [9, 10].
With memory-bound analytics, the next goal was reduc-
ing the effects of new bottlenecks, such as PCIe intercon-
nects that are required to transfer the data from the main
memory to the limited capacity, high-bandwidth GPU
memory [11], while also studying and utilizing faster
available interconnects [12]. Using all the available re-
sources effectively leads to fast and efficient data pro-
cessing, which requires system designs that adapt to the
available hardware and build appropriate abstractions to
make it practical.

From another perspective, data management systems
not only adapt and drive the hardware trends but are also
the backbone of making sense of, producing insights, and
deriving value from the increasingly high data volume
and various sources. The ways the data is processed
change with advancements in fields such as data min-
ing and machine learning. While relational data is the
long-established way to store and analyze data in many
use cases, with increasingly high amounts of data, ma-
chine learning models have become more powerful for
various previously human-driven processing, such as
object recognition or semantic analysis. With increas-
ingly practical and desirable models, machine learning
(and inference) has become part of data analytics, both in
terms of machine learning for databases such as learned
indexes [13] or reinforcement learning for query opti-
mization [14], as well as optimizing databases for ma-
chine learning, for example using tensor computation
runtimes [15].

Furthermore, With more recent findings in the domain
of ML, such as the Transformer model architectures [16]
and data embeddings, a class of multi-modal models
has presented state-of-the-art solutions for processing
context-rich data. Such novel use cases and findings dic-
tate the next important way to support extracting value
and processing data. This is noticeable as machine learn-
ing and inference are becoming increasingly available
in data management engines such as BigQuery ML, IBM
DB2 Data Insights, Azure Data Studio/SQL Server, Oracle
Machine Learning, Amazon Aurora Machine Learning,
and others. In particular, extracting and learning embed-
dings from relational tables [17, 18] and using external
models to enrich the data [19, 20] are some of the ways of
incorporating learning-driven data transformation. This
presents novel challenges in building declarative, optimiz-
able, and hardware-conscious hybrid model-relational
engines [19] and optimizing them to modern hardware
capabilities.

In conjunction, novel applications and the post-
Moore’s law era are bringing towards horizontal scaling
in CPUs, with multi-die chip designs (3) (Figure 1). While
this design was already present in Intel Xeon Phi Knights
Landing CPUs [21], more recently, chiplet-based de-
signs have become mainstream with vendors such as
AMD [22, 23], Apple [24], and yet again Intel [25]. In
such designs, rather than being a monolithic die, the CPU
is composed of multiple individual chiplets intercon-
nected in a single package.

Novel hardware brings novel challenges and oppor-
tunities for data management system design. For this
reason, we study the performance characteristics and
present an initial evaluation of Intel Sapphire Rapids (4th

Generation Xeon) CPUs and:

• present and describe the novel multi-die chip ar-
chitecture and the interplay of individual compo-
nents in Section 2,

• analyze individually the effects of High-
Bandwidth Memory (HBM) on access patterns
in Section 3, the use of hardware-supported
half-precision intrinsics in Section 4, and the
novel on-core matrix-accelerators (AMX) in
Section 5,

• evaluate the combined effect of individual com-
ponents on a vector-heavy workload motivated
by recent embedding methods in Section 6.

The post-Moore’s law world resulted in CPU designs
to which data analytics systems must be tailored for ef-
fective and efficient use. In a unique fusion of features
between high-bandwidth memory to tackle the memory
bandwidth wall and half-precision analytics and acceler-
ators for ML workloads in a hierarchical NUMA scaling
package, we explore their individual and combined ef-
fects.

2. Design: Scaling and Element
Fusion

The evolution of the scalability of physical CPU design
(Figure 1) exposes bottlenecks or primitives that provide
challenges and opportunities for hardware-conscious
software system design. While miniaturization allowed
fitting more components on a die and allowed the mem-
ory and peripheral controller to be integrated (2) rather
than separated via Northbridge (1), the same trends have
long been known to slow down, as predicted by Moore’s
law. We consider a NUMA region a unit where proces-
sors can uniformly access memory, typically present in
a single CPU socket. To scale, adding more cores en-
tails adding chiplets representing individual NUMA re-
gions with memory and peripheral links (3). This creates
hierarchical NUMA regions inside the same socket by



Cores Cores

Cores CoresDDR5

DDR5 

DDR5

DDR5 Cores Cores

Cores CoresDDR5

DDR5 

DDR5

DDR5 

HBM HBM

HBM HBM HBM HBM

HBM HBM

NUMA 0 NUMA 1

NUMA 3

NUMA 5

NUMA 7NUMA 2

NUMA 4

NUMA 6

NUMA 8 NUMA 9

NUMA 10 NUMA 11 NUMA 14 NUMA 15

NUMA 12 NUMA 13

~60GB/s

~230GB/s

Figure 2: Dual socket setup: Multi-die chip design has 4 NUMA regions in a single socket, each with DDR5 and HBM2. Using
Sub-NUMA Clustering 4 (SNC-4), HBM is exposed as a separate NUMA region to the OS, resulting in 8 NUMA regions per
socket, 16 in total for a dual-socket setup.

adding more chips instead of further reducing their size.
Comparatively, this NUMA phenomenon was seen and
studied in Intel Xeon Phi Knights Landing (KNL) proces-
sors [26] about 5 years ago. However, the hierarchical
NUMA design and chiplets are more critical nowadays
for scaling, with major vendors providing their solutions.
While AMD chiplet-based CPUs focus on scalability with
uniform cores [23] to provide increasingly more cores,
memory, and PCIe bandwidth, Intel’s approach is to ex-
tend the design with accelerators, novel intrinsics, and
high-bandwidth memory [25].

Instead of simply adding more NUMA regions and
conversely approaching this new hardware design with
adaptive NUMA placement strategies [27], Intel Sapphire
Rapids (Figure 2) introduces further hardware changes
to this design space that is tailored to contemporary
use-cases and workloads. In particular, we present the
schema of a dual-socket Intel Xeon CPU MAX 9480 [28]
with 56 physical cores and 64GB HBM per socket. Every
NUMA region has 16GB of HBM and 14 physical cores,
and 28 with hyperthreading.

First, High-Bandwidth Memory (HBM) modules are
added to each NUMA region, offering lower capacity
than main memory (in this case, 16GB per region) but
significantly higher bandwidth. For example, in compari-
son to DDR5 memory that reaches ∼ 60 GB/s per region,
HBM2 [29] reaches ∼ 230 GB/s. In aggregate, HBM per
socket reaches nearly 1 TB/s, with DRAM at 240 GB/s.
HBM allows addressing the long-standing memory wall

problem [30], and the technology is already deployed
in high-end GPUs. With memory-bound analytics and
with many random-access analytical patterns that are a
natural fit for GPUs such as hash joins [8], higher band-
width combined with many cores can offer a different
tradeoff, having the benefit of main memory locality.
This has also been demonstrated in the analysis of using
the Intel Xeon Phi Knight’s Landing CPU over TPC-H
queries [4]. In contrast to GPUs and remote accelera-
tors that have interconnects that reduce the transfers
to a fraction of the available local memory bandwidth,
CPU-integrated HBM effectively allows near-memory
processing [31]. Since Intel Xeon KNL had an earlier
variant of HBM and chiplet-based architecture that is
similar to Figure 2, there is existing applicable research
on the topics of optimizing for chiplet-based hierarchical
NUMA and HBM [32, 33, 26]. We study this behavior in
Section 3.

However, the next important distinction is that half-
precision integer (int8) and floating point (fp16) op-
erations are supported through hardware intrinsics, in-
cluding a brain-float format (bf16), common in machine
learning. Beyond being optimized for machine learning
workloads or approximate query processing [34], this
allows changing the relative throughput and memory
footprint for general analytics and designing data struc-
tures that are more compact and make use of full hard-
ware processing support. Half-precision types effectively
enable twice the throughput of the single-precision types



and, in conjunction with high-bandwidth memory, may
change the access-pattern behavior and shift memory-
to compute-bound workloads. We explore diverse ac-
cess patterns and these novel tradeoffs that come with
combining HBM and half-precision types in Section 4.

Finally, in addition to the high-bandwidth memory and
native half-precision intrinsics, core-local accelerators
introduce processing heterogeneity and workload spe-
cialization. In conjunction with homogeneous compute
cores, Intel Sapphire Rapids CPU comes with specialized
components such as tile registers and matrix multiplica-
tion units (AMX) aimed at machine learning workloads,
data encryption and compression accelerators (QAT), and
data streaming accelerator (DSA) to provide hardware
acceleration and offload the CPU. In particular, we focus
on AMX and matrix operations as support for machine
learning and vector-embedding-related analytical tasks.
Currently, only a single AMX accelerator is available, be-
ing Tile matrix multiply unit (TMUL) that processes ma-
trix data stored in 8x1KB register files called tile registers.
As accelerators allow offloading tasks from CPU cores
to specialized hardware and achieve better efficiency, we
study briefly the impact of AMX in comparison to CPU-
only execution in Section 5.

Overall, this CPU architecture introduces a novel de-
sign space and opportunities for changing existing trade-
offs by fusing high bandwidth memory, accelerators, and
half-precision processing in a single package. This ex-
tends the memory hierarchy as it enables fast access to
the data in HBM, in addition to the main memory, or
NVMe drives via PCIe links that allow comparable aggre-
gate bandwidth [35]. This is especially important when
modern analytics start to use embeddings and tensor data
formulations [17, 19, 15], where CPU-local accelerators
can better support not only machine learning workloads
but equally data analytics by having fast and immediate
access to the data with better-tailored operations, such
as half-precision processing or accelerating matrix multi-
plications, that is lightweight enough not to necessitate
GPU processing and crossing the comparatively slower
interconnect.

3. High-Bandwidth Memory
(HBM)

We start with evaluating the impact of high-bandwidth
memory (HBM) compared to the available DRAM (DDR5).
We ensure that all the memory allocations and cores are
pinned to desired NUMA nodes using numactl utility.
We mainly focus on isolating individual NUMA regions,
particularly core-local DRAM and HBM (e.g., NUMA 0
and NUMA 8 in Figure 2). As noted, in this setup, HBM
is connected to the cores, avoiding interconnects such as
PCIe, allowing fast data transfer, which we first evaluate.

NUMA

Node
0 1 2 3 4 5 6 7

0 60.04 60.69 60.16 60.25 58.56 58.69 59.24 58.52

1 60.48 59.72 59.98 60.34 58.54 58.56 59.33 58.53

2 60.34 60.39 59.47 60.58 58.61 58.58 59.48 58.55

3 60.31 60.56 60.39 59.88 58.51 58.54 59.50 58.59

4 59.55 58.67 58.27 58.89 59.61 60.32 60.47 60.06

5 59.32 58.56 58.30 58.84 60.37 59.61 60.39 60.20

6 59.27 58.54 58.49 58.76 60.19 60.03 60.08 60.47

7 59.23 58.65 58.54 58.85 60.05 60.13 60.65 59.42

Figure 3: DRAM Bandwidth (GB/s) between NUMA regions.

The server is configured using Sub-NUMA clustering 4
(SNC-4), as in Figure 2. Each socket has 56 physical cores,
equally partitioned over four tiles interconnected using
Intel’s embedded multi-die interconnect bridge (EMIB)
technology in a mesh. This yields 14 physical cores in a
tile (NUMA region), with direct HBM (separate NUMA
region) and DRAM access, exposed in the finest available
granularity to the OS.

3.1. Bandwidth and Latency
With data movement becoming increasingly expensive,
we evaluate the bandwidth and latency characteristics
of DRAM and HBM using the Intel Memory Latency
Checker [36].

3.1.1. DRAM

Figure 3 shows the DRAM bandwidth matrix, indicating
the available bandwidth from/to a given NUMA node.
As each NUMA region has 60GB/s DRAM bandwidth,
individually, cross-NUMA transfers can happen at the
full bandwidth. Still, we note that while the fine-grained,
hierarchical NUMA allows for better control, it can also
introduce more complex interference patterns.

While the bandwidth between different fine-grained
NUMA regions remains practically unchanged, Figure 4
indicates the expected increase in latency when perform-
ing cross-tile inter-socket (EMIB interconnect) and cross-
socket (UPI interconnect) transfers. Socket-local regions
are 0-3 and 4-7 quadrants (EMIB), while the rest are cor-
responding UPI transfers.



Numa

node
0 1 2 3 4 5 6 7

0 93.9 104.1 111.7 121.6 226.3 233.4 235.7 238

1 103.9 95.4 119.3 113.1 227.4 234.6 236.2 238.3

2 112 120.8 94.8 108.8 231.9 236.8 237.2 238.5

3 118.6 109.1 103 95.6 233.5 237.2 237.4 238.5

4 229.1 233.6 234.2 240.1 94 104.1 116.2 120.4

5 230.3 234.3 235.3 240.6 101.3 93.3 120.7 112

6 232.7 236 237.4 240.2 111.8 119.8 97.3 106.4

7 234 236.1 237.6 240.6 116 107.3 104.8 96.8

Figure 4: DRAM Latency Matrix (ns) between NUMA regions
over two sockets. Socket-local regions are 0-3 and 4-7 quad-
rants (EMIB interconnect), while the rest are UPI transfers.

Local 

Node 0 1 2 3

NUMA

Node
8 9 10 11

0 220.92 143.62 126.39 122.18

1 144.27 223.97 122.18 126.11

2 126.16 121.85 224.74 141.64

3 122.46 126.79 142.36 224.60

Local 

Node 4 5 6 7

NUMA

Node
12 13 14 15

4 221.67 143.93 126.45 122.08

5 144.70 224.34 122.17 125.96

6 126.26 121.95 224.69 141.65

7 122.29 126.82 142.30 226.52

Figure 5: HBM bandwidth matrix (GB/s), the socket-local
measurement for each CPU socket with 4 CPU tiles/NUMA
regions.

3.1.2. HBM

Next, we evaluate the HBM bandwidth and latency char-
acteristics similarly. Figure 5 indicates the available band-
width between socket-local NUMA regions. There is
almost a 2x performance impact of the locality. Thus
judicious data placement and locality maintenance are
imperative to achieve the full bandwidth. This contrasts
the DRAM bandwidth matrix (Figure 3), where the im-
pact is negligible or nonexistent. Socket-local NUMA
regions are 0-3 and 4-7, with corresponding HBM NUMA
regions of 8-11 and 12-15 respectively. Figure 6 summa-
rizes the relative bandwidth speedup (in percentages) of
HBM over DRAM in the corresponding NUMA regions.

Local 

Node 0 1 2 3

Numa

node
8 9 10 11

0 367.95 236.66 210.09 202.79

1 238.55 375.02 203.71 209.00

2 209.06 201.77 377.88 233.80

3 203.05 209.37 235.72 375.08

Local 

Node 4 5 6 7

Numa

node
12 13 14 15

4 371.84 238.59 209.12 203.27

5 239.69 376.35 202.29 209.23

6 209.77 203.14 374.01 234.23

7 203.65 210.90 234.60 381.25

Figure 6: The bandwidth speedup matrix of HBM over DRAM
(%), the socket-local measurement for each CPU socket with
4 CPU tiles/NUMA regions.

Local 

Node 0 1 2 3

Numa

node
8 9 10 11

0 120.4 126.1 134.6 146.2

1 127.1 122.7 143.7 133.1

2 133.3 144 120.7 125.1

3 142.6 132 125.4 120.8

Local 

Node 4 5 6 7

Numa

node
12 13 14 15

4 120.9 128 133.3 147

5 125.7 121.5 143.3 136

6 131.8 144.2 120.9 128.7

7 141.7 132.1 124.6 122.5

Figure 7: HBM latency matrix (ns), the socket-local measure-
ment for each CPU socket with 4 CPU tiles/NUMA regions.

On the other hand, the socket-local HBM module la-
tencies (Figure 7) indicate little to no impact due to the
socket local NUMAandHBMmesh enabled by Intel EMIB
Packaging Technology [37], which is the socket-local
interconnect of all the cores and multi-chip packaging
components. Figure 8 summarizes the relative latency
slowdown (in percentages) of accessingHBMover DRAM
by cores in the indicated NUMA regions.

The available NUMA granularity using SNC-4 allows
better resource and workload control at the expense of
more complex placement and potential interference be-
tween similar memory and HBM bandwidths. Less gran-
ular exposure of cores is possible using Quad mode (2S)
or HBM using Caching or HBM-only mode.

3.2. Data Access Patterns
With HBM becoming a CPU-local, high-bandwidth, and
low-latency part of the memory hierarchy rather than
separated by an interconnect, it is a candidate for use in
a traditional sense where sequential and random access
patterns appear in various workloads.

We abstract out three access patterns that bind the



Local 

Node 0 1 2 3 4 5 6 7

Numa

node
8 9 10 11 12 13 14 15

0 28.22 21.13 20.50 20.23 1.68 0.60 0.68 1.60

1 22.33 28.62 20.45 17.68 1.58 0.77 0.89 1.85

2 19.02 19.21 27.32 14.98 0.34 0.34 1.01 2.31

3 20.24 20.99 21.75 26.36 0.47 0.59 1.26 2.56

4 1.88 0.81 1.67 0.54 28.62 22.96 14.72 22.09

5 1.61 0.90 1.44 0.54 24.09 30.23 18.72 21.43

6 1.16 0.93 0.84 1.08 17.89 20.37 24.25 20.96

7 0.81 1.14 0.97 1.04 22.16 23.11 18.89 26.55

Figure 8: The latency slowdown matrix of HBM over DRAM
(%), the socket-local measurement for each CPU socket with
4 CPU tiles/NUMA regions.

decision of paying the random access cost versus initi-
ating a full-bandwidth scan [38]. For that reason, we
evaluate three access patterns in Figure 9 for both HBM
and DRAM to find an appropriate sweet spot between:

1. sequential scan (SCAN), that has the benefit of
using the full available bandwidth,

2. random access (RANDM), which we simulate by
generating random indexes to probe the original
data with,

3. sequential access with probing (SEQM), in which
we generate an index column to probe the original
data; however, this column is fully sorted, and we
pay for the indirection cost as an ideal probing
cost, such as in late materialization approaches,
with the benefit of partially scanning the data if
possible.

We run the experiment using a single FP32 column
with 1 billion tuples and generate an integer index column
randomly and sequentially for RANDM and SEQM cases,
which are of reduced size depending on the indicated
selectivity factor. For HBM experiments, we bind the
allocations to NUMA node 8, and for DRAM experiments,
to NUMA node 0. Computation remains on NUMA node
0, with 14 physical/28 logical cores available.

Despite the higher bandwidth, relative data access
characteristics of DRAM versus HBM remain similar but
accordingly shifted. Therefore, the tradeoff shifts toward
the sequential option when selecting random or sequen-

0.1

1

10

100

1000

10000

0.01 0.025 0.05 0.1 0.25 0.5 0.75 1

T
im

e 
[m

s]
 (

lo
g 

sc
al

e)

Selectivity 

HBM-RANDM RAM-RANDM

FP32-HBM-SEQM FP32-RAM-SEQM

HBM-SCAN RAM-SCAN

Figure 9: DRAM and HBM access pattern characteristics over
FP32 values: full scan (SCAN), random access (RANDM), and
sequential scan with indirection (SEQM) using all CPU-tile-
local threads (28).

0

1000

2000

3000

4000

5000

6000

7000

4 7 14 28

T
im

e 
[m

s]

Threads

RANDM-DRAM-FP16 RANDM-HBM-FP16
RANDM-DRAM-FP32 RANDM-HBM-FP32

Figure 10: DRAM and HBM access pattern characteristics
over FP32 and FP16 values for random access (RANDM), vary-
ing threads. HBM continues scaling using hyper-threads be-
yond the initial higher latency (14 physical to all 28 logical
cores).

tial access. We also note that the general overheads of
random access are also reduced, allowing faster random
access pattern processing than DRAM.

We note that the evaluation in Figure 9 uses all the
available threads (28 total, 14 physical and 14 hyper-
threads). The RAND access patterns are expected to
be lower using HBM according to the latency slowdown
matrix (Figure 8), and we study this through sensitivity
analysis to the number of threads. While the effects of
higher latency are visible using fewer cores, there is a
crossing point where scalability continues in the case of
HBM compared to DRAM at 14 threads (Figure 10).



0

20

40

60

80

100

120

140

160

180

200

1 2 4 7 14 28

B
an

d
w

id
th

 [
G
B
/s

]

Threads

DRAM-SUM DRAM-SUM-IF

HBM-SUM HBM-SUM-IF

Figure 11: Simple aggregation on DRAM and HBM, sequen-
tial (SUM) and branching (SUM-IF).

3.3. Value Aggregation
Besides data access and movement, the practical implica-
tion behind HBM is that it, for now, breaks the existing
DRAM bandwidth wall.

Figure 11 illustrates this phenomenon, where DRAM
workload plateaus at 60GB/s (which is the NUMA-local
available DDR5 bandwidth), HBM-local data continues
scaling and is not bound by memory. Both branching and
sequential algorithms were sustained in either DRAM
or HBM case. We use two workloads, one with a pure
sequential summation of elements (SUM), and one with
a predicate that introduces branching (SUM-IF).

4. Half-Precision Computation
While half-precision numerical support is common in
GPUs and for machine learning and inference workloads,
CPUs have typically not supported this with hardware
intrinsics. With support for brain float 16 (BF16), half-
precision floating point (FP16), and INT8 data types,
higher processing throughput is expected due tomore val-
ues fitting per cache line and in registers for processing.
Such data formats have a lower memory footprint, and
higher throughput is expected compared to full (FP32)
and double (FP64) precision types. This consequently
allows the designing of data structures and algorithms
that can more flexibly use available instructions and data
layouts.

It is instructive to mention that kernel and compiler
support is necessary for using half-precision types. We
use Rocky Linux 9.1 (Blue Onyx) with Linux 6.3.1-1 kernel
and Clang 16, implement all our prototypes, and experi-
ment using C++. Standard practices of aligned memory
allocation have been followed, including a thread pool

0

50

100

150

200

250

300

0.01 0.025 0.05 0.1 0.25 0.5 0.75 1

T
im

e 
[m

s]

Selectivity

FP16-HBM-SEQM FP16-RAM-SEQM

FP32-HBM-SEQM FP32-RAM-SEQM

FP64-HBM-SEQM FP64-RAM-SEQM

Figure 12: DRAM and HBM access pattern characteristics
over FP16, FP32, and FP64 values using sequential scan with
indirection (SEQM).

with pinned cores and controlling the affinities using the
numactl utility.

4.1. Throughput and Access Patterns
We briefly revisit the previously explained SEQM pattern,
extending it with FP16 and FP64 experiments in Figure 12.
While in highly selective queries, the effect of using a
wrong (larger than needed) data type is not large, the ben-
efit of using HBM can be significantly diminished when
processing most of the data. Hardware intrinsics now
allow making even more fine-grained decisions between
FP32 and FP16 data types, in contrast to prior support of
FP32 and FP64 only.

4.2. BF16 Conversion
An important factor to consider with half-precision data
types using current Intel Sapphire Rapids processor in-
trinsics is that BF16 is meant only as an intermediate data
type for computation. Accordingly, there are no load and
store instructions, just conversion from other data types
and computations. In particular, two BF16 values can be
created from a single FP32 value and then processed, for
example, using a dot-product intrinsic.

The dot product is a common operation for vector
and matrix data processing, for example, in computing
the cosine vector similarity. We, therefore, explore the
practicality of using BF16 as an intermediate format and
evaluate the conversion speed in Figure 13. The task
consists of computing a dot product and summing it over
two columns of data containing elements of different
data types (FP64, FP32, FP16). We include the experi-
ment where starting from FP32 data using DRAM only,
intermediate BF16 data is converted, and a specialized



0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 7 14 21 28

T
im

e 
[m

s]

Threads

CONV-32-BF16

FP-16

FP-32

FP-64

Figure 13: Pairwise dot product and sum between two
columns, different data types, including BF16, DRAM only.

intrinsic is used for dot product computation. We use all
the NUMA-local cores (28 in total using hyperthreading).

While the computation consists only of the multipli-
cation and addition of elements, the computational over-
head of the FP64 data type is significantly higher due
to data movement and computation requirements. Fur-
thermore, we can notice that the BF16 execution time
is similar to FP32. This is due to scanning the data in
FP32 format and not benefiting from reduced data access,
only from faster computations. Still, this overhead is
comparably insignificant in more complex computations,
such as in computationally intensive machine learning
operations.

4.3. HBM + Half-Precision
Still, with the availability of HBM, we are interested in
if higher bandwidth can further offset the FP32 to BF16
conversion cost and bring the processing time closer to
one of FP16. We keep the setup but run the experiments
on local DRAM andHBM separately, using all 28 tile-local
threads.

Figure 14 indicates that the best computation time is
indeed when FP16 is used, which is allocated as such, ben-
efiting from lower data access and computational cost.
This is true for both DRAM and HBM. However, when
able to use more than 14 threads and consequently more
HBM bandwidth, the FP32 access cost diminishes, and
the conversion pays off even compared to FP16 in DRAM.
Thus, breaking the bandwidth wall between DRAM and
HBM is also apparent at the 4 threads point, briefly
demonstrating the importance of both half-precision data
types and high bandwidth memory.

0

50

100

150

200

250

300

350

400

450

500

1 2 4 7 14 21 28

T
im

e 
[m

s]

Threads

RAM-CONV RAM-FP-16
HBM-CONV HBM-FP-16

Figure 14: Pairwise dot product and sum between two
columns, FP16 and BF16 conversion on HBM and DRAM.

0

50

100

150

200

250

1 2 4 7 14 28

B
an

d
w

id
th

 [
G
B
/s

]

Threads

FP16-HBM FP32-HBM FP64-HBM

FP16-DRAM FP32-DRAM FP64-DRAM

Figure 15: SUM-IF using different precision, DRAM andHBM

This is equally apparent in Figure 15, where we re-
run the SUM-IF query using different precision floating
points in HBM and DRAM. So long as the computations
can sustain the increased bandwidth, it will be useful and
break through the existing 60GB/s NUMA-local DRAM
bandwidth. Interestingly, corresponding data types have
a similar bandwidth until reaching that wall with the
number of threads required to transition between being
compute and memory bound. Still, to fully benefit from
added bandwidth and the impact of data type change, the
workload must be able to consume the available band-
width or initially suffer from data movement bottlenecks.
In this case, the relative bandwidth of consuming the
same number of tuples between FP16, FP32, and FP64
is not purely memory bound (i.e., the data consumption
bandwidth does not scale linearly).



5. On-CPU Accelerators (AMX)
Finally, we analyze the last on-CPU building block that
allows efficient data processing through hardware spe-
cialization. While other accelerators (QAT, DSA) are
specialized for other tasks, we focus on Advanced Matrix
Extensions (AMX) as a building block for modern ana-
lytical and machine learning workload acceleration over
vector data types.

AMX introduces matrix multiplication intrinsics that
operate over 8 tile registers of 1KB each, storing half-
precision floats and integers and performing dot product
operation. In contrast, traditional AVX-512 intrinsics
also have dot product instructions specialized for half-
precision computation, however, working on fewer data
points that fit in standard registers.

5.1. Cores vs Accelerators
The natural question to ask in the presence of special-
ized hardware along a general-purpose core is where
the line between the two lies. In particular, we want to
answer how many regular cores one AMX accelerator
replaces. We generate 1 million tuples at random, each
tuple being a 512-dimensional vector. The given work-
load is to perform a cosine distance computation over all
the tuples against a single 512-dimensional vector. To
answer the question, we run AMX on a single thread ex-
clusively while varying the threads for other data types
and AVX-512-supported execution.

We first start with DRAM and HBM execution over
different precision data types in Figure 16, similar to the
experimental setup of Section 4.3.

The experiment is conclusive that care should be taken
to use appropriate data type precision, as they signifi-
cantly impact the execution time and efficiency. While
HBM can offset some of that cost, the computation would
still dominate.

In the case of DRAM, even in a single-threaded exe-
cution, AMX is almost as fast as all-core execution on
FP16 and FP32 data types and faster than FP64, indicating
high accelerator efficiency for the given task. This allows
offloading other tasks to the available CPU cores.

When HBM is used, higher bandwidth allows moving
the overhead of repeatedly loading the data to AVX-512
registers closer to AMX, and the crossing point indicates
that, in this case, AMX replaces about 6 CPU cores, as
shown in Figure 17. This enables more efficient resource
utilization in the presence of suitable workloads and re-
duces the reliance on GPUs and slow data transfers for
matrix-specialized operations. Still, data locality should
be orchestrated carefully to benefit from the added spe-
cialized accelerators, as accessing remote data, even on
an adjacent CPU tile (socket-local NUMA), reduces the
efficiency to about replacing 3 CPU cores (Figure 18).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 7 14 21 28

T
im

e 
[m

s]

Threads

NUMA: CPU 0, MEM 0 (CPU-DRAM)

FP-16

FP-32

FP-64

TILE-1thread

Figure 16: 1 thread AMX vs. AVX-512 and parallel execution
on CPU-tile-local cores (up to 28 with hyperthreading) on
NUMA node 0 and local DRAM on NUMA node 0.

6. Fusion: HBM + Half-Precision +
AMX

At this point, we have individually presented the compo-
nents, and now we analyze them together: HBM, native
half-precision hardware support, and matrix-processing
accelerators. For efficient use of hardware resources and
with increasingly high heterogeneity, it is essential to
evaluate the entire design space and component inter-
actions. The experimental setup is as in Section 5, we
generate 1 million tuples randomly, each tuple being a
512-dimensional vector. The given workload is to per-
form a cosine distance computation over all the tuples
against a single 512-dimensional vector. We run AMX
on a single thread exclusively while varying the threads
for other data types and AVX-512-supported execution.

The most granular NUMA configuration (SNC-4) al-
lows fine-grained data movement and access control over
HBM, DRAM, and processor resources on sockets and
tiles. However, certain workloads, such as performing
matrix multiplication using FP64 datatype (Figure 19),
result in workloads natively fully handled better by spe-
cialized accelerators, if at all possible to perform the con-
version or approximate.

When there is a balance between data movement and
computation (Figure 20), an equally balanced use between
accelerators and general computational resources is pos-
sible, depending on particular optimization goals. The
increased bandwidth of HBM helps in the data movement



0

1000

2000

3000

4000

5000

6000

1 2 4 7 14 21 28

T
im

e 
[m

s]

Threads

NUMA: CPU 0, MEM 8 (CPU-HBM)

FP-16

FP-32

FP-64

TILE-1thread

Figure 17: 1 thread AMX vs. AVX-512 and parallel execution
on CPU-tile-local cores (up to 28 with hyperthreading) on
NUMA node 0 and local HBM on NUMA node 8.

tasks and further reduces the previously memory-bound
workload time.

Finally, using all the hardware characteristics: HBM,
FP16, and AMX allows fine-tuning the particular use case
to the available resources. When respecting NUMA lo-
cality, the traditional CPU cores are utilized the best, and
half-precision types reduce the stress on the memory
bandwidth and data movement. This allows using re-
maining resources, such as HBM and available cores for
other parallel tasks, and pushes the global efficiency of
the whole NUMA node in comparison to using a special-
ized AMX accelerator, as depicted in Figure 21.

The increased hardware accelerator and memory hier-
archy heterogeneity provide opportunities and solutions
to address the existing bottlenecks. On the other hand,
careful orchestration and tailoring to the workload are
necessary to benefit from the fine-grained features and
their interactions. Finally, this also spans data placement
and memory management problems, as HBM capacity
is limited, as well as specializing the computation using
correct data types or CPU-specific intrinsics.

7. Conclusion and Opportunities
The looming end of Moore’s law has introduced novel
CPU architectural solutions. We analyzed 4th Genera-
tion Intel Xeon Scalable processors known as Sapphire
Rapids, as one proposed answer to continue CPU scalabil-
ity. In particular, a combination of homogeneous cores,

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 7 14 21 28

T
im

e 
[m

s]

Threads

NUMA: CPU 0, MEM 1 (CPU-DRAM)

FP-16

FP-32

FP-64

TILE-1thread

Figure 18: 1 thread AMX vs. AVX-512 and parallel execution
on CPU-tile-local cores (up to 28 with hyperthreading) on
NUMA node 0 and socket-local but tile-remote DRAM on
NUMA node 1.

0

1000

2000

3000

4000

5000

6000

1 2 4 7 14 21 28

T
im

e 
[m

s]

Threads

FP64-HBM FP64-DRAM FP64-DRAM-R

TILE-HBM-1TH TILE-DRAM-1TH TILE-DRAM-R-1TH

Figure 19: HBM, AMX, and FP64 combined, compared against
using CPU-tile-local DRAM and socket-local but tile-remote
DRAM (-R).

half-precision support, specialized accelerators, and high-
bandwidth memory allows a unique fusion of features.
Firstly, high-bandwidth memory (HBM) allows scaling
the memory wall, accelerators (AMX) allow efficiency
and alleviating general-purpose cores, and half-precision
types allow tailoring the computation to modern work-
loads.

To use the underlying hardware efficiently, systems
must be tuned to their characteristics. With a new design
and tradeoffs in comparison to prior CPUs, our study on
Sapphire Rapids is an initial starting point for hardware-



0

100

200

300

400

500

600

700

800

900

1 2 4 7 14 21 28

T
im

e 
[m

s]

Threads

FP32-HBM FP32-DRAM FP32-DRAM-R

TILE-HBM-1TH TILE-DRAM-1TH TILE-DRAM-R-1TH

Figure 20: HBM, AMX, and FP32 combined, compared against
using CPU-tile-local DRAM and socket-local but tile-remote
DRAM (-R).

0

100

200

300

400

500

600

1 2 4 7 14 21 28

T
im

e 
[m

s]

Threads

FP16-HBM FP16-DRAM FP16-DRAM-R

TILE-HBM-1TH TILE-DRAM-1TH TILE-DRAM-R-1TH

Figure 21: HBM, AMX, and FP16 combined, compared against
using CPU-tile-local DRAM and socket-local but tile-remote
DRAM (-R).

software codesign of future chiplet-based heterogeneous
CPUs and processing units, and how they impact both
traditional and novel data management challenges.

Acknowledgments
We thank the anonymous reviewers for their insightful
comments and detailed feedback that improved the paper.
We also thank the Intel Developer Cloud staff for their
support in facilitating access to hardware, especially the
team at Intel DCAI Labs in Swindon, who generously
provided access to the server equipped with the 4th Gen-
eration Intel Xeon Scalable CPU (Sapphire Rapids) for
testing and evaluation.

References
[1] M. Zukowski, M. Van deWiel, P. Boncz, Vectorwise:

A vectorized analytical dbms, in: 2012 IEEE 28th In-
ternational Conference on Data Engineering, IEEE,
2012, pp. 1349–1350.

[2] T. Neumann, Efficiently compiling efficient query
plans for modern hardware, Proc. VLDB En-
dow. 4 (2011) 539–550. URL: http://www.vldb.
org/pvldb/vol4/p539-neumann.pdf. doi:10.14778/
2002938.2002940.

[3] P. Menon, A. Pavlo, T. C. Mowry, Relaxed opera-
tor fusion for in-memory databases: Making com-
pilation, vectorization, and prefetching work to-
gether at last, Proc. VLDB Endow. 11 (2017) 1–13.
URL: http://www.vldb.org/pvldb/vol11/p1-menon.
pdf. doi:10.14778/3151113.3151114.

[4] T. Kersten, V. Leis, A. Kemper, T. Neumann,
A. Pavlo, P. Boncz, Everything you always wanted
to know about compiled and vectorized queries but
were afraid to ask, Proc. VLDB Endow. 11 (2018)
2209–2222. URL: https://doi.org/10.14778/3275366.
3284966. doi:10.14778/3275366.3284966.

[5] P. Chrysogelos, P. Sioulas, A. Ailamaki, Hardware-
conscious query processing in gpu-accelerated ana-
lytical engines, in: 9th Biennial Conference on In-
novative Data Systems Research, CIDR 2019, Asilo-
mar, CA, USA, January 13-16, 2019, Online Proceed-
ings, www.cidrdb.org, 2019. URL: http://cidrdb.org/
cidr2019/papers/p127-chrysogelos-cidr19.pdf.

[6] Y. Yuan, R. Lee, X. Zhang, The yin and yang of pro-
cessing data warehousing queries on gpu devices,
Proc. VLDB Endow. 6 (2013) 817–828. URL: https:
//doi.org/10.14778/2536206.2536210. doi:10.14778/
2536206.2536210.

[7] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, P. V. Sander, Relational query coprocessing
on graphics processors, ACM Trans. Database Syst.
34 (2009). URL: https://doi.org/10.1145/1620585.
1620588. doi:10.1145/1620585.1620588.

[8] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Ap-
puswamy, A. Ailamaki, Hardware-conscious
hash-joins on gpus, in: 35th IEEE Interna-
tional Conference on Data Engineering, ICDE 2019,
Macao, China, April 8-11, 2019, IEEE, 2019, pp.
698–709. URL: https://doi.org/10.1109/ICDE.2019.
00068. doi:10.1109/ICDE.2019.00068.

[9] P. Chrysogelos, Efficient analytical query
processing on cpu-gpu hardware platforms
(2022) 132. URL: http://infoscience.epfl.ch/
record/296204. doi:https://doi.org/10.5075/
epfl-thesis-8068.

[10] P. Chrysogelos, M. Karpathiotakis, R. Ap-
puswamy, A. Ailamaki, Hetexchange: En-
capsulating heterogeneous CPU-GPU par-
allelism in JIT compiled engines, Proc.
VLDB Endow. 12 (2019) 544–556. URL: http:
//www.vldb.org/pvldb/vol12/p544-chrysogelos.pdf.
doi:10.14778/3303753.3303760.

[11] A. Raza, P. Chrysogelos, P. Sioulas, V. Indjic,
A. G. Anadiotis, A. Ailamaki, Gpu-accelerated

http://www.vldb.org/pvldb/vol4/p539-neumann.pdf
http://www.vldb.org/pvldb/vol4/p539-neumann.pdf
http://dx.doi.org/10.14778/2002938.2002940
http://dx.doi.org/10.14778/2002938.2002940
http://www.vldb.org/pvldb/vol11/p1-menon.pdf
http://www.vldb.org/pvldb/vol11/p1-menon.pdf
http://dx.doi.org/10.14778/3151113.3151114
https://doi.org/10.14778/3275366.3284966
https://doi.org/10.14778/3275366.3284966
http://dx.doi.org/10.14778/3275366.3284966
http://cidrdb.org/cidr2019/papers/p127-chrysogelos-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p127-chrysogelos-cidr19.pdf
https://doi.org/10.14778/2536206.2536210
https://doi.org/10.14778/2536206.2536210
http://dx.doi.org/10.14778/2536206.2536210
http://dx.doi.org/10.14778/2536206.2536210
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1620585.1620588
http://dx.doi.org/10.1145/1620585.1620588
https://doi.org/10.1109/ICDE.2019.00068
https://doi.org/10.1109/ICDE.2019.00068
http://dx.doi.org/10.1109/ICDE.2019.00068
http://infoscience.epfl.ch/record/296204
http://infoscience.epfl.ch/record/296204
http://dx.doi.org/https://doi.org/10.5075/epfl-thesis-8068
http://dx.doi.org/https://doi.org/10.5075/epfl-thesis-8068
http://www.vldb.org/pvldb/vol12/p544-chrysogelos.pdf
http://www.vldb.org/pvldb/vol12/p544-chrysogelos.pdf
http://dx.doi.org/10.14778/3303753.3303760


data management under the test of time, in:
10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Nether-
lands, January 12-15, 2020, Online Proceed-
ings, www.cidrdb.org, 2020. URL: http://cidrdb.org/
cidr2020/papers/p18-raza-cidr20.pdf.

[12] C. Lutz, S. Breß, S. Zeuch, T. Rabl, V. Markl, Pump
up the volume: Processing large data on gpus
with fast interconnects, in: D. Maier, R. Pottinger,
A. Doan, W. Tan, A. Alawini, H. Q. Ngo (Eds.), Pro-
ceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-
19, 2020, ACM, 2020, pp. 1633–1649. URL: https:
//doi.org/10.1145/3318464.3389705. doi:10.1145/
3318464.3389705.

[13] T. Kraska, A. Beutel, E. H. Chi, J. Dean, N. Poly-
zotis, The case for learned index structures, in:
G. Das, C. M. Jermaine, P. A. Bernstein (Eds.), Pro-
ceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, ACM, 2018,
pp. 489–504. URL: https://doi.org/10.1145/3183713.
3196909. doi:10.1145/3183713.3196909.

[14] P. Sioulas, A. Ailamaki, Scalable multi-query execu-
tion using reinforcement learning, in: G. Li, Z. Li,
S. Idreos, D. Srivastava (Eds.), SIGMOD ’21: Inter-
national Conference on Management of Data, Vir-
tual Event, China, June 20-25, 2021, ACM, 2021, pp.
1651–1663. URL: https://doi.org/10.1145/3448016.
3452799. doi:10.1145/3448016.3452799.

[15] D. He, S. C. Nakandala, D. Banda, R. Sen,
K. Saur, K. Park, C. Curino, J. Camacho-Rodríguez,
K. Karanasos, M. Interlandi, Query processing on
tensor computation runtimes, Proc. VLDB Endow.
15 (2022) 2811–2825. URL: https://www.vldb.org/
pvldb/vol15/p2811-he.pdf.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, At-
tention is all you need, Advances in neural infor-
mation processing systems 30 (2017).

[17] R. Bordawekar, O. Shmueli, Using word em-
bedding to enable semantic queries in relational
databases, in: Proceedings of the 1st Workshop
on Data Management for End-to-End Machine
Learning, DEEM’17, Association for Computing
Machinery, New York, NY, USA, 2017. URL: https:
//doi.org/10.1145/3076246.3076251. doi:10.1145/
3076246.3076251.

[18] R. Bordawekar, O. Shmueli, Enabling cognitive
intelligence queries in relational databases using
low-dimensional word embeddings, arXiv preprint
arXiv:1603.07185 (2016).

[19] V. Sanca, A. Ailamaki, Analytical engines with
context-rich processing: Towards efficient next-

generation analytics, in: 2023 IEEE 39th Inter-
national Conference on Data Engineering (ICDE),
2023, pp. 3699–3707. doi:10.1109/ICDE55515.
2023.00298.

[20] K. Park, K. Saur, D. Banda, R. Sen, M. Interlandi,
K. Karanasos, End-to-end optimization of ma-
chine learning prediction queries, in: Z. G. Ives,
A. Bonifati, A. E. Abbadi (Eds.), SIGMOD ’22: In-
ternational Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, ACM,
2022, pp. 587–601. URL: https://doi.org/10.1145/
3514221.3526141. doi:10.1145/3514221.3526141.

[21] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim,
K. Vinod, S. Chinthamani, S. Hutsell, R. Agarwal,
Y.-C. Liu, Knights landing: Second-generation in-
tel xeon phi product, IEEE Micro 36 (2016) 34–46.
doi:10.1109/MM.2016.25.

[22] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh,
M. Subramony, S. White, Pioneering chiplet tech-
nology and design for the amd epyc™ and ryzen™
processor families: Industrial product, in: 2021
ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), IEEE, 2021, pp.
57–70.

[23] S. Naffziger, K. Lepak, M. Paraschou, M. Subramony,
2.2 amd chiplet architecture for high-performance
server and desktop products, in: 2020 IEEE Inter-
national Solid-State Circuits Conference-(ISSCC),
IEEE, 2020, pp. 44–45.

[24] C. Kenyon, C. Capano, Apple silicon performance
in scientific computing, in: 2022 IEEE High Per-
formance Extreme Computing Conference (HPEC),
IEEE, 2022, pp. 1–10.

[25] N. Nassif, A. O. Munch, C. L. Molnar, G. Pas-
dast, S. V. Lyer, Z. Yang, O. Mendoza, M. Huddart,
S. Venkataraman, S. Kandula, R. Marom, A. M. Kern,
B. Bowhill, D. R. Mulvihill, S. Nimmagadda, V. Ka-
lidindi, J. Krause, M. M. Haq, R. Sharma, K. Duda,
Sapphire rapids: The next-generation intel xeon
scalable processor, in: 2022 IEEE International
Solid- State Circuits Conference (ISSCC), volume 65,
2022, pp. 44–46. doi:10.1109/ISSCC42614.2022.
9731107.

[26] S. Williams, L. Ionkov, M. Lang, Numa dis-
tance for heterogeneous memory, in: Proceed-
ings of the Workshop on Memory Centric Pro-
gramming for HPC, MCHPC’17, Association for
Computing Machinery, New York, NY, USA, 2017,
p. 30–34. URL: https://doi.org/10.1145/3145617.
3145620. doi:10.1145/3145617.3145620.

[27] I. Psaroudakis, T. Scheuer, N. May, A. Sellami,
A. Ailamaki, Adaptive numa-aware data place-
ment and task scheduling for analytical work-
loads in main-memory column-stores, Proc.
VLDB Endow. 10 (2016) 37–48. URL: https://doi.org/

http://cidrdb.org/cidr2020/papers/p18-raza-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p18-raza-cidr20.pdf
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/3318464.3389705
http://dx.doi.org/10.1145/3318464.3389705
http://dx.doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
http://dx.doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3448016.3452799
https://doi.org/10.1145/3448016.3452799
http://dx.doi.org/10.1145/3448016.3452799
https://www.vldb.org/pvldb/vol15/p2811-he.pdf
https://www.vldb.org/pvldb/vol15/p2811-he.pdf
https://doi.org/10.1145/3076246.3076251
https://doi.org/10.1145/3076246.3076251
http://dx.doi.org/10.1145/3076246.3076251
http://dx.doi.org/10.1145/3076246.3076251
http://dx.doi.org/10.1109/ICDE55515.2023.00298
http://dx.doi.org/10.1109/ICDE55515.2023.00298
https://doi.org/10.1145/3514221.3526141
https://doi.org/10.1145/3514221.3526141
http://dx.doi.org/10.1145/3514221.3526141
http://dx.doi.org/10.1109/MM.2016.25
http://dx.doi.org/10.1109/ISSCC42614.2022.9731107
http://dx.doi.org/10.1109/ISSCC42614.2022.9731107
https://doi.org/10.1145/3145617.3145620
https://doi.org/10.1145/3145617.3145620
http://dx.doi.org/10.1145/3145617.3145620
https://doi.org/10.14778/3015274.3015275
https://doi.org/10.14778/3015274.3015275


10.14778/3015274.3015275. doi:10.14778/3015274.
3015275.

[28] Intel, 2023. URL: https://www.intel.com/
content/www/us/en/products/sku/232592/
intel-xeon-cpu-max-9480-processor-112-5m-cache-1-90-ghz/
specifications.html.

[29] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin,
K. Kim, Hbm (high bandwidth memory) dram tech-
nology and architecture, in: 2017 IEEE Interna-
tional Memory Workshop (IMW), 2017, pp. 1–4.
doi:10.1109/IMW.2017.7939084.

[30] W. A. Wulf, S. A. McKee, Hitting the memory wall:
Implications of the obvious, ACM SIGARCH com-
puter architecture news 23 (1995) 20–24.

[31] W. Cui, Q. Zhang, S. Blanas, J. Camacho-Rodríguez,
B. Haynes, Y. Li, R. Ramamurthy, P. Cheng, R. Sen,
M. Interlandi, Query processing on gaming con-
soles, in: Proceedings of the 19th International
Workshop on Data Management on New Hardware,
DaMoN ’23, Association for Computing Machinery,
New York, NY, USA, 2023, p. 86–88. URL: https:
//doi.org/10.1145/3592980.3595313. doi:10.1145/
3592980.3595313.

[32] S. Ramos, T. Hoefler, Capability models for many-
core memory systems: A case-study with xeon phi
knl, in: 2017 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2017, pp.
297–306. doi:10.1109/IPDPS.2017.30.

[33] S. Jha, B. He, M. Lu, X. Cheng, H. P. Huynh, Im-
proving main memory hash joins on intel xeon phi
processors: An experimental approach, Proc. VLDB
Endow. 8 (2015) 642–653. URL: https://doi.org/
10.14778/2735703.2735704. doi:10.14778/2735703.
2735704.

[34] V. Sanca, A. Ailamaki, Sampling-based AQP in
modern analytical engines, in: S. Blanas, N. May
(Eds.), International Conference on Management
of Data, DaMoN 2022, Philadelphia, PA, USA, 13
June 2022, ACM, 2022, pp. 4:1–4:8. URL: https:
//doi.org/10.1145/3533737.3535095. doi:10.1145/
3533737.3535095.

[35] H. Nicholson, A. Raza, P. Chrysogelos, A. Ail-
amaki, Hetcache: Synergising nvme stor-
age and GPU acceleration for memory-efficient
analytics, in: 13th Conference on Innova-
tive Data Systems Research, CIDR 2023, Am-
sterdam, The Netherlands, January 8-11, 2023,
www.cidrdb.org, 2023. URL: https://www.cidrdb.
org/cidr2023/papers/p84-nicholson.pdf.

[36] K. Viswanathan, Intel® memory latency checker
v3.9a, 2023. URL: https://www.intel.com/
content/www/us/en/developer/articles/tool/
intelr-memory-latency-checker.html.

[37] R. Mahajan, R. Sankman, N. Patel, D.-W. Kim, K. Ay-
gun, Z. Qian, Y. Mekonnen, I. Salama, S. Sharan,

D. Iyengar, et al., Embedded multi-die interconnect
bridge (emib)–a high density, high bandwidth pack-
aging interconnect, in: 2016 IEEE 66th Electronic
Components and Technology Conference (ECTC),
IEEE, 2016, pp. 557–565.

[38] M. S. Kester, M. Athanassoulis, S. Idreos, Access
path selection in main-memory optimized data sys-
tems: Should i scan or should i probe?, in: Proceed-
ings of the 2017 ACM International Conference on
Management of Data, 2017, pp. 715–730.

https://doi.org/10.14778/3015274.3015275
https://doi.org/10.14778/3015274.3015275
http://dx.doi.org/10.14778/3015274.3015275
http://dx.doi.org/10.14778/3015274.3015275
https://www.intel.com/content/www/us/en/products/sku/232592/intel-xeon-cpu-max-9480-processor-112-5m-cache-1-90-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/232592/intel-xeon-cpu-max-9480-processor-112-5m-cache-1-90-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/232592/intel-xeon-cpu-max-9480-processor-112-5m-cache-1-90-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/232592/intel-xeon-cpu-max-9480-processor-112-5m-cache-1-90-ghz/specifications.html
http://dx.doi.org/10.1109/IMW.2017.7939084
https://doi.org/10.1145/3592980.3595313
https://doi.org/10.1145/3592980.3595313
http://dx.doi.org/10.1145/3592980.3595313
http://dx.doi.org/10.1145/3592980.3595313
http://dx.doi.org/10.1109/IPDPS.2017.30
https://doi.org/10.14778/2735703.2735704
https://doi.org/10.14778/2735703.2735704
http://dx.doi.org/10.14778/2735703.2735704
http://dx.doi.org/10.14778/2735703.2735704
https://doi.org/10.1145/3533737.3535095
https://doi.org/10.1145/3533737.3535095
http://dx.doi.org/10.1145/3533737.3535095
http://dx.doi.org/10.1145/3533737.3535095
https://www.cidrdb.org/cidr2023/papers/p84-nicholson.pdf
https://www.cidrdb.org/cidr2023/papers/p84-nicholson.pdf
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html

	1 Introduction: Evolving Scalability
	2 Design: Scaling and Element Fusion
	3 High-Bandwidth Memory (HBM)
	3.1 Bandwidth and Latency
	3.1.1 DRAM
	3.1.2 HBM

	3.2 Data Access Patterns
	3.3 Value Aggregation

	4 Half-Precision Computation
	4.1 Throughput and Access Patterns
	4.2 BF16 Conversion
	4.3 HBM + Half-Precision

	5 On-CPU Accelerators (AMX)
	5.1 Cores vs Accelerators

	6 Fusion: HBM + Half-Precision + AMX
	7 Conclusion and Opportunities

