
An Intermediate Representation for Composable Typed
Streaming Dataflow Designs
Matthijs A. Reukers1, Yongding Tian1, Zaid Al-Ars1,*, Peter Hofstee2, Matthijs Brobbel3,
Johan Peltenburg3 and Jeroen van Straten3

1Delft University of Technology, Mekelweg 5, Delft, 2600 AA, The Netherlands
2IBM Systems, Austin, TX, USA
3Voltron Data, Mountain View, CA, USA

Abstract
Tydi is an open specification for streaming dataflow designs in digital circuits, allowing designers to express how composite and
variable-length data structures are transferred over streams using clear, data-centric types. These data types are extensively
used in a many application domains, such as big data and SQL applications. This way, Tydi provides a higher-level method for
defining interfaces between components as opposed to existing bit- and byte-based interface specifications. In this paper, we
introduce an open-source intermediate representation (IR) which allows for the declaration of Tydi’s types. The IR enables
creating and connecting components with Tydi Streams as interfaces, called Streamlets. It also lets backends for synthesis
and simulation retain high-level information, such as documentation. Types and Streamlets can be easily reused between
multiple projects, and Tydi’s streams and type hierarchy can be used to define interface contracts, which aid collaboration
when designing a larger system. The IR codifies the rules and properties established in the Tydi specification and serves
to complement computation-oriented hardware design tools with a data-centric view on interfaces. To support different
backends and targets, the IR is focused on expressing interfaces, and complements behavior described by hardware description
languages and other IRs. Additionally, a testing syntax for the verification of inputs and outputs against abstract streams
of data, and for substituting interdependent components, is presented which allows for the specification of behavior. To
demonstrate this IR, we have created a grammar, parser, and query system, and paired these with a backend targeting VHDL.

Keywords
hardware description languages, intermediate representations, open source software, hardware streams, data structures

1. Introduction
In order to transfer streaming data between components
within digital circuits, designers have a choice to either
design their own interfaces, or use general interface spec-
ifications such as Intel’s Avalon-ST [1] or Arm’s AXI4-
Stream [2]. By using an interface specification, it is easier
for other designers to connect components, as the signals
and how they relate to data transfers are standardized.
This can promote reuse, and is used by hardware design
tools to provide IP (Intellectual Property) libraries and
automate integration [3, 4].

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) —Workshop on Accelerating Analytics and Data
Management Systems (ADMS’23), August 28 - September 1, 2023, Van-
couver, Canada
*Corresponding author.
$ M.A.Reukers@student.tudelft.nl (M. A. Reukers);
Y.Tian-3@tudelft.nl (Y. Tian); Z.Al-Ars@tudelft.nl (Z. Al-Ars);
hofstee@us.ibm.coml (P. Hofstee); matthijs@voltrondata.com
(M. Brobbel); johan@voltrondata.com (J. Peltenburg);
jeroen@voltrondata.com (J. v. Straten)
� 0000-0002-1612-1187 (M. A. Reukers); 0000-0002-4515-4009
(Y. Tian); 0000-0001-7670-8572 (Z. Al-Ars); 0000-0002-1825-0097
(P. Hofstee); 0000-0001-6286-6510 (M. Brobbel);
0000-0002-7043-7131 (J. Peltenburg); 0000-0002-5610-2511
(J. v. Straten)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

The aforementioned specifications do not specify how
data structures are represented, however, and as a result
designers must still design, document and share these
representations. Additionally, the IP integration tools are
proprietary, reducing the simplicity of integrating such
IPs outside of these specific tools. Addressing the first
issue, Peltenburg et al. proposed Tydi (Typed dataflow in-
terface) [5], an open specification which allows designers
to explicitly define the data which is being transferred
by providing a type system for composite and variable-
length data structures, in addition to defining how data
elements are organized in transfers and the requirements
on transfers. This paper introduces a method to address
the second issue, by utilizing the Tydi specification as
part of an IR (intermediate representation) for defining
interfaces and connecting components.

The goal of the IR is not to serve as a complete hard-
ware description language, but to provide a simple and
robust way to declare Tydi’s types, define interfaces and
connect components which adhere to the Tydi specifica-
tion, serving as part of a toolchain in order to integrate
and reuse components within and across projects. To this
end, the IR is not capable of directly implementing be-
havior, but should instead be combined with transaction-
level verification to specify intended behavior.

mailto:M.A.Reukers@student.tudelft.nl
mailto:Y.Tian-3@tudelft.nl
mailto:Z.Al-Ars@tudelft.nl
mailto:hofstee@us.ibm.coml
mailto:matthijs@voltrondata.com
mailto:johan@voltrondata.com
mailto:jeroen@voltrondata.com
https://orcid.org/0000-0002-1612-1187
https://orcid.org/0000-0002-4515-4009
https://orcid.org/0000-0001-7670-8572
https://orcid.org/0000-0002-1825-0097
https://orcid.org/0000-0001-6286-6510
https://orcid.org/0000-0002-7043-7131
https://orcid.org/0000-0002-5610-2511
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

2. Related Work
The Tydi specification and type system was introduced
by Peltenburg et al. [5] and defines an abstract way
to describe data structures transferred over hardware
streams. Tydi promises to reduce the design effort of
creating hardware for streaming dataflow computing, by
providing clear and intuitive ways to map composite,
variable-length data structures onto a hardware stream-
ing protocol. An open-source repository and documen-
tation [6] expanding on the specification and providing
example code for mapping Tydi’s streams onto VHDL
component ports is now available.
Stream processing There exist many projects to in-

troduce languages and frameworks for streaming data
processing [7, 8, 9, 10, 11], as stream processing has been
actively researched for over 20 years and has undergone
many changes, with software paradigms and hardware
acceleration being worked on in parallel [12, 13].
Design tools At the same time, there are multiple

ongoing efforts to improve the tools used for designing
such hardware accelerators, in the form of new hardware
description languages [14, 15], intermediate representa-
tions [16] and compilers [17], high-level synthesis based
on software programming languages [18], and more gen-
eral program representations for heterogeneous systems
[19, 20].
Interfaces While improved languages and frame-

works can speed up design and improve reusability [15],
interface standards such as [2, 21, 1, 22] ensure that IPs
can be made compatible between projects. Additionally,
design tools provide catalogs of IPs and methods to com-
bine and integrate them into larger designs [23, 24].

Tydi Working towards a full toolchain, there is a sep-
arate project for a front-end and language for expressing
behavior, called Tydi-lang.

3. Motivation
While much research is focused on developing and accel-
erating algorithms for streaming data in both hardware
[25, 19] and software [13], many designs for low-level
hardware still have to transfer streams over interfaces
which are either custom or based on generic, bit- and/or
byte-oriented specifications such as AXI4-Stream [2] and
Avalon-ST [1]. As a result, higher-level information
about data structures and how streams of data are or-
ganized over transfers must be devised and implemented
by designers, and are not reflected by the declaration of
the interface in a traditional HDL.

Some of this design effort can be alleviated through the
use of high-level synthesis: tools such as Vivado HLS can
be employed to leverage C, C++ or SystemC combined
with IP-blocks using ap_fifo or AXI4-Stream to handle

data streams [26], while synthesizing compilers such as
Optimus [8] have been developed in the past to leverage
StreamIt [7], a language specifically for streaming appli-
cations. At the same time, many researchers are working
on improved hardware description languages and IRs,
such as Chisel [14], FIRRTL [15] and LLHD [16].

These are not suitable replacements for a higher-level
interface specification, however: HLS tools either obfus-
cate the interfaces between low-level hardware and/or
use proprietary IRs and tools to connect components,
making reuse more difficult. While the HDLs and IRs
mentioned are aimed at more general hardware designs,
so still require custom interfaces for streaming data trans-
fers. As such, we propose a free, open-source IR for defin-
ing high-level streaming dataflow interfaces mapped onto
hardware and for connecting these interfaces. This com-
plements existing HDLs and IRs which describe behav-
ior, and enabling components designed in higher-level
front-end languages for HLS to propagate more type in-
formation to the resulting interfaces.

4. Type Declarations and Interface
Design

4.1. Type Hierarchy and Complex Data
Structures

The Tydi specification [6] defines five logical types:
the stream-manipulating Stream type, and the element-
manipulating Null, Bits, Group and Union types. The
intermediate representation features the ability to com-
pose these, and declare them with a unique identifier in
a namespace.

In short, the Null type is for transfers of one-valued
data (its only valid value is null), Bits(N) represents a
data signal of N bits, while the Group and Union types
contain fields consisting of a unique name and a logical
type. Groups and Unions are distinct in that Groups are
composites of multiple types, where each field is set at
the same time, while Unions are exclusive disjunctions
of types, where only one field can be active at a time, to
be selected with a tag signal. Finally, the Stream type
represents a new physical stream carrying these types.

The element-manipulating types alone can represent
many data structures, for example: Bits(N) can be used to
transfer primitive data types such as numbers, booleans
and characters, a Union of Null and another type can
indicate optional data, and Groups can be used to repre-
sent records of data. However, as Streams are also logical
types, Groups, Unions and Streams themselves can carry
further nested logical Streams, each with their own data
and properties.

The Stream type adds a further layer of flexibility to
these types. It does not only represent the physical stream

and signals carrying the element-manipulating types, but
also features properties for further describing data struc-
tures. Notably, Streams have a dimensionality property,
which indicates whether the data being transferred is
part of a sequence. In hardware, this is translated to a
“last” signal; when this signal is driven high, it indicates
that the data being transferred is the last element in a
sequence, and a Stream with a higher dimensionality will
have multiple last signals, to indicate nested sequences.

In addition to dimensionality, Streams have properties
for describing how transfers should be organized in space
and time, as follows:

• Throughput is a positive, rational number indi-
cating how many elements are expected to be
transferred per individual handshake, or relative
to its parent Stream. The number of element lanes
is throughput rounded up to a natural number.

• Direction indicates whether a Stream flows in the
same direction as its parent, or in reverse. As
an example, a Group can have both a “Forward”
and “Reverse” Stream, for indicating that interde-
pendent data is transferred between the sink and
source, such as a memory address and the data
retrieved from that address.

• Synchronicity refers to how strong the relation
between a child Stream and its parents are with
regards to dimensional information. “Sync” in-
dicates that for each element transferred on the
parent, the child has a matching transfer, while
“Desync” indicates that the child may have trans-
fers of arbitrary size. Both options also have a
“Flat” variant, which results in redundant last sig-
nals on the child being omitted.

• Complexity is a number which encodes guaran-
tees on how elements of a sequence are trans-
ferred. Overall, a lower complexity imposes more
restrictions on a source, which conversely results
in a higher complexity making it more difficult
to implement a sink. As an example, a complex-
ity of ≤ 2 requires that elements of an inner
sequence are transferred over consecutive cycles
by a source, while higher complexities allow it
to stall independently from the sink. The speci-
fication currently defines 8 levels of complexity
[27].

• A keep property can be used to ensure a logical
Stream is synthesized into physical signals, as
nested Streams may otherwise be combined into
a single physical stream.

Figure 1 illustrates how a higher complexity allows
for transfers to be organized differently. When transfer-
ring [[H, e, l, l, o], [W, o, r, l, d]], at complexity = 1 all
elements must be aligned to the first lane, last data is

asserted per transfer, and all data must be transferred
over consecutive cycles and lanes. At complexity = 8,
there are no requirements for how elements are aligned,
transfers may be postponed (asserting valid low), and last
data is asserted per lane, and may be postponed (using an
inactive lane to assert last for a previous lane or transfer).

H

e

l

l

o

W

o

r

l

d

- 0 - 0..1

H

-

-

-

e

l

-

-

-

l

o

W

-

0

-

o

r

-

-

-

l

d

-

-

0..1

Active Data Last In Dimension…Inactive Data No Transfer

Valid

Time

Lanes

Complexity = 1 Complexity = 8

Figure 1: Streams determine which signals are used and
valid to organize elements in transfers, and how transfers are
organized over time.

Finally, in the event these properties are insufficient for
a use-case, Streams can also have a user signal carrying
an element-manipulating type. This user signal can be
used to provide additional information independent from
transfers or clock cycles.

4.2. Interfaces as Contracts
4.2.1. Communicating Intent

As the previous section would suggest, Tydi’s types can
convey a significant amount of information; not just what
data is transferred, but also how it is transferred, and how
sequences of elements relate to one another. In effect, a
sufficiently detailed Stream definition can be treated as a
contract between components (and in a sense, designers)
on how a stream of data will be implemented.

The intermediate representation builds on this when
declaring Interfaces. In its simplest form, an Interface rep-
resents a collection of ports on a component (Streamlet),
each of which carries a logical Stream either into or out
of the component.

However, each Interface and its ports may also feature
documentation. Distinct from comments on a grammar,
documentation is an actual property of a port or interface,
and is expected to be implemented by a backend, typically
by generating matching comments on the related out-
put. Documentation being propagated from higher-level
descriptions to the actual computation-oriented design
tools that the IR complements is primarily useful when
either implementing a component based on an interface
template, or when trying to identify how physical signals
relate to their abstract definition.

While Tydi’s Streams assume a single clock and reset
signal, which together make up their clock and reset
domain, regardless of how many physical streams they
are composed of, the ports of an Interface do not need
to rely on the same clock and reset signals. Instead, an

Interface may have one or more uniquely named domains
which represent a clock and reset signal, each of which
is associated with one or more of the Interface’s ports.

Subsequently, while the intermediate representation
does not feature the ability to define a specific clock or
how a reset signal should be handled, designers can use
these domains to ensure multiple clock and reset signals
are available on a component, and that ports which be-
long to different domains are not directly connected. In
the event no domain is specified on the Interface, a de-
fault domain is instead created and assigned to all ports,
as Tydi currently only defines Streams in the context of
a clock.

4.2.2. Notes on Interface Compatibility

The ports of Interfaces are compatible with one another
when they have the same logical type, appropriate di-
rections (for each physical stream, there is a source and
matching sink), and the same clock domain.

Note that while types in the IR may be defined with
identifiers, these identifiers are not a property of the logi-
cal type in question, and only exist within the namespace.
This choice was made to restrict the IR to properties de-
fined in the Tydi specification.

As a result, types with different names but otherwise
identical properties are fully compatible; on an abstract
level, this can be interpreted as a kind of implicit casting
between types. Although in our evaluation with respect
to readability of backend output, discussed in Section
8.2, and in light of the potential added value of a stricter
type system, we may reconsider this approach in the
future. For instance, we may make identifiers an intrinsic
property of types, and separately support type aliases for
functionality similar to the current behavior.

However, while type identifiers are not currently rele-
vant to compatibility, field identifiers are an actual prop-
erty of the Group and Union types. Hence, a Group(a:
Null) is not compatible with a Group(b: Null), re-
gardless of whether they are physically identical.

Finally, while complexity is a property of the Stream
type, the Tydi specification does conditionally allow
Streams with different complexities but otherwise iden-
tical properties to be connected. Specifically, a physical
source stream may be connected to a sink if its complexity
is equal to or lower than that of the sink. Note however
that this applies to physical streams: logical Streams do
not have a notion of sinks and sources, and may contain
child Streams which flow in reverse directions, result-
ing in them containing both sink and source physical
streams.

As such, the IR considers the Streams of ports incom-
patible when their complexity is not identical. While the
process of connecting compatible physical streams can be
optimistically automated to improve reuse, as discussed

later in Section 5.3, designers should generally strive for
a shared, normalized complexity between Streams.

5. Component Composition and
Implementation

In addition to Interfaces, the IR introduces the ability
to declare components, referred to as Streamlets. These
Streamlets consist of an Interface and optionally an Im-
plementation. In effect, there are two different kinds
of Implementation for a Streamlet: a structural imple-
mentation, which can be used to combine instances of
streamlets into a larger design, and a link to an imple-
mentation of behavior in the target language or format.

Streamlets are the intended output of a project; Types,
Interfaces and Implementations are not expected to be
included in a backend’s emissions unless they are part of
a Streamlet, but can be shared between IR projects.

As Streamlets always have an Interface, they can be
subsetted to Interfaces, which can be used to express
alternate implementations of the same component, e.g.
when versioning a component or when substituting one
for the purposes of testing as described in Section 6.2.

5.1. Structural Composition
As the goal of both Tydi and the IR is to improve compat-
ibility and reuse of primitive components, the IR features
the ability to connect Streamlets to one another. The IR
refers to this as a Structural implementation.

Structural implementations can contain instances of
Streamlets and connections between ports of Streamlets.
Instances consist of a local name and a reference to a
Streamlet declaration, the ports of their interfaces are
assigned separately through connections.

Connections can be created between the ports of both
Streamlet instances and the containing Streamlet which
is being implemented, and require both ports to have
identical types and clock domains (for the reasons de-
scribed in Section 4.2.2). Connections are explicitly not
“assignments”, as the direction of a port is already known,
and there is not necessarily one overall direction for a
Stream type due to the possibility to define Streams which
are Reversed (such as when representing request and re-
sponse streams). Hence, the source and sink between two
ports of a connection is determined during lowering for
each resulting Physical Stream.

By default, the IR requires that each port of each
Streamlet is connected to exactly one other port. Leav-
ing ports unconnected is against the Tydi specification,
which requires that a default signal is driven for omit-
ted signals [27]. While HDLs such as VHDL and Verilog
support one-to-many and many-to-one connections at a
signal-level, these are not allowed by the IR due to the

fact that ports represent Streams with handshake signals,
which would need to be combined.

While combining the ready signals of multiple sinks
could be achieved with simple logical and expressions for
a one-to-many connection, combining multiple transfers
in a many-to-one connection has no clear, universally
applicable solution. Even the aforementioned one-to-
many implementation is not universal, as some designs
may call for only one of the many to accept a transfer.
Finally, as a connection does not necessarily have a single
direction, a one-to-many connection between ports may
well contain physical many-to-one transfers.

5.2. Linked Implementations
The intermediate representation intentionally omits ex-
pressions for implementing or simulating arbitrary be-
havior of components. Designing a language or set of ex-
pressions for functional hardware design and simulation
is a difficult problem which is already being addressed
by many researchers and organizations, elaborated in
section 2. Instead, “behavioral implementations" in the
IR exist only as links to directories, which contain the
relevant code in languages more suited for expressing
behavior.

How these links are used is left up to the backend,
though a simple use-case would be to create or copy a
file in the target output language based on the Stream-
let’s name. As these are directories, multiple such files
can exist side-by-side for different targets, and implemen-
tations do not need to be constrained to a single file; a
linked directory could even be used to refer to a project or
library consisting of multiple files, provided this exposes
the Interface of the Streamlet being implemented.

Figure 2 illustrates how linked implementations fit
within a partial toolchain and workflow, consisting of
Streamlets, structural implementations and tests defined
in the IR, combined with behavior defined in a target
language (VHDL, in this example) by a suitable backend.
Not pictured are tools for simulating the testbenches
produced by the backend, further passes on the output,
nor any potential frontend language.

Declare Types

and Interfaces

Declare

Streamlets

Specify

behavior

Implement Streamlets

Implement

behavior

Structural

Implementation

Linked

Implementation

Connect

Streamlets

Import

VHDL

Behavioral

description

Generate

VHDL

Generate

Testbench

Tests

pass?

Compile

Output

Backend

IR

Target (VHDL)

Yes
Documentation Tests

No

Templates +

documentation

Figure 2: An example workflow, demonstrating how Stream-
lets are implemented using the IR, a suitable backend, and
behavior defined in the target language.

5.3. Intrinsics
While the intermediate representation does not support
expressing arbitrary functionality, we do recognize a sub-
set of functionality useful for implementing Tydi-based
components and streaming dataflow designs in general.
For general design, slices, buffers, and general-purpose
stream manipulating components such as synchronizers
are obvious candidates, while methods for optimistically
connecting Streams with different complexities, or driv-
ing default or constant values to otherwise unconnected
ports could help when reusing existing Streamlet designs.

Hence, we propose establishing a minimal, portable
set of intrinsic functions, or intrinsics, to be implemented
by any backend. Specifically, intrinsics should only cover
commonly used, simple functionality which cannot be
implemented by a library of fixed component designs;
as an example, slices are commonly used and simple in
both their functionality and implementation, but a fixed
library cannot address each possible interface design.

Another useful kind of intrinsic or backend feature
would be one to improve readability and communicate
intent in the target language. For example, Tydi’s doc-
umentation mentions permitted alternative representa-
tions of interfaces [27], which can leverage data types
and arrays to improve readability. These alternative rep-
resentations could be automatically generated for empty
or template linked implementations by the backend, and
wrapped in components using the conventional signals,
clarifying the relation between signals and their logi-
cal type definitions for designers working in the target
language.

A broader kind of “intrinsic” would be features such as
generic properties of types, and generating loops. Both
can be implemented as language features (either on the
intermediate language, or a front-end) and evaluated
without the backend’s knowledge. However, by including
these in the IR, backends for languages which adequately
support these features could propagate them directly.

6. Specification
While the intermediate representation lacks the ability
to completely implement behaviour, it can nonetheless
allow for the specification of behaviour through tests.

6.1. High-level Assertions
As the IR is used to represent ports consisting of Streams
carrying logical types, it is best suited for transaction-
level verification. Inputs and outputs should be verified
against abstract streams of data, upon which the IR com-
bined with a backend will generate the necessary sig-
nalling behaviour and assertions. This enables designers
to verify the behaviour of components and correctness of

their interfaces without needing to concern themselves
with the target language.

There are two key properties to consider when design-
ing and generating tests for Interfaces:

1. Ports of an Interface are not required to be inter-
dependent or synchronized with one another.

2. A port’s Stream does not necessarily have a single
direction, as child Streams can be Reversed.

To address these, we propose a testing grammar with
the following properties: First, transaction verification
on ports should be assumed to happen in parallel by de-
fault, rather than in the sequence assertions are declared.
For example, implementing a Streamlet which adds two
inputs could be represented as follows, assuming the out-
put does not assert valid until it has received and added
two inputs:
adder.out = ("10", "01", "11");
adder.in1 = ("01", "01", "10");
adder.in2 = ("01", "00", "01");

Where ("10", "01", "11") represents a series of Bits(2)
to be transferred over a Stream without dimensionality.
This is to be transferred depending on throughput; e.g.,
one port could support two elements per transfer and
require only two transfers, while another might only
support one element per transfer and require three. In
this proposed syntax, square brackets would be used to
indicate dimensionality: [["1", "0"], ["0"]]

Second, rather than explicit assign and compare meth-
ods, the IR should automatically determine whether phys-
ical streams are sinks or sources. The latter property
means that something closer to mathematical equality
is implemented; “the transaction on port a is equal to
x”, whereupon it is automatically determined whether
x should be driven, or observed and compared. Using
the same adder concept described before, but combin-
ing them into a single Stream and port with a Reversed
child Stream to indicate a response, can be represented
as follows:
adder.add = {
in1: ("01", "01", "10"),
in2: ("01", "00", "01"),
out: ("10", "01", "11"),

};

Finally, while transactions on ports are not necessar-
ily interdependent, it is reasonable to expect that they
will be in many cases. While stateless behavior can be
tested in parallel, as each transfer still requires a valid
handshake, components which do observe state require
that transactions on ports can be asserted in a specific
sequence: A counter which accumulates based on input
transfers and always drives its output with its current
value, or an instruction for a state machine, require that
the transfer on the input succeeds before the value on the
output is tested. To this end, our design for the testing

grammar also includes sequences of explicit stages; the
assertions within each stage still happen in parallel, but
each stage must successfully pass before the assertions
in the next stage are performed:
sequence "sequence name" {
"initial state": {
counter.count = "0000";

}, "increment": {
counter.increment = "1";

}, "result state": {
counter.count = "0001";

},
};

6.2. Substitutions
While the transaction-level verification above can address
many kinds of behavior, it cannot account for instances
in which inputs and outputs are to be determined at run-
time, when a Stream features a user signal, or when the
behavior of another dependency cannot be simulated for
the purposes of an assertion. These cases can instead
make use of the IR’s ability to quickly compose top-level
designs, provide multiple implementations for the same
Interface, and subset Streamlets into Interfaces, as de-
scribed in Section 5.

When a dependency cannot be simulated, because it
depends on specific hardware, for example, or when it
has not been implemented yet, it can be substituted with
a stub or mock Streamlet. This way, the Streamlet under
test can be verified independently. Such substitutes can
also be useful to support more complex test cases, by cre-
ating components which generate inputs and/or verify
outputs. As a simple example, a random number gen-
erator component could be paired with a known-good,
software-based adder to verify the results of an adder
hardware design.

Initially, these substitute components and designs
should be separated from the backend’s “proper” output
through namespaces, though we are actively considering
making substitutions of Streamlet instances in structural
implementations a part of the IR itself. This way, the IR
and backend can ensure such explicit substitutions are
only used for testing.

7. Implementation
In order to demonstrate the intermediate representation’s
capabilities and evaluate various approaches, we imple-
mented a prototype toolchain1. This toolchain consists
of a query system for storing and retrieving the IR’s
declarations and expressions on-demand, a preliminary
grammar and parser which stores its results in the query
system, and a backend which uses the query system and
emits VHDL.

1https://anonymous.4open.science/r/til-vhdl-B6CD

https://anonymous.4open.science/r/til-vhdl-B6CD

7.1. Query System
The first component of the prototype toolchain is the
query system for storing and computing information of
the IR. The decision to use a query system rather than
more traditional passes of compilation was inspired by
work on the Rust compiler [28] and implemented using
the Salsa framework [29]. The advantage of such a system
is that information can be retrieved or computed on-
demand, and the results of previously executed queries
are automatically stored, and only re-computed when
their dependencies change.

The query system’s database stores type, Interface,
Streamlet, Implementation and Namespace declarations.
The primary output of the system as a whole is a simple
“all streamlets” query, which returns all Streamlet declara-
tions from a given input Project. Afterwards, a backend
can use other queries, such as a query for splitting a
Stream into physical streams, for computing further de-
tails as needed.

Another use-case for the query system is the high-
level assertions described in Section 6.1; converting ab-
stract streams of data on a logical Stream into appropri-
ate, generic calls to the signals that make up its physical
streams. Through these functions, a backend would only
need to implement the methods for addressing physical
streams in order to support these complex, abstract as-
sertions. These are still a work in progress, however, as
only methods for transfers on physical streams have been
implemented thus far, and the means for declaring and
converting transfers on logical Streams to these physical
stream transfers have yet to be fully realized.

7.2. Grammar and Parser
While the query system is effectively an implementation
of the IR in its own right, text-based representations are
more portable and can allow for more flexible expres-
sions. Furthermore, a purpose-built language reduces the
amount of scaffolding required when testing complete
projects in the IR, as compared to setting up the query
system manually.

To this end, our prototype toolchain also features a
simple grammar (referred to as Tydi Intermediate Lan-
guage, or TIL) and parser, implemented using Chumsky
[30]. Using the parser, a project expressed in TIL can be
stored in the query system. TIL also served as a more
stable target for a front-end, computation-oriented lan-
guage (called Tydi-lang) which was being developed in
parallel with the IR, as mentioned in Section 2.

TIL features expressions for declaring namespaces,
types, Interfaces, Streamlets and Streamlet implementa-
tions, as well as some syntax sugar for subsetting Stream-
lets into interfaces. This grammar has been fully imple-
mented in the prototype toolchain, in that it can also be

emitted to VHDL using the backend described in the next
subsection.

Namespaces are simple containers for other declara-
tions, their only innate property is their name, which
can be expressed as a path. Note that paths in this con-
text are purely abstract, and do not reflect any hierarchy
in the grammar or IR itself, they can simply be used to
communicate hierarchy to a backend, and/or propagate
it from a front-end.

namespace example::name::space {
 ...
} Path separator

The types described in Section 4.1 can be declared
using the type keyword, an identifier, and an expression.
Type expressions either reference these identifiers, or
directly describe the type’s properties.

type identifier = ;Type Expression

Null Bits(8)

Group(field_name: Type Expr., field2: ...)

Union(field_name: Type Expr., ...)

Stream(data: Type Expr., throughput: ...)

identifier

Interfaces, as described in Section 4.2 are collections
of ports and (clock and reset) domains. They can be
separately declared with an identifier, to enable reuse.

interface identifier = ;Interface Expr.

(port_name: in Stream Type Expr., port2: out ...)

identifier

<'domain, ...>(port_name: in Stream Type Expr. 'domain, ...)

There are two kinds of implementations, links to
behavior, and structural implementations which connect
Streamlets declared in the IR. This is elaborated on in Sec-
tion 5. Links simply use double-quotes to enclose a path
to a directory, while structural implementations features
two expressions: One to create a Streamlet instance and
connect the Interface’s domains, and another to connect
ports between instances and/or the enclosing Streamlet.

impl identifier = ;Implementation Expr.

"./path/to/directory"

identifier

{
 instance_name = Streamlet Identifier;
 parent_port -- instance_name.instance_port;
}

instance = id<'parent_domain, 'instance_dom2 = 'parent_dom2>;

Streamlets are a combination of the expressions
above, and consist of an Interface and optionally an im-
plementation. These are intended to be the output of a
backend.

streamlet identifier = ;Interface Expr.

{
 impl: Implementation Expression,
}

Properties

Optional

Finally, Documentation is expressed by enclosing
text with # signs, and must precede their subject, as
shown in Listing 1. As explained in Section 4.2, documen-
tation is distinct from comments in that it is an actual
property of Streamlets, ports, and implementations.

Listing 1: Documentation Example
#documentation (optional)#
streamlet comp1 = (

// This is a comment
a: in stream,
b: out stream,
#this is port

documentation#
c: in stream2,
d: out stream2,

);

For a complete example, see: https://anonymous.
4open.science/r/til-vhdl-B6CD/demo-cmd/til_samples/
paper_example.til

7.3. VHDL Backend
In order to verify that the IR could actually be compiled
to a hardware description, we include a VHDL backend
as part of the prototype. As all concepts expressed in the
IR would need to be emitted to VHDL, this allowed us to
explore which properties were necessary or helpful for
targeting hardware.

VHDL was chosen as the target because it is well-
supported by multiple toolchains for both synthesis and
simulation, and simply because its syntax was most famil-
iar to us. Similar methods as those for emitting VHDL can
be employed when emitting other hardware description
languages, such as Verilog, FIRRTL and LLHD.

The “passes” used when emitting to VHDL in this ex-
ample backend are intentionally very simple (for instance,
while namespaces could correspond to their own VHDL
packages, all namespaces are instead combined into a
single package), though they do leverage the the query
system’s ability to incrementally compute and retrieve
information:

1. The “all streamlets” query described in section 7.1
is used to retrieve all the Streamlet declarations
in the project.

2. For each Streamlet, the Streams that make up its
Interface are split into physical streams, of which
the signals are converted into ports. These ports
make up a component with a unique name based
on the Streamlet declaration and the namespace
in which it was declared. These components are
added to a single VHDL package.

3. For each Streamlet, an architecture declaration is
either imported or generated:

a) Streamlets without an implementation sim-
ply result in an empty architecture.

b) Streamlets with a linked implementation
are imported by looking for an appropri-
ately named .vhd file at the given location,
an empty architecture is generated at the
location if no such file exists.

c) Streamlets with a structural implementa-
tions result in a generated architecture in

which port mappings represent Streamlet
instances, and signals are used to connect
the appropriate ports between instances
and the enclosing Streamlet.

When emitting VHDL, documentation from the IR is
converted into comments, as shown in Listing 2.

Listing 2: Documentation from Listing 1 propagating to
VHDL

-- documentation (optional)
component my__example__space__comp1_com
port (
clk : in std_logic;
rst : in std_logic;
a_valid : in std_logic;
a_ready : out std_logic;
a_data : in std_logic_vector(53 downto 0);
b_valid : out std_logic;
b_ready : in std_logic;
b_data : out std_logic_vector(53 downto 0);
-- this is port
-- documentation
c_valid : in std_logic;
c_ready : out std_logic;
c_data : in std_logic_vector(53 downto 0);
d_valid : out std_logic;
d_ready : in std_logic;
d_data : out std_logic_vector(53 downto 0)

);
end component;

8. Evaluation
The prototype toolchain was developed not just as a
demonstration, but also to test different approaches and
verify their effectiveness. This section contains our eval-
uation of the prototype toolchain and its features.

8.1. Tydi Specification
As a result of explicitly translating the Tydi specifica-
tion to code, a few oversights and contradictions in the
specification came to light. These issues have since been
communicated to people working on the Tydi specifica-
tion, and are being resolved. To accelerate work on the
prototype, a few proposed changes have been employed.
What follows is a selection of these issues (a), and their
proposed solutions (b):

1. Directly nested Streams which must both be re-
tained:

a) If a Stream has a direct child Stream (as its
data), and both have a user signal and/or
keep enabled, it is impossible to create
uniquely named physical streams for both.

b) The prototype toolchain simply returns an
error when such an event occurs.

2. Strobe assertions and start/end indices may con-
flict:

https://anonymous.4open.science/r/til-vhdl-B6CD/demo-cmd/til_samples/paper_example.til
https://anonymous.4open.science/r/til-vhdl-B6CD/demo-cmd/til_samples/paper_example.til
https://anonymous.4open.science/r/til-vhdl-B6CD/demo-cmd/til_samples/paper_example.til

a) Physical streams at higher complexities
will have strobe, and start/end index sig-
nals, to ensure compatibility with lower
complexities. It is not specified which sig-
nals are significant: indices may indicate a
different range of lanes is active than the
strobe signal does.

b) For our work on transfer-level verification,
we assume that the start and end indices
are only significant when all strobe bits
are asserted active.

3. Element lanes cannot be marked inactive at lower
complexities when dimensionality is 0:

a) Tydi’s documentation on “signal omission”
[27] suggests that the end index signal is
contingent on complexity ≥ 5 or dimen-
sionality > 0 and throughput > 1. This
would result in Streams with multiple ele-
ment lanes but no dimensionality and com-
plexity < 5 being incapable of disabling
element lanes.

b) The toolchain assumes the end index signal
is solely contingent on throughput > 1.

8.2. Readability
As the IR relies on other languages to express functional-
ity, it will generally be necessary for the descriptions a
backend does generate to be readable by designers, bar-
ring a frontend emitting both the IR and the behavioral
descriptions. To this end, our IR exposes “documenta-
tion” to backends, enabling designers to propagate some
intent to component templates and interfaces. Our pro-
totype VHDL backend propagates this documentation as
comments, and generates indented VHDL with port and
signal names derived from the TIL port and field names.

There is one area in which much information and read-
ability is lost, however: The physical streams emitted by
the VHDL backend feature standard data and user signals
as bit vectors, meaning that the names of element fields
of Groups and Unions are lost. As described in Section
5.3, the Tydi documentation describes alternative ways to
represent physical streams to retain this information. For
instance, Groups and Unions could be expressed as record
types in VHDL, multiple element lanes as arrays of the
base type, and even physical streams themselves could be
collected into records (split into separate records for up
and downstream signals). These are not only useful for
implementation, but can also provide more information
when simulating a design.

In fact, the Implementations section of the original Tydi
paper [5] assumes that designers would prefer such a so-
lution, and illustrates that automatically generating such
records from Tydi logical types would greatly reduce the
number of lines of code designers would need to write.

To better enable such alternative representations, we are
considering making changes to the IR to require type
identifiers, rather than storing only the official proper-
ties of logical types as in Section 4.2.2. Doing so would
allow a backend to generate alternative representations
with meaningful type names, which could then be di-
rectly reused by multiple interfaces, albeit at the expense
of being able to directly connect physically compatible
types.

8.3. Hardware Description Effort
The goal of the IR is to describe streams carrying complex
data structures more effectively than conventional HDLs.
As such, while “lines of code” is not an especially relevant
metric for an IR overall, it can be applied to the amount of
effort required to express interfaces and connections. To
evaluate the IR’s effectiveness in this regard, we declared
Tydi equivalents of the AXI4-Stream [2] and AXI4 [21]
interface standards. The AXI4-Stream equivalent and
the resulting (VHDL) signals are shown in Listings 3 and
4, while AXI4 was spread over 5 Streams for Address
Write, Write Data, Write Response, Address Read, and
Read Data.

Listing 3: An AXI4-Stream-equivalent interface in TIL.
type axi4stream = Stream (

data: Union (
data: Bits(8),
null: Null, // Equivalent to TSTRB

),
throughput: 128.0, // Data bus width
dimensionality: 1, // Equivalent to TLAST
synchronicity: Sync,
complexity: 7, // Tydi’s strobe is equivalent to TKEEP
user: Group (

TID: Bits(8),
TDEST: Bits(4),
TUSER: Bits(1),

),
);

streamlet example = (
axi4stream: in axi4stream,

Listing 4: Result of Listing 3 in VHDL.
axi4stream_valid : in std_logic;
axi4stream_ready : out std_logic;
axi4stream_data : in std_logic_vector(1151 downto 0);
axi4stream_last : in std_logic;
axi4stream_stai : in std_logic_vector(6 downto 0);
axi4stream_endi : in std_logic_vector(6 downto 0);
axi4stream_strb : in std_logic_vector(127 downto 0);
axi4stream_user : in std_logic_vector(12 downto 0);

Once a Stream type has been declared, it can be easily
reused for any number of ports, and ports only require
one expression (port_a −− port_b ;) to connect, which is
far fewer than the signals which make up a stream (or
AXI4 channel). Table 1 illustrates this difference: The
AXI4-Stream equivalent requires a single Stream over-
all, while AXI4 requires a Stream per channel, and can
be either split across multiple ports, or combined into a

Group with Reverse Streams for the Read Data and Re-
sponse channels, depending on the use case. Both result
in identical physical streams, but using multiple ports
allows for them to be connected to different Streamlets
if necessary. The table shows that the number of lines
of code for a VHDL AXI4 equivalent representation is
28 compared to only a single line of code for TIL. In the
same way, for AXI4 streams, 8 lines of code are required
in VHDL compared to only 1 in TIL.

Type Declaration Interface
AXI4 equiv. (TIL) 48* 5
AXI4 equiv. (TIL, Group) 59* 1
AXI4 equiv. (VHDL) - 28
AXI4 - 44
AXI4-Stream equiv. (TIL) 15* 1
AXI4-Stream equiv. (VHDL) - 8
AXI4-Stream - 9

Table 1
Lines of code to represent an interface in TIL, compared to
the resulting number of signals in VHDL or for an equivalent
interface standard. *Only required once.

9. Conclusion
This paper presents an IR for defining interfaces and
integrating components using the Tydi specification.
The Tydi-IR can be used to express how composite
and variable-length data structures are transferred over
streams using clear, data-centric types. These data types
are extensively used in a many application domains,
such as big data and SQL applications. The IR proto-
type toolchain used in this paper features the ability to
efficiently express Tydi interfaces and connect compo-
nents using a simple grammar, and emit these as VHDL
components and architectures. We emphasize the ability
to propagate high-level, abstract properties down from
the IR (and any potential front-end) to the target lan-
guage, to improve readability and more easily verify its
outputs. As a result, we determined that emitting al-
ternative representations for Tydi’s interfaces to retain
type information could improve readability further, and
identified potential changes to the IR to better enable
this. The prototype toolchain also features initial work
on high-level transaction-level verification to specify in-
tended behavior, and a proposed syntax for such tests.
Examples show that while our IR requires only a single
line of code to represent stream interfaces, an equivalent
VHDL representation would require anywhere from 8 to
28 lines of code to describe the same interface.

References
[1] Intel Corporation, 5. Avalon® Streaming Inter-

faces, 2022. URL: https://www.intel.com/content/
www/us/en/docs/programmable/683091/20-1/
streaming-interfaces.html.

[2] Arm Limited, AMBA 4 AXI4-Stream Pro-
tocol Specification, 2010. URL: https:
//developer.arm.com/documentation/ihi0051/
a/Introduction/About-the-AXI4-Stream-protocol.

[3] A. Arnesen, K. Ellsworth, D. Gibelyou, T. Haroldsen,
J. Havican, M. Padilla, B. Nelson, M. Rice, M. Wirth-
lin, Increasing Design Productivity through Core
Reuse, Meta-data Encapsulation, and Synthesis,
in: 2010 International Conference on Field Pro-
grammable Logic and Applications, 2010, pp. 538–
543. doi:10.1109/FPL.2010.106.

[4] M. Jacome, H. Peixoto, A survey of digital design
reuse, IEEE Design Test of Computers 18 (2001)
98–107. doi:10.1109/54.922806.

[5] J. Peltenburg, J. Van Straten, M. Brobbel, Z. Al-Ars,
H. P. Hofstee, Tydi: An Open Specification for
Complex Data Structures Over Hardware Streams,
IEEE Micro 40 (2020) 120–130. doi:10.1109/MM.
2020.2996373.

[6] J. Van Straten, J. Peltenburg, M. Brobbel, Introduc-
tion - Tydi, 2021. URL: https://abs-tudelft.github.io/
tydi/index.html.

[7] W. Thies, M. Karczmarek, S. Amarasinghe, StreamIt:
A language for streaming applications, in: In-
ternational Conference on Compiler Construction,
Grenoble, France, 2002. URL: http://groups.csail.mit.
edu/commit/papers/02/streamit-cc.pdf.

[8] A. Hormati, M. Kudlur, S. Mahlke, D. Bacon, R. Rab-
bah, Optimus: Efficient realization of streaming
applications on FPGAs, in: Proceedings of the
2008 International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems,
CASES ’08, Association for Computing Machinery,
New York, NY, USA, 2008, pp. 41–50. URL: http:
//doi.org/10.1145/1450095.1450105. doi:10.1145/
1450095.1450105.

[9] J. Auerbach, D. F. Bacon, P. Cheng, R. Rabbah, Lime:
A Java-compatible and synthesizable language for
heterogeneous architectures, in: Proceedings of
the ACM International Conference on Object Ori-
ented Programming Systems Languages and Ap-
plications, OOPSLA ’10, Association for Comput-
ing Machinery, New York, NY, USA, 2010, pp. 89–
108. URL: http://doi.org/10.1145/1869459.1869469.
doi:10.1145/1869459.1869469.

[10] M. J. Sax, Apache Kafka, in: S. Sakr,
A. Zomaya (Eds.), Encyclopedia of Big Data
Technologies, Springer International Publish-
ing, Cham, 2018, pp. 1–8. URL: https://doi.org/

https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/streaming-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/streaming-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/streaming-interfaces.html
https://developer.arm.com/documentation/ihi0051/a/Introduction/About-the-AXI4-Stream-protocol
https://developer.arm.com/documentation/ihi0051/a/Introduction/About-the-AXI4-Stream-protocol
https://developer.arm.com/documentation/ihi0051/a/Introduction/About-the-AXI4-Stream-protocol
http://dx.doi.org/10.1109/FPL.2010.106
http://dx.doi.org/10.1109/54.922806
http://dx.doi.org/10.1109/MM.2020.2996373
http://dx.doi.org/10.1109/MM.2020.2996373
https://abs-tudelft.github.io/tydi/index.html
https://abs-tudelft.github.io/tydi/index.html
http://groups.csail.mit.edu/commit/papers/02/streamit-cc.pdf
http://groups.csail.mit.edu/commit/papers/02/streamit-cc.pdf
http://doi.org/10.1145/1450095.1450105
http://doi.org/10.1145/1450095.1450105
http://dx.doi.org/10.1145/1450095.1450105
http://dx.doi.org/10.1145/1450095.1450105
http://doi.org/10.1145/1869459.1869469
http://dx.doi.org/10.1145/1869459.1869469
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.1007/978-3-319-63962-8_196-1

10.1007/978-3-319-63962-8_196-1. doi:10.1007/
978-3-319-63962-8_196-1.

[11] J. Thomas, P. Hanrahan, M. Zaharia, Fleet: A Frame-
work for Massively Parallel Streaming on FPGAs, in:
Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, Association for
Computing Machinery, New York, NY, USA, 2020,
pp. 639–651. URL: http://doi.org/10.1145/3373376.
3378495.

[12] M. Fragkoulis, P. Carbone, V. Kalavri, A. Katsifodi-
mos, A Survey on the Evolution of Stream Pro-
cessing Systems, 2020. URL: http://arxiv.org/abs/
2008.00842. doi:10.48550/arXiv.2008.00842.
arXiv:2008.00842.

[13] H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulk-
ernine, S. Khan, A Survey of Distributed Data
Stream Processing Frameworks, IEEE Access
7 (2019) 154300–154316. doi:10.1109/ACCESS.
2019.2946884.

[14] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Avižienis, J. Wawrzynek, K. Asanović, Chisel:
Constructing hardware in a scala embedded lan-
guage, in: DAC Design Automation Conference
2012, 2012, pp. 1212–1221. doi:10.1145/2228360.
2228584.

[15] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang,
A. Magyar, D. Kim, C. Schmidt, C. Markley, J. Law-
son, J. Bachrach, Reusability is FIRRTL ground:
Hardware construction languages, compiler frame-
works, and transformations, in: 2017 IEEE/ACM In-
ternational Conference on Computer-Aided Design
(ICCAD), 2017, pp. 209–216. doi:10.1109/ICCAD.
2017.8203780.

[16] F. Schuiki, A. Kurth, T. Grosser, L. Benini, LLHD: A
Multi-level Intermediate Representation for Hard-
ware Description Languages, arXiv:2004.03494
[cs] (2020). URL: http://arxiv.org/abs/2004.03494.
arXiv:2004.03494.

[17] LLVM Community, "CIRCT" / Circuit IR Compilers
and Tools, LLVM, 2022. URL: https://github.com/
llvm/circt.

[18] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort,
A. Canis, Y. T. Chen, H. Hsiao, S. Brown, F. Fer-
randi, J. Anderson, K. Bertels, A Survey and Eval-
uation of FPGA High-Level Synthesis Tools, IEEE
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 35 (2016) 1591–1604.
doi:10.1109/TCAD.2015.2513673.

[19] F. Plavec, Stream Computing on Fpgas, Ph.D. thesis,
University of Toronto, CAN, 2010.

[20] M. Kotsifakou, P. Srivastava, M. D. Sinclair, R. Ko-
muravelli, V. Adve, S. Adve, HPVM: Heteroge-
neous parallel virtual machine, in: Proceedings
of the 23rd ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming, PPoPP
’18, Association for Computing Machinery, New
York, NY, USA, 2018, pp. 68–80. URL: http://doi.org/
10.1145/3178487.3178493. doi:10.1145/3178487.
3178493.

[21] Arm Limited, An introduction to AMBA AXI, 2021.
URL: https://developer.arm.com/documentation/
102202/0200/.

[22] J. Pontes, R. Soares, E. Carvalho, F. Moraes,
N. Calazans, SCAFFI: An intrachip FPGA asyn-
chronous interface based on hard macros, in: 2007
25th International Conference on Computer De-
sign, IEEE, Lake Tahoe, CA, USA, 2007, pp. 541–546.
URL: http://ieeexplore.ieee.org/document/4601950/.
doi:10.1109/ICCD.2007.4601950.

[23] Advanced Micro Devices, Inc., Intellectual Prop-
erty, 2022. URL: https://www.xilinx.com/products/
intellectual-property.html.

[24] Intel Corporation, 1. Introduction to Intel® FPGA
IP Cores, 2021. URL: https://www.intel.com/
content/www/us/en/docs/programmable/683102/
21-3/introduction-to-cores.html.

[25] T. Nowatzki, V. Gangadhar, N. Ardalani, K. Sankar-
alingam, Stream-dataflow acceleration, in: 2017
ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), 2017, pp. 416–
429. doi:10.1145/3079856.3080255.

[26] Advanced Micro Devices, Inc., Interfaces for Vi-
vado IP Flow • Vitis High-Level Synthesis User
Guide (UG1399) • Reader • Documentation Por-
tal, 2022. URL: https://docs.xilinx.com/r/en-US/
ug1399-vitis-hls/Interfaces-for-Vivado-IP-Flow.

[27] J. Van Straten, J. Peltenburg, M. Brobbel, Physical
streams - Tydi, 2021. URL: https://abs-tudelft.github.
io/tydi/specification/physical.html.

[28] Rust Compiler Team, Queries: Demand-driven com-
pilation - Guide to Rustc Development, 2021. URL:
https://rustc-dev-guide.rust-lang.org/query.html.

[29] salsa-rs, Salsa, salsa, 2022. URL: https://github.com/
salsa-rs/salsa.

[30] J. Barretto, Chumsky, 2022. URL: https://github.
com/zesterer/chumsky.

https://doi.org/10.1007/978-3-319-63962-8_196-1
https://doi.org/10.1007/978-3-319-63962-8_196-1
http://dx.doi.org/10.1007/978-3-319-63962-8_196-1
http://dx.doi.org/10.1007/978-3-319-63962-8_196-1
http://doi.org/10.1145/3373376.3378495
http://doi.org/10.1145/3373376.3378495
http://arxiv.org/abs/2008.00842
http://arxiv.org/abs/2008.00842
http://dx.doi.org/10.48550/arXiv.2008.00842
http://arxiv.org/abs/2008.00842
http://dx.doi.org/10.1109/ACCESS.2019.2946884
http://dx.doi.org/10.1109/ACCESS.2019.2946884
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1109/ICCAD.2017.8203780
http://dx.doi.org/10.1109/ICCAD.2017.8203780
http://arxiv.org/abs/2004.03494
http://arxiv.org/abs/2004.03494
https://github.com/llvm/circt
https://github.com/llvm/circt
http://dx.doi.org/10.1109/TCAD.2015.2513673
http://doi.org/10.1145/3178487.3178493
http://doi.org/10.1145/3178487.3178493
http://dx.doi.org/10.1145/3178487.3178493
http://dx.doi.org/10.1145/3178487.3178493
https://developer.arm.com/documentation/102202/0200/
https://developer.arm.com/documentation/102202/0200/
http://ieeexplore.ieee.org/document/4601950/
http://dx.doi.org/10.1109/ICCD.2007.4601950
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://www.intel.com/content/www/us/en/docs/programmable/683102/21-3/introduction-to-cores.html
https://www.intel.com/content/www/us/en/docs/programmable/683102/21-3/introduction-to-cores.html
https://www.intel.com/content/www/us/en/docs/programmable/683102/21-3/introduction-to-cores.html
http://dx.doi.org/10.1145/3079856.3080255
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Interfaces-for-Vivado-IP-Flow
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Interfaces-for-Vivado-IP-Flow
https://abs-tudelft.github.io/tydi/specification/physical.html
https://abs-tudelft.github.io/tydi/specification/physical.html
https://rustc-dev-guide.rust-lang.org/query.html
https://github.com/salsa-rs/salsa
https://github.com/salsa-rs/salsa
https://github.com/zesterer/chumsky
https://github.com/zesterer/chumsky

	1 Introduction
	2 Related Work
	3 Motivation
	4 Type Declarations and Interface Design
	4.1 Type Hierarchy and Complex Data Structures
	4.2 Interfaces as Contracts
	4.2.1 Communicating Intent
	4.2.2 Notes on Interface Compatibility

	5 Component Composition and Implementation
	5.1 Structural Composition
	5.2 Linked Implementations
	5.3 Intrinsics

	6 Specification
	6.1 High-level Assertions
	6.2 Substitutions

	7 Implementation
	7.1 Query System
	7.2 Grammar and Parser
	7.3 VHDL Backend

	8 Evaluation
	8.1 Tydi Specification
	8.2 Readability
	8.3 Hardware Description Effort

	9 Conclusion

