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Abstract
There is a growing demand for persistent data in IoT, edge and similar resource-constrained devices. However, standard FLASH
memory-based solutions present performance, energy, and reliability limitations in these applications. We propose MRAM
persistent memory as an alternative to FLASH based storage. Preliminary experimental results show that its performance,
power consumption, and reliability in typical database workloads is competitive for resource-constrained devices. This opens
up new opportunities, as well as challenges, for small-scale database systems. MRAM is tested for its raw performance and
applicability to key-value and relational database systems on resource-constrained devices. Improvements of as much as
three orders of magnitude in write performance for key-value systems were observed in comparison to an alternative NAND
FLASH based device.
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1. Introduction
It is expected that by 2025, 80% of all data will be gen-
erated in endpoints with embedded computing capabil-
ities [1], such as those typically present in Internet-of-
Things (IoT) devices. At the edge, these use cases are
enabled by microcontroller (MCU) or microprocessor
(MPU) unit devices due to their compact, low energy
consumption, and affordable design. On the downside,
these devices have very limited resources when compared
to traditional datacenter servers, making it challenging
to design data management systems with such require-
ments.

The application domains of data systems on resource-
constrained devices are multiple. Key-value stores are
used as lightweight, low resource-consuming data stor-
age solutions for edge applications [2, 3, 4, 5]. Other
scenarios require more complex data processing, which
allied to the wide use of the SQL language led research
towards the relational model, and SQL as its interface.
Relational databases can be found either as centralized
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[6, 7, 8], or as distributed deployments, [9, 10], combining
the computation capabilities of multiple endpoints.

At the storage level, FLASH storage has established
itself as the standard storage technology used for per-
sisting data in both MCUs and MPUs. FLASH storage is
often either embedded, or is provided externally in the
form of SD cards [11, 6, 12, 13].

Problem The physical characteristics of FLASH stor-
age limit the flexibility with which read and program
(i.e, write) operations can be performed. Consequently,
data management systems are required to implement
additional mechanisms to cope with these limitations,
leading to greater computational overhead. Furthermore,
FLASH storage provides limited endurance, i.e., a limited
number of erase-write cycles per storage cell.

Looking at the impact of FLASH storage on the applica-
tion domains in scope for this analysis, key-value stores
are hindered by FLASH storage’s poor performance for
small I/O operations and random accesses, which rep-
resent the most common workload for these systems
[14]. As for relational database systems, the limited CPU
capabilities of the considered devices lead to a greater im-
pact of FLASH storage management overhead on overall
performance.

Contributions This work evaluates the viability of
Magnetoresistive Random-Access Memory (MRAM), a
type of persistent byte-addressable memory, as a pos-
sible alternative or complement to FLASH storage for
resource-constrained devices. We show that MRAM pro-
vides advantages in throughput, power consumption,
endurance, and software complexity. More specifically,
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the following contributions are provided:

• Comparison of MRAM and FLASH storage charac-
teristics - We compare the nominal endurance, en-
ergy expenditure, storage capacity, and monetary
cost of each type of device as advertised by the
corresponding vendors. Moreover, we determine
and discuss the advantages and disadvantages of
each type of device.

• Comparison of MRAM and FLASH storage perfor-
mance - We experimentally compare the through-
put of each type of device under varying I/O op-
erations sizes, both in terms of their raw per-
formance and for their performance under rel-
evant use cases for resource constrained devices,
namely key-value and relational database sys-
tems.

To evaluate MRAM’s capabilities, a new prototype was
developed, combining a state-of-the-art MCU with an
MRAM memory device. Results show that MRAM is ca-
pable of providing full throughput at much smaller I/O op-
erations when compared to FLASH storage, enabling it to
provide 3 orders of magnitude better performance in key-
value applications. For the case of relational databases,
MRAM can forego FLASH specific mechanisms such as
wear-leveling, thus freeing resources that can be used
instead by the DataBase Management System’s (DBMS)
query engine.

The rest of the paper is organized as follows: Section 2
provides the necessary background on MCUs and MPUs,
FLASH storage, and MRAM persistent memory; Section 3
compares the characteristics of both storage solutions in
terms of vendor-provided information; Section 4 details
how different data management systems were adapted to
work with MRAM memory; Section 5 provides the results
of our practical evaluation; and Section 6 discusses the
results. Finally, Section 7 draws conclusions and provides
possible paths for future work.

2. Background
MPUs vs MCUs Microprocessors (MPUs) are process-
ing units including multiple processing cores (e.g., up to
5 cores in recent offerings [15]), with frequencies over
1GHz, and usually coupled to a few GB of memory (under
10) and hundreds of GB of storage (e.g., SD cards). MPUs
usually serve as intermediaries between cloud and end
devices, i.e., IoT or edge gateways [13, 16, 11]. Raspber-
ryPi is a popular MPU based device that is recurrently
used by researchers in IoT and Edge related publications
[17, 18]. MPUs, due to their greater amount of resources
and support for the appropriate primitives, often support
the use of operating systems such as Linux, so developing

systems for these devices is very similar to doing so for
a commodity server.

Microcontrollers (MCUs), on the other hand, are lim-
ited to up to 1 MB of memory, and a few MB of internal
FLASH storage, and single core processing units with fre-
quencies under 0.5GHz. The capabilities of these devices
can be extended by adding external memory and stor-
age. They are mainly used as end devices in IoT systems
such as sensors or actuators, and are frequently powered
by batteries, so power consumption is of major concern.
Furthermore, they do not support full-fledged operating
systems, so programming MCUs is a lower-level experi-
ence.

MCUs constitute the first layer of edge databases, often
being the data generators of these systems [16, 9, 10, 13].
Historically, this data was mostly offloaded to MPUs or
more capable cloud nodes; however, with the increase
in the number of MCU devices, concerns about network
overload started to arise, as the increasing number of
parallel connections to centralized processing servers
imposes a large load on network resources [19]. Further-
more, publications have shown that for an MCU, data
transmission can consume more energy than local stor-
age and processing [6]. When coupled with the fact that
the capabilities of MCUs continue to increase and that,
compared to MPU systems, MCUs are more affordable
and consume less energy [20], it makes sense to push as
many processing and storage tasks as possible towards
MCUs.

FLASH storage FLASH storage is the most common
type of storage solution used in both MPU and MCU
devices, with the two main types of FLASH used being
NOR FLASH and NAND FLASH.

• NOR FLASH. NOR FLASH memory has fast read
speeds, but has less storage capacity and higher
cost per byte than NAND. As such, NOR FLASH
memory is often used to store application code in
MCUs since code tends to be small, and fast read
speeds mean faster execution times (although de-
velopers can manipulate unused NOR space how-
ever they want). Overall, NOR FLASH memory
tends to be used in predominantly read-intensive
workloads.

• NAND FLASH. NAND FLASH memory, on the
other hand, because it is cheaper, provides better
write performance and greater storage capacity,
is the most widely used technology of the two.
It is the underlying technology of most digital
storage media, such as SD cards and SSDs.

FLASH storage devices (both NAND and NOR) are
organized into blocks. Each block contains a series of
pages (e.g., 128 pages), where each page can store, for
example, 8KB of data [21].



Erase operations are the only way in flash memory
to convert data bits to 1. Furthermore, the smallest unit
that can be erased is a block, affecting multiple pages.
Generally, NOR FLASH tends to have much slower erase
speeds than NAND FLASH.

Program (i.e. write) operations are done at the page
level, and data bits can only be changed from 1 to 0. This
means that a data section can only be written once after
each erase operation. Similarly, read operations are also
performed at the page level.

The fact that the lowest unit of control in FLASH stor-
age is a page hinders its overall performance. For exam-
ple, if an operation affects only a part of a page, the entire
page must still be read or written, and the unwanted data
will be ignored. In cases where the data to be read or
written fits within a single page, but the data happens to
be unaligned such that it is split between two pages, both
pages must be read or written. Erase operations being
performed at the block level restrict write operations. For
example, for a write operation to be performed over a
page which is not erased, and the data in the remaining
pages to be kept, all pages in the block must be erased and
rewritten. This is why erase operations are often delayed
until multiple pages have been marked for deletion.

Furthermore, FLASH storage devices support a rela-
tively low number of erase-write cycles per storage block,
after which a block can no longer be modified. Therefore,
systems must adopt wear-leveling mechanisms, where
write operations are carefully spread so that no block is
subjected to substantially more write operations than the
others. Finally, FLASH storage devices provide asymmet-
rical performance. Accessing random addresses is slower
than accessing sequential positions, and write operations
are slower than read operations.

MRAMpersistentmemory Magnetoresistive Random-
Access Memory (MRAM) is a type of persistent memory
where data is truly byte-addressable. For the case of the
devices showcased here, data is organized into 1 or 2
byte cells, with the possibility for each byte to be read
or written independently. Furthermore, data bits can be
freely converted between 0 and 1 by write operations,
forgoing the need for data to be erased.

Compared to FLASH storage, MRAM provides better
read / write performance, more write cycles per cell, as
well as symmetric performance for sequential and ran-
dom accesses. Furthermore, due to being byte-addressable,
reads and writes can reach their maximum throughput
even with very small operations, whereas FLASH stor-
age only achieves maximum throughput for operations
involving multiple kilobytes of data.

MRAM presents similar characteristics to 3D XPoint
[22], the byte addressable persistent storage technology
on which Intel Optane is based. Contrary to 3D XPoint,
however, MRAM chips are available for use with MPUs

and MCUs, whereas Intel Optane is only available for
more capable computers.

Despite MRAM’s technology being available since the
1980s[23], it was only recently that significant advances
in performance and chip density have made MRAM at-
tractive for data management applications. It is important
to understand how these new MRAM chips compare to
current FLASH storage technologies, in order to under-
stand the viability of MRAM as either a replacement, or
complement, to the standard FLASH technologies cur-
rently in use.

3. MRAM vs FLASH
To understand the viability of MRAM as an alternative
to FLASH storage, four MRAM devices with increasing
capacity and read/write performance are compared with
NAND FLASH and NOR FLASH devices. The MRAM de-
vices chosen were: (M1) AS30040316 [24], (M2) MR4A16
BMA35 [25], (M3) EMxxLx [26] and (M4) EMD4E001GAS
2 [27]. The corresponding M1-M4 notations are used for
each of these devices to ease referencing during the rest of
this Section. As for FLASH storage, MT29F128G08AJAA
AWP-ITZ:A [21] was selected to represent NAND FLASH
and MT28EW512ABA1HPC-0SIT [28] was chosen to rep-
resent NOR FLASH.

Furthermore, the following characteristics for each
device are analyzed:

• Read/Write/Erase throughput - the performance
throughput of a device for read, write and erase
operations. The metric considered was Megabytes
per second (MB/s). Note that as per the discus-
sion in Section 2, erase operations do not apply
to MRAM devices.

• Capacity - the amount of data a given device is
able to store, in megabits.

• Endurance - the number of writes or erases that a
particular data cell can endure before the vendor
no longer guarantees correct functioning of the
data cell.

• Energy - the amount of energy required to per-
form a write operation. The metric considered
was nanojoules per Byte written.

• Cost - the monetary cost of a given device per
amount of storage capacity. The metric consid-
ered was euros per megabit of storage capacity.

The values of the characteristics analyzed for each
device are presented in Table 1. Values were calculated
based on information made available by each device’s
datasheet. For performance throughput, the values pre-
sented correspond to the maximum nominal values. The
energy consumption figures are based on either peak
consumption or typical consumption values, depending
on the information made available by vendors.



Table 1
Storage devices’ characteristics comparison.

Read Write Erase Capacity Endurance Energy Cost

MRAM
𝑀1) AS3004316 [24] 57 MB/s 57 MB/s N/A 4 Mb 100T 1.58 nJ/B 6.63 €/Mb
𝑀2) MR4A16BMA35 [25] 57 MB/s 57 MB/s N/A 32 Mb Inf 1.58 nJ/B 1.99 €/Mb
𝑀3) EMxxLx [26] 400 MB/s 400 MB/s N/A 64 Mb Inf 0.895 nJ/B 0.84 €/Mb
𝑀4) EMD4E001GAS2 [27] 2.6 GB/s 2.6 GB/s N/A 1 Gb 0.01T 0.523 nJ/B 0.098 €/Mb
FLASH
NAND FLASH [21] 235 MB/s 23.5 MB/s 737 MB/s 128 Gb 60K 7.02 nJ/B 0.0012 €/Mb
NOR FLASH [28] 337 MB/s 2.5 MB/s 0.65 MB/s 512 Mb 100K 66.8 nJ/B 0.023 €/Mb

Performance All considered MRAM devices outper-
form both FLASH devices in write performance, between
2.42× and 1040×. As for read performance, both FLASH
devices are outperformed by the M3 and M4 MRAM de-
vices by a factor of between 1.18× and 11×. Further-
more, NAND FLASH is 479× faster than NOR FLASH
when erasing a block of data. Since MRAM can over-
ride data without first deleting it, its operations are not
affected by erase performance, which also greatly sim-
plifies the management of data being stored on MRAM,
when compared to FLASH storage.

Endurance MRAM supports at least 100000× more
operations per cell than FLASH memories, and some de-
vices claim an unlimited number of operations during the
lifetime of the chip. As such, there is no need for employ-
ing wear-leveling mechanisms, meaning less operational
overhead. This also translates into a longer life for the
device, making it a better choice for scenarios with high
data churn.

Energy In the case of MRAM, the energy required to
write a single byte has an inverse correlation with its
throughput performance. All MRAM devices show a
lower energy consumption when writing data compared
to FLASH devices, requiring 4×-13× less energy com-
pared to NAND FLASH, and 42×-127× less energy com-
pared to NOR FLASH.

The two major drawbacks of MRAM are capacity and
cost.

Capacity The most capable MRAM device, M4, has a
storage capacity of 1000 Megabits, which is 2× the ca-
pacity of the NOR FLASH device, but 128× less than the
capacity of the NAND FLASH device. Recent advances
have achieved multi-Gb capacity in single MRAM chips
[29], however, we have not considered these devices for
analysis, as they are not yet widely available for com-
mercial use, with vendors marketing those devices only
for space-grade applications. Although this is still signif-
icantly less than the hundreds of gigabits that a NAND

chip can support, it may be enough for current edge and
IoT persistent storage requirements.

Cost MRAM has a higher cost per MB than NAND and
NOR FLASH. The M4 MRAM device (the less expensive
per byte) is 4.26× more expensive than the representa-
tive NOR FLASH device and 81× more expensive than
the NAND FLASH device. However, there is a logarith-
mic relationship between the capacity of the MRAM chip
and its price per megabit, i.e., as the density increases, the
price decreases significantly. If the MRAM chip density
continues to increase and this relationship is maintained,
we can expect the gap between the cost of MRAM and
FLASH memory chips to decrease.

4. Data Systems on MRAM
Three systems were either implemented or adapted to
run over MRAM to understand how MRAM memory
can impact each of the two use cases previously iden-
tified for data storage in resource-constrained devices:
key-value stores and relational database systems. Since
MRAM works similarly to common volatile Random-
Access Memory (RAM), two structures commonly used
for in-memory key-value storage were selected: a Lin-
ear Probing Hash Table (LPHT) and a Cache-Line Hash
Table (CLHT) [30]. Since MRAM is persistent, such data
structures can easily be adapted to provide the equivalent
of a key-value store. For comparison, RocksDB, a well-
established persistent key-value store, was selected as a
baseline. Since RocksDB is a more complex system than
the selected hash tables, a more capable computation
unit was assigned, to offset the increased computational
overhead (see Section 5).

For the case of relational databases, we needed a sys-
tem that could easily be adapted to run on either an MPU
or MCU without changing its core functionality, in or-
der to provide a fair comparison. With that objective,
SQLite was selected since portability across different op-
erating systems is guaranteed by its separate OS layer,



which allows for custom implementations. Each of these
systems interacts with MRAM through a custom driver
which supports write and read operations in multiples of
1, 2, 4 or 8 bytes. Below, we detail how each system was
adapted to run over MRAM.

Linear Probing Hash Table The LPHT was imple-
mented from scratch, supporting Insert, Read and Update
operations. It separates MRAM’s space into two sections:
one for metadata, which keeps tracks of the occupation
state for each key-value slot, and a second for data, which
stores the actual key-value pairs. The size of these pairs
must be set before the hash table is used, and all key-
values share the same size.

Information on occupied slots is stored in an array of
bits, where each bit keeps the occupation state of a key-
value pair slot. If the bit is set to one, the slot is occupied,
otherwise it is free.

• Insert Operation - Insert operations are per-
formed through the put(key,value) command. When
the put() command is called, the key is hashed
into one of the key-value slots. If the slot is oc-
cupied, a try is made for the slot that follows
immediately after, and so on, until an empty slot
is found. When an empty slot is found, the key-
value pair is written into that slot, and then, the
bit indicating the slot is occupied is set to 1. If no
slot is found, the hash table is full and the insert
operation fails.

• Update Operation - Update operations are also
performed when the put() command is called. If
during an insert operation, the key is found al-
ready stored in the hash table, the corresponding
value is replaced with the new one, i.e., update
operations replace the old value with a new one.

• Read operation - Read operations are performed
through a get(key) command. Similarly to an in-
sert operation, a read is performed by hashing the
key to a slot, and traversing the corresponding
and successive slots until either the key is found
in an occupied slot, in which case the value is
returned; or until an empty slot is found, or all
slots are traversed, returning a null value in that
case.

Although not implemented, removing a key-value pair
is as simple as flipping the occupation bit corresponding
to the affected pair to 0.

Each operation in the MRAM memory is split into
16-bit or 8-bit operations, which are performed one at a
time over the memory. Assuming that these operations
are atomic, insert, remove (if implemented), and read
operations are crash-consistent, meaning that in case of
failure, the hash table would guarantee a consistent state.

Update operations, however, would need further mecha-
nisms to ensure crash consistency. As it is unclear from
vendor datasheets whether such elementary operations
guarantee atomicity, this issue deserves further study.

Cache-Line Hash Table The CLHT [30] is a dynamic
hash table that increases its size as more pairs are added.
The table consists of a series of buckets, where each
bucket contains a set of key-value pairs, a lock, and a
pointer to the next bucket. As such, keys are hashed
into positions of the hash table, where each position is
composed of a linked list of buckets. CLHT supports
insert, read, and remove operations.

CLHT’s main advantage is the fact that each bucket
is sized to fit into a cache line, thus greatly accelerating
consecutive operations in the same bucket, a common
occurrence both when inserting and when fetching key-
value pairs.

To run a CLHT on MRAM, a series of modifications
were applied to the original implementation [31], more
specifically to the Lock-based version. First, locking was
disabled, as the prototype developed only has a single
core (see Section 5 for setup details). Although a Lock-
free version is also provided, that version of CLHT uses
snapshotting mechanisms to allow concurrent operation,
which incurs computational overhead that is undesirable
in an MCU.

Secondly, all read and write operations of the hash
table on the underlying storage device are redirected
through the MRAM driver. Third, a simple custom heap
memory area was implemented on MRAM, since the orig-
inal implementation relied on malloc for space allocation,
which caused memory fragmentation when enforcing
alignment constraints. By using our own heap imple-
mentation, no memory space is wasted. Our heap imple-
mentation currently only supports allocating more space.
We leave implementing deallocation and defragmenta-
tion operations to future work.

Finally, the size of the bucket and key-value pair was
adjusted to fit the cache line size of the MCU selected
to interface with the MRAM device. Each key or value
occupies 4 bytes, and a bucket is set to a size of 32 bytes,
holding 3 key-value pairs and additional metadata. The
rest of the codebase remained unchanged.

SQLite SQLite is a highly portable embedded relational
database. However, it is more commonly used in MPUs,
since previous MCUs were not able to run this database
system [7]. Even so, with advances in MCU capabili-
ties, and by augmenting an MCU with MRAM, we were
able to successfully run SQLite on an STM32 (a popular
line of MCUs). To do so, a custom OS portability layer
is required [32]. The OS layer establishes how SQLite
interacts with the underlying file system and OS calls.



It includes functions for retrieving random values, and
current time; and also functions for opening, reading,
writing, and closing files.

To build the custom OS layer, three components were
required: the OS layer implementation itself; LittleFS
[33], a file system for MCUs; and the MRAM driver.
The MRAM driver performs low-level read and write
operations on the MRAM. LittleFS, in turn, provides a
lightweight file system that requires only a handful of
functions to be implemented, such as writing and reading
data to the storage medium. In this case, this function-
ality is provided to LittleFS through the MRAM driver.
Finally, the custom OS layer makes use of LittleFS to
implement file operations, while OS functions such as
random number generation are implemented using func-
tions provided by native STM32 libraries.

5. Experiments
For the experimental setup, two devices were used: an
STM32 MCU with MRAM memory, and an MPU, more
specifically a Raspberry Pi 3B, with an SD card as its
storage medium (i.e., NAND FLASH storage). The main
characteristics of each are described in Table 2.

The STM32H743ZI microcontroller (MCU) [34] is a
single core, 32 bit, 480MHz processing unit that comes
with 2MB of NOR FLASH memory and 1MB of RAM
memory. The MCU connects to an AS3004316 MRAM
memory [24], with 4Mb of storage capacity, and 35ns
access time both for read and write operations of either
8 or 16 bits. This MCU has 16 Kilobytes of L1 cache for
instructions, and 16 Kilobytes of L1 cache for data. By
default, both caches are disabled. For the tests depicted
here, the instruction cache is always enabled, however
the data cache is set depending on the test being run.
Whenever data cache is used, it is set as write-through,
so that any write to the cache is immediately persisted
to MRAM memory.

The RaspberryPi 3B is driven by a 64 bit BCM2837
microprocessor (MPU), boasting 4 cores at 1.2Ghz. It has
1GB of RAM memory, and uses a SanDisk Extreme SD
Card, with 32GB of storage capacity.

Notice that the MRAM uses between 10×−100× less
energy than the SD Card, and that the Raspberry Pi has
considerably more computational power and memory
resources than the STM32H743ZI MCU.

For easy reference, the names STM32 (as well as MRAM),
and RPi (or one of NAND FLASH or SD Card setup) are
used throughout this section to describe the MCU and
the MPU based setups, respectively.

It is possible to interface both NAND and NOR FLASH,
as well as MRAM, with both MPUs and MCUs. However,
this specific setup was selected as it was the option with
the greatest potential for success, given that a custom

Table 2
Hardware specifications.

STM32 RPi

CPU Model STM32H743ZI BCM2837
CPU frequency 480 MHz 1.2 GHz

CPU cores 1 4
RAM 1MB 1GB

Storage class MRAM SD Card

Storage device
Avalanche SanDisk
AS3004316 [24] Extreme [35]

Storage size 4Mb 32GB
Peak energy 66 mW 360-1440 mWa

Max. write cycles 1014 103 − 104b

Cost (Euros) 60 50

circuit board had to be designed and produced to interface
the STM32 with the MRAM device.

We perform a series of experiments to assess the viabil-
ity of MRAM as a suitable alternative, or complement, to
current FLASH based storage. First the raw performance
of the considered devices is evaluated, and then their
performance is compared under key-value and relational
database scenarios.

5.1. Raw performance evaluation
The read and write throughput capabilities for the storage
mediums in each device are evaluated, both in sequential
and random access scenarios. Furthermore, the relation
between I/O block size and throughput performance is
evaluated.

Testing methodology For MRAM, a random string
with length equal to the desired operations size was gen-
erated, and written to the device, either to sequential or
random addresses. As for reads, blocks of data of the de-
sired size were read, from random or sequential addresses.
The addresses were selected before the test was run. In
the case of random addresses, duplicates are allowed, so
a particular location may be overwritten multiple times.
As for sequential addresses, if the maximum address is
reached, operations wrap around the initial address. All
tests run until 500MB are read or written. The STM32’s
L1 data cache is disabled for this test. In the case of the
SD Card, fio, an open-source I/O tester [40], was used.
Each test runs for 20 seconds, with a ramp up time of 2
seconds. We chose the following settings for fio: the
engine chosen was libaio; iodepth is set to 20; the
direct option is set to 1; and there is only 1 job running
at a time. Results were averaged over 5 independent runs.
The direct option only allows operation sizes equal or

aEstimation based on: [36, 37]
bEstimation based on: [38, 39, 37]
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Figure 1: Storage medium read and write throughput.

greater to the page size of the device, so operation sizes
for the SD Card start at 512 bytes.

Figure 1 shows the performance of both MRAM and
RPi’s NAND FLASH under read/write sequential/random
workloads with varying request sizes. MRAM is able
to achieve its maximum throughput with I/O blocks as
small as 4 bytes for writes, and 512 bytes for reads, due
to its byte-addressability, being able to maintain that
level of throughput as block size increases. Maximum
speeds of 34MB/s for writes and 29MB/s for reads were
observed. Both random and sequential read/write pat-
terns presented identical performance (notice the over-
lapping lines in Figure 1). The SD card achieved 22MB/s
for reads, and 26MB/s for writes at block sizes of multiple
kilobytes. Furthermore, random accesses present lower
performance than sequential accesses. In conclusion, the
MRAM device is able to provide higher throughput than
the SD Card storage on the Raspberry Pi for all block
sizes, especially at I/O operation sizes under 4KB. We
confirm that, in the case of MRAM, random or sequen-
tial accesses have no impact on performance, with the
results for both types of accesses being almost exactly
the same. However, we notice that there is a difference
in performance between write and read operations, with
write operations outperforming the latter. We leave to
future work determining the cause for this discrepancy.
In the case of the SD card, we note that the read speed
is also higher than write speed, which is uncommon for
FLASH storage. This is, however, inline with the results
found in previous tests for SD card performance with
Raspberry Pis [41].

5.2. Impact on key-value systems
Being one of the identified use cases for data management
systems in IoT and edge related systems, where resource
constrained devices are used to store and process data,
the impact of using MRAM for key-value systems is eval-
uated. In this experiment, I/O operations of varying sizes
are executed over different key-value systems. The objec-
tive of the experiment is to evaluate how the previously
identified advantage in raw performance affects these
systems. Both an LPHT, and a Hash Table previously
adapted to work with Intel Optane [42], CLHT, are imple-
mented on the STM32 over MRAM. Since data stored in
MRAM is persistent, both Hash Tables provide a similar
service to a persistent key-value store, although with
less functionality. We compare them with RocksDB, a
popular persistent key-value, running on the RPi. We run
RocksDB both with and without fsync, a configuration
which when turned on guarantees persistence for each
write operation. Single and multi-threaded execution is
also considered for the case of RocksDB. We acknowledge
that RocksDB is a more complex system than a simple
hashtable, but the RPi’s MPU gives it a significant com-
putational advantage over the hashtables running on the
STM32. We also include results without fsync, giving
RocksDB the advantage of not having to persist its wal
log on every single write operation.

Testing methodology For the key-value scenarios,
a series of string arrays were generated separately, in
order to ensure that the operations submitted to each of
the evaluated systems is identical, and that the data gen-
eration process does not affect performance estimation.
Datasets composed of arrays of randomly generated 2, 4,
8, 16, 32, 64, 128, and 256 byte strings were built. String
deduplication was not performed, making it possible to
have multiple put operations for the same key. The size
of each dataset is equal to roughly 50% of the storage
capacity of the MRAM memory (i.e., 2Mb). For the 2, 4, 8,
16, 32, 64, 128, and 256 byte datasets 65365, 32768, 16384,
8192, 4096, 2048, 1024, and 512 entries were generated,
respectively. For each byte size, 5 different arrays were
generated.

In the case of RocksDB versus LPHT (Section 5.2.1)
the write experiment progresses as follows. One of the 5
datasets with 2 byte strings is selected. For each string A
in the dataset, an operation of the type put(A,A) is per-
formed, using the same string for both the key and value
fields. The performance of each system is then averaged
over the 5 different data sets for the same byte size. The
same procedure is followed for the remaining byte sizes,
and a similar procedure is followed for the read work-
load, but with get(A), instead of put(A,A) operations. For
the case of RocksDB, different combinations of fsync (on
or off) and number of client threads are tested, as they
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Figure 2: RocksDB (NAND FLASH) vs Linear Probing Hashmap (MRAM) with varying key/value size. Results for write and
read operations show on the left side, and right side, respectively.

have a significant impact in system performance. When
multiple client threads are used, the elements of each
dataset are split as equally as possible amongst them.
Since RocksDB with fsync turned on performs signifi-
cantly slower, tests targeting this setup are limited to
5000 put operations per data set.

In the case of RocksDB versus CLHT (Section 5.2.2),
the key and value field sizes are fixed to 4 bytes each, so
only the 4 byte data sets are used, since the size of buckets
must align with the size of a cache line. Furthermore,
each run is fixed to 20000 put operations, due to the added
space occupied by CLHT’s additional structures. Similar
to LPHT, CLHT is initialized with space to fit 2 times the
amount of data that is inserted in each test.

For both LPHT and CLHT, at the end of each run, a
consistency check is performed, where each of the stored
values is retrieved from the Hash Table, and checked for
correctness. We highlight that for the specific case of
LPHT, we observed up to 0.002% of pairs missing pairs
from the table when checking for consistency in scope of
a run. We consider this to be due to a problem with our
circuit board design for the MRAM memory chip, since
slowing down the speed of the memory solves these
errors.

Data L1 cache was enabled for all tests involving key-
value systems, with the cache policy set to write-through.
Since the results of the experiments resulted in dispari-
ties of multiple orders of magnitude, a logarithmic scale
is used for the y-axis of all diagrams, which represent
operations per second.

5.2.1. LPHT vs RocksDB

Figure 2 compares the number of operations per second
that RocksDB and the LPHT are able to perform, when
the size of a single key and corresponding value increases.
The size represented on the horizontal axis, in bytes,
corresponds to the size of a single key, or a single value.
This experiment’s conclusion is that the MRAM setup
outperforms the NAND FLASH alternative on almost all
scenarios. For write operations (left side of Figure 2),
MRAM outperforms all RocksDB setups. However, as
the key/value size increases, the difference between the
STM32 setup, and the RocksDB setups where fsync is
turned off, shrinks. At a key/value size of 4 bytes, MRAM
is able to perform 35× more operations per second than
RocksDB with 1 thread and no fsync. But, when the size
is increased to 256 bytes, the ratio between the two is
only 1.4× (still in favor of MRAM).

The LPHT running on MRAM memory guarantees
persistence on each write operation, so the RocksDB
setups that more closely resemble it are the ones where
fsync is enforced. When guaranteeing persistence at each
operation, the multithreaded RocksDB setup is vastly
outperformed by the STM32’s Hash Table, with LPHT
performing between 134× and 3837× more operations
per second.

For the case of read operations (right side of Figure 2),
LPHT is able to outperform the multithreaded RocksDB
for key/value sizes under 32 bytes, by a factor of between
1.64× and 6.69× more operations per second. For the
case of the single threaded RocksDB, the Hash Table is
able to outperform RocksDB for key/value sizes under 128
bytes, with up to 20× more read operations per second.
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It is interesting to note that RockDB’s performance for
keys/values with 2 bytes is significantly better than for
the remaining sizes. The most likely reason for this is the
big number of duplicate values present in the dataset used
for this particular experiment, which allows RocksDB to
easily keep all values in its block cache. We also note that
for key/value sizes above the previously stated, RocksDB
is able to perform more read operations per second than
LPHT.

In both cases, the performance of LPHT declines at
a faster rate than RocksDB as key/value size increases.
This can be due to the fact that as keys get bigger, the
computational effort to compute its hash value increases.
Since the STM32 has less computational power than the
RPi, this effect will be more noticeable.

5.2.2. CLHT vs RocksDB

Figure 3 shows how CLHT compares to different con-
figurations of RocksDB while inserting key/value pairs
with 4 bytes each. When compared to RocksDB running
without the fsync option and a single thread (the best
scenario for the no fsync configuration), CLHT is able
to perform 11× more write operations per second. Com-
pared to RocksDB’s best scenario with fsync being en-
forced, where RocksDB uses 6 threads, which is also the
scenario that most closely resembles the persistence that
MRAM provides with each write, CLHT is able to per-
form 1827× more write operations per second. In terms

of reads, MRAM outperforms RocksDB with 6 threads by
9×.

We conclude that the raw performance advantage of
MRAM over NAND Flash translates into a significant
advantage in key-value systems, especially for smaller
key-value sizes. For this use case, trading computational
power for storage performance is the correct approach,
indicating that the main bottleneck of these systems is
indeed the FLASH storage device.

5.3. Impact on relational database system
Finally, on a more complex scenario, SQLite’s perfor-
mance is compared when running on the STM32 over
MRAM, and on the RPi. This allows for a comparison
of the same exact system across the two platforms. The
results of running SQLite on the STM32 with a custom
OS layer are compared against SQLite running on the RPi
with NAND FLASH (using the default UNIX OS layer).

Testing methodology For SQLite, a schema consist-
ing of a single table representing a sensor is used. The
table consists of four columns of the integer type: times-
tamp, device_id, zone, and pressure. Each insert operation
inserts a new record which increments the timestamp
of the previously inserted record, and generates random
values for the remaining columns. Each run reads or
writes a total of 5000 rows, but the number of inserted
values or selected rows per transaction varies. For exam-
ple, in the first test 5000 transactions are executed, with
a single read or write operation being performed in each
transaction. For the last test, however, only 50 transac-
tions are performed, with 100 values being selected or
inserted in each transaction. Results depict an average
of five independent runs, and all SQLite files are deleted
between runs. SQL queries are generated prior to the
test, so that throughput estimation is not affected by the
time spent generating those queries. STM32’s L1 data
cache is enabled for all SQLite experiments enforcing a
write-through policy.

Figure 4 shows the number of rows either inserted
or read per second, in relation to the number of rows
affected by a single transaction. Unlike in the case of key-
value stores, it is not enough to perform a direct swap of
the storage medium from NAND Flash to MRAM for the
STM32 to outperform the MPU based (RPi) in a relational
database scenario. That is because relational databases
impose a greater computational overhead, thus giving the
advantage to the more capable RPi. Even so, the greater
performance of MRAM for small write operations en-
ables the STM32 to achieve a performance that is close to
that of the RPi for insert transactions affecting very few
rows. For the experiment where each write transaction
performs only two insert operations, the RPi outperforms
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Figure 4: Comparison between SQLite running on: STM32’s
MRAM and RPI’s NAND FLASH.

the STM32 by only 1.02×. As the number of insert state-
ments per transaction increases, SQLite performs bigger
I/O operations which decreases the performance gap of
the two storage media, and allows the RPi to perform
up to 1.48× more insert operations per second than the
STM32. In the case of select operations, the RPi is able
to read around 2.21× more rows per second than the
STM32 across all types of transactions. We conclude
that for relational databases MRAM can assist an MCU
achieve a similar performance to an MPU for basic op-
erations while consuming less energy and having less
computational resources. However, a direct substitution
of the storage media is not sufficient for the MCU to out-
perform the MPU. One possible way to further improve
performance for SQLite in the MCU would be to shed
the additional computational overhead that is imposed
by the FLASH oriented mechanisms such as the wear-
leveling mechanism in LittleFS, and the Write-Ahead Log
in SQLite.

6. Discussion
The first conclusion to draw from this work is that MRAM
provides a big advantage in small I/O operations. MRAM
adoption can be particularly interesting for key-value
applications, such as edge Time-Series Databases (TS-
DBs) and Key-Value Stores, which often handle small
key/value pairs [14]. Furthermore, MRAM can provide
strong consistency guarantees, since all write operations
are immediately persisted. As depicted in Figure 2, the
impact of using fsync (i.e., persisting every write) with
FLASH memory is significant. Thus, critical applications

in sensor networks, i.e., smart health care or industrial
IoT, might benefit considering this technology.

MRAM imposes less computational overhead on sys-
tems, as it does not require wear-leveling, batching, or
sequential ordering mechanisms which are often used by
FLASH based systems. This opens the way to lowering
systems’ complexity when using MRAM.

This can be of special importance for relational database
systems in resource constrained devices. In such compu-
tationally limited devices, MRAM allows forgoing FLASH
focused mechanisms, freeing computational capacity that
can instead be used by the DBMSs query engine. This
can help support the ongoing effort to enable more fea-
tures in MCU relational databases, since current options
have to severely limit the number of supported features
in order to fit available resources [7, 6]. Furthermore,
these MCUs provide additional resources such as: Direct
Memory Access controllers (DMAs) that enable data to
be moved between storage devices without CPU interven-
tion; and dedicated hashing controllers that can calculate
hash values also without CPU intervention; which can be
explored to further increase database performance while
putting less load on the CPU. In the case of key-value
systems MRAM could enable more functionality to be
shifted from MPU devices to MCU devices, while still
improving MCU battery lifetime. For example, in the
case of wearable sensors, data has to be uploaded in its
entirety to a more capable MPU to calculate statistics on
the gathered data (e.g., [11, 43]) due to lack of CPU power,
which coincidentally increases the amount of data trans-
mitted, increasing the rate at which the sensors’ battery
is drained. By consuming a lower amount of computa-
tional capacity MRAM can allow the MCU to make those
calculations locally, thus only transmitting the already
processed data. This data will be smaller, and allow the
MCU to conserve more energy by moving the load on the
MCU towards computation in place of data transmission.
MRAM will be specifically appealing in scenarios where
key-values are small (i.e., small write operations), the
most common occurrence in key-value systems [14], and
where said data needs to be persisted. This may be a
requirement for critical systems such as those involving
medical scenarios or public services management (e.g.,
smart grid applications).

Both solutions share the same price bracket, however
in our approach CPU is traded for memory performance.
We believe this to be the correct choice for the case of
edge databases, since storage is the primary bottleneck.
However, we must take into account that MRAM has a
significantly lower storage capacity per chip (up to 8Gb
per chip [44]) and a greater price per space unit. In total,
the STM32 used in this work could directly support up
to 512Mb of MRAM memory. As such, the main contri-
bution given by MRAM to edge systems, at the moment,
is not in storage capacity, which is the case for FLASH,



but rather in performance, energy expenditure, and en-
durance. As such, a hybrid approach could provide the
best of both worlds (i.e., MRAM and FLASH). MRAM
could be combined with more conventional FLASH stor-
age, e.g, an SD Card, to achieve both better performance
and durability, while still ensuring a large amount of
storage space. With the perspective of decreasing prices
(see Section 3), MRAM only storage may also be a possi-
bility in the future. MRAM memory may also pave the
way to instant recoverability if used as an alternative
to non-persistent program memory. Energy-wise, the
considered MRAM setup has a power profile 10× smaller
when compared with the NAND FLASH which provides
a positive impact for edge applications.

We hypothesize two use cases for MRAM use, to bet-
ter clarify how this technology can benefit edge data
management systems.

Relational database use case - Picture a scenario
where each sensor runs its own relational database over
FLASH (e.g., [6]). At any given moment, a sensor may
be queried for its data, however it is limited to only a
few operations, such as select, update, delete and insert
operations, or simple join operations. More complex
operations, such as nested queries are not supported, due
to a lack of CPU power which would make the time to
complete the query unacceptable. Thus, the client must
issue only the innermost select query, and process the
received data locally, possibly requiring further queries
to complete the original query. This means that more
data will be transmitted to the client than the data needed
to answer the original query, therefore more energy will
be used by the MCU.

Now, replace the storage device for either MRAM only,
or a hybrid MRAM and FLASH solution. MRAM having a
lower management complexity frees up part of the com-
putational budget, which can now be used by the query
engine to support faster processing. Furthermore, faster
performance means less I/O waiting time, equating to
less unused processor cycles. With the extra computa-
tional budget attributed to the query engine we are now
able to support nested queries. By executing the entire
query in one go only the minimum required amount of
data is transmitted to the client, optimizing the amount
of energy used.

Key-value use case - Picture a scenario where a pa-
tient wears an MCU based and battery powered sensor,
that takes heart related measurements. Storing and pro-
cessing the data locally using FLASH storage would be
too computationally expensive for the MCU, so instead
those measurements are transmitted in raw form to a
more capable MPU, where ECG data is extracted from
the raw data. This transmission of data drains the MCUs

battery, requiring frequent recharging of the medical sen-
sor device. If instead MRAM storage was used, the MCU
could potentially have enough processing power left to
extract the ECG data locally, and only relay relevant in-
formation to the MPU, extending operational lifetime of
the charge cycle.

The conducted experiments used an M1 MRAM device
(Table 1), as it allowed to create a prototype in a shorter
time frame. Employing faster M3 or M4 devices could
potentially increase the observed performance, which we
reserve for future work.

Similar to MRAM, there are a series of other persistent
memory technologies which can be considered for use
with database systems. We consider the comparison of
MRAM against other types of persistent memory to be
outside the scope of this work, but we encourage inter-
ested parties to check on related work which provides
that analysis [45]. As for how previous work with the
popular Intel Optane persistent memory can be applied
to MRAM, we believe there are multiple reasons why
such work may not be applicable here. The Intel Optane
line is composed of more complex devices which are com-
posed of multiple data storage chips, with non-persistent
caching mechanisms and capability for concurrent oper-
ations. Related work in Intel Optane enabled key-value
stores, for example, focuses on providing consistency
guarantees given non-persistent write operations (i.e.,
involving caching) and maximizing concurrency related
performance [14, 42]. Some optimizations are also based
on optimizing the use of the libraries provided for Intel
Optane access. In contrast, databases for MCUs, as ana-
lyzed here, have a single execution thread. Furthermore,
the targeted MRAM device does not support concurrent
operations and does not provide caching mechanisms.
The MRAM memory is accessed in the same way as nor-
mal memory: through a pointer to a particular address
which is mapped to a location in the MRAM memory.
As such, the set of problems for systems targeting Intel
Optane is not the same as for MRAM systems.

7. Conclusion
Research for the use of persistent byte-addressable mem-
ory for database systems has been focused on data center-
scale applications, namely supported by Intel Optane
products, [46, 47]. Results show, however, that byte ad-
dressable persistent memory should also be explored for
use in resource constrained data management systems.

This paper shows that MRAM provides several advan-
tages over NAND FLASH alternatives. At the hardware
level, MRAM enables 5 orders of magnitude more write
operations per cell, thus making it practically impervi-
ous to cell wear-out. Furthermore, random and sequen-
tial accesses have identical performance, and maximum



throughput is achieved with writes as small as 4 bytes,
and reads of 512 bytes.

MRAM shows a throughput advantage on all I/O block
sizes when compared to FLASH, particularly for block
sizes under 32KB. This was observed in the Raw Perfor-
mance tests, but also for the Hash Table tests, despite
being a more complex workload and with the exception
that for key/value sizes greater than 32 bytes, RocksDB
evaluation with the NAND Flash alternative outperforms
MRAM’s LPHT. The relational database test with SQLite
showed that although MRAM can help MCUs reach a per-
formance close to that of an MPU for a relational database,
a direct replacement of NAND FLASH for MRAM is not
sufficient for the MCU to outperform the MPU. How-
ever, MRAM allows for a lot of the mechanisms that are
currently used to accommodate FLASH to be avoided,
opening new architectures directed specifically at MRAM
to outperform MPUs.

In a nutshell, MRAM presents a big advantage over
NAND FLASH in small I/O operations, being able to
achieve full throughput at operation sizes of just a few
bytes. Furthermore, performance is not affected by ran-
dom access patterns. The virtually infinite endurance of
MRAM memory avoids the need for any wear-leveling
mechanisms, and its low power consumption contributes
to extend the lifetime of battery powered MCUs. Nominal
values also point to MRAM being able to achieve a sig-
nificantly higher peak throughput than FLASH storage.
Thus, MRAM can allow for systems which are simpler to
implement, have higher performance, and consume less
energy.
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