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Abstract
Efficiently evaluating text pattern matching is one of the most common computationally expensive tasks in data processing
pipelines. Especially when dealing with text-heavy real-world data, evaluating even simple LIKE predicates is costly. Despite
the abundance of text and the frequency of string-handling expressions in real-world queries, processing is an afterthought
for most systems. We argue that we must instead properly integrate text processing into the flow of DBMS query execution.
In this work, we propose a code generation approach that specifically tailors the generated code to the given pattern and
matching algorithm and integrates cleanly into DBMS query compilation. In addition, we introduce a generalized SSE search
algorithm that uses a sequence of SSE instructions to compare packed strings in the generated code to efficiently locate longer
input patterns. Our approach of generating specialized code for each pattern eliminates the overhead of interpreting the
pattern for each tuple. As a result, we improve the performance of LIKE pattern matching by up to 2.5×, demonstrating that
code generation can significantly improve the efficiency of LIKE predicate evaluation in DBMSs.

1. Introduction
Modern data processing systems offer outstanding per-
formance on simple data, which makes them an essential
component for efficient data processing pipelines. How-
ever, these systems are still lacking in compute-heavy
string processing, which is common in real-world appli-
cations. Tableau’s research shows that approximately
50% of all attributes use text-based data types, even when
there are more suitable data types [1]. Thus, database
systems need to focus on efficient text operations such
as LIKE expressions.
In current systems, a common technique to process

text is to use a third-party library that focuses on match-
ing string patterns, often offering advanced features such
as SIMD acceleration [2, 3]. Unfortunately, these do
not integrate well with DBMS-specific text representa-
tion. For example, DBMS commonly use special string
storage formats, e.g., with parts of the string inlined or
lightweight compressed [4, 5]. However, to use external
text libraries, these systems need expensive string conver-
sions before they can invoke a matching function, while
a better integrated approach could allow just-in-time de-
compression. In addition, string search libraries optimize
for finding patterns in a large continuous text corpus,
e.g., a text document. In contrast, for database systems,
the per-tuple overhead to interpret the string pattern or
transition tables leaves significant performance on the

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — Workshop on Accelerating Analytics and Data
Management Systems (ADMS’23), August 28 - September 1, 2023, Van-
couver, Canada
Envelope-Open adrian.riedl@in.tum.de (A. Riedl); fent@in.tum.de (P. Fent);
bandle@in.tum.de (M. Bandle); neumann@in.tum.de (T. Neumann)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

DatabaseDatabaseDatabaseDatabaseDatabaseDatabaseDatabaseDatabaseDatabaseDatabaseDatabaseDatabaseDatabaseDatabaseDatabaseDatabaseDatabase
Tuple
Stream

CheckCheckCheckCheckCheckCheckCheckCheckCheckCheckCheckCheckCheckCheckCheckCheckCheck
Result

COG
for each tuple

COG
for each tuple

COG
100

1010
01

for each tuple

Naïve

Preprocessed

Generated

= preprocessing phaseCOG = search phase

Figure 1: Different options to integrate pattern-matching
algorithms to evaluate LIKE expressions in DBMS.

table, which a better integrated approach can overcome.
Figure 1 illustrates the different options, how databases

can process the tuples. The two traditional options are:

Naïve: A generic function performs the matching pro-
cess and is called once per tuple during query execution.
For each tuple, it preprocesses the pattern again and exe-
cutes the search phase.

Preprocessed: The pattern is preprocessed only once
before the first search starts, and the result of this prepro-
cessing (e.g., a transition table) is stored. For each tuple,
the database engine still calls a generic pattern-matching
function, but this function reuses the stored information
in the search.

In contrast to these approaches, we need to integrate
LIKE pattern matching deeper into the data processing
engine. Code generation allows specializing the match-
ing function by inlining the patterns and shift tables. We
can also inline the generated code in a larger processing
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kernel, e.g., using data-centric code generation [6], or
in just-in-time compiled vectorized functions. In this
work, we integrate common algorithms such as Knuth-
Morris-Pratt [7], Boyer-Moore [8, 9, 10], Two-Way [11],
and SIMD optimized routines [12]:

Generated: During query compilation, we preprocess
the pattern once. Then, we generate code for the entire
search process using as much preprocessed results as
possible. The entire matching process is performed in
the generated code to avoid repeating function calls.

In this paper, we focus on how to generate code for the
most common subset of regular expressions in SQL: LIKE
expressions. Section 3 introduces the string-matching
algorithms and outlines how our Generated approach uti-
lizes a code generation framework to rebuild each match-
ing function and specialize the code for the given pattern.
Furthermore, we present a generalized SSE Search al-
gorithm that generates highly efficient code for longer
patterns by utilizing SSE instructions. In Section 4, we
evaluate these algorithms alongside the mentioned op-
tions in our code-generating DBMS Umbra [13]. This
provides a fair analysis of the different options to evaluate
LIKE predicates within a single system. While patterns
are typically short, we also analyze the performance with
longer patterns, reaching up to nearly 300 characters.
Additionally, we compare our Generated approach with
the publicly available systems Postgres, DuckDB, Hyper,
and ClickHouse.

2. Related work
Kemper andNeumann introducedHyper, a pure in-memory
database for both OLTP and OLAP workloads [14], with
a data-centric approach for generating and compiling
compact and efficient machine code using LLVM [6].
The idea of code generation has become widely ac-

cepted among database researchers and developers [15,
16, 17, 18]. Umbra [13], the research successor of the
HyPer system, introduced a type-safe code generation
framework with a tailored intermediate representation to
compile directly into machine code, which makes Umbra
applicable for low latency applications [19]. Together
with adaptive execution, this allows us to switch between
prioritizing low-latency or high throughput in execu-
tion [20].
In general, regular expression matching can benefit

from using just-in-time code generation. Thompson in-
troduced the concept in 1968 to produce an IBM 7094 pro-
grams for locating characters by regular expressions [21].
Today, many state-of-the-art libraries use code genera-
tion to convert the given regular expression pattern into
an internal representation of bytecode: Python’s re mod-
ule generates bytecode for regular expressions and uses
an internal C engine for efficient execution [22]; Google’s

re2 represents the regular expression as an automaton in
bytecode and passes it for interpretation to an execution
engine [23]; Microsoft’s .NET framework provides both
a bytecode interpreter and a just-in-time compiler that
converts the expression to native machine code [24].

However, only a few projects aim to generate machine
code for regular expression matching at runtime, and no
database system actively combines code generation and
pattern matching.

3. Implementation
This section outlines how pattern-matching algorithms
can use parts of code-generation frameworks to be in-
tegrated into compiling database engines. The concept
of code generation for queries, as used in HyPer [14, 6]
or Umbra [13], presents a novel opportunity for evalu-
ating LIKE expressions in relational database systems
by generating code for the matching process instead of
interpreting the pattern. We start with Naïve, which uses
a hand-written function for pattern matching. It is called
for every tuple in the generated code by the database
system. We can already improve its performance by pre-
processing the pattern passed to the function.
However, we aim to entirely replace the function by

generating code specifically for the pattern and algorithm.
The generated code is then directly embedded in the sur-
rounding generated function code. Our current focus is
on constant LIKE patterns without any underscores or
collations. Thus, a bytewise comparison between the pat-
tern and input text is feasible, allowing us also to handle
non-ASCII characters. Within Umbra, we are using our
type-safe code-generation framework, which allows us to
pass the generated code in static single assignment (SSA)
form on to Umbra’s different execution backends [19].

Throughout this chapter, let us consider the following
query that filters the uni relation and counts how many
names contain the relatively short pattern 'TUM':

select count(*) from uni where name like '%TUM%';

In the upcoming Section 3.1 and Section 3.2, we discuss
the Knuth-Morris-Pratt (KMP) and Boyer-Moore (BM)
algorithms and explain in detail how they integrate into
the code generation process. Section 3.3 briefly intro-
duces the Two-Way (TW) search algorithm that com-
bines KMP and BM. Moving away from the well-known
pattern matching algorithms, Section 3.4 presents the
Hybrid-Search (HS) algorithm which uses an SSE instruc-
tion to match patterns up to a certain size. In Section 3.5,
we show how blockwise processing can improve per-
formance in finding possible occurrences of the pattern.
Finally, Section 3.6 presents the SSE Search algorithm
which uses SSE instructions to perform pattern matching
expressions for longer patterns. It is important to note



that this algorithm can only be implemented effectively
in a code-generating database engine. This is due to the
diverse nature of input patterns, where the flexibility of-
fered by a code-generating process surpasses that of an
interpreting algorithm.

3.1. Knuth-Morris-Pratt Algorithm
In 1977, Knuth, Morris, and Pratt introduced an algorithm
for performing exact string pattern matching without the
need to backtrack in the input text by preprocessing the
pattern [7]. The algorithm builds a table with pattern
length + 1 entries that point to where, in the pattern, we
continue the search after a mismatch. Thus, the table
holds information about the longest proper prefix that is
also a proper suffix of the pattern (lps). For the prefix of
length 0, the table stores the value −1, indicating that if a
mismatch occurs, the pattern can be shifted one position
to the right since no suffix exists at that point.

1 KMP(text, pattern):
2 lpsTable = preprocess(pattern)
3 pPos = 0; pSize = pattern.size()
4 tPos = 0; tSize = text.size()
5 while (tPos - pPos + pSize <= tSize)
6 if (pattern[pPos] == text[tPos])
7 pPos++; tPos++
8 if (pPos == pSize) return true
9 else
10 shift = lpsTable[pPos]
11 if (shift < 0) pPos = 0; tPos++
12 else pPos = shift
13 return false

Listing 1: Pseudocode for the Knuth-Morris-Pratt
algorithm

Listing 1 presents the pseudocode of the KMP algo-
rithm. Line 2 preprocesses the pattern and initializes two
position counters for text and pattern. When the char-
acters at these indexes match (lines 6 to 8), the function
increments both position counters. When reaching the
pattern end, a match is found.

If the characters do not match (lines 9 to 12), the func-
tion reads the optimal shift value from the lps table based
on the pattern position. A negative value indicates that
there is no proper suffix in the pattern that is also a prefix
of the pattern. Thus, we need to restart the comparison
from the following text character. Otherwise, the func-
tion updates the pattern position to the lps table value
and increments the text index.
In line 5 of Listing 1, we introduce an optimization

for the KMP algorithm called the early return, which we
use in all our variants. This optimization checks every
iteration to determine whether the end of the pattern lies
within the text. If that is not the case, we will stop the
comparison, as it is impossible to find another match.

whileLoopHeader:
check tPos - pPos + 6 ≤ text.size()

return falsecheck pPos = 0

check text[tPos + 0] = 'T'check pPos = 1

check pPos = 2 check text[tPos + 1] = 'U'

unreachable check text[tPos + 2] = 'M'

return true

performShift:
shift = 𝜙 [-1, 0, 0]
isNegative = shift < 0
pPos = isNegative ? 0 : shift
tPos = isNegative ? tPos + 1 : tPos

1

2

3

Figure 2: Control flow of the generated code for the KMP
algorithm to search for the pattern 'TUM'. The green arrows
( ) are taken if the condition evaluated to true, the red or
otherwise colored arrows ( ) if not.

3.1.1. Preprocessed approach

To prevent the pattern from being processed repeatedly
for each tuple, we preprocess the pattern during code
generation time to get the lps table and then save this
table along with the pattern in the generated program.
We do not need to store any additional information for
the lps table because its size depends on the pattern size.
When executing the generated code, we still make a

function call to perform the search, but instead of recalcu-
lating the table every time, we reuse the stored lps table.
So, we omit the preprocessing in line 2 of Listing 1.

3.1.2. Generated approach

We replace all calls to the matching function with specif-
ically generated code for the query’s pattern. So, we
embed the search phase algorithm entirely within the
generated code. Figure 2 shows how we can reconstruct
the Knuth-Morris-Pratt algorithm using the example we
discussed earlier to search for the pattern 'TUM' in the
input text.

We begin the algorithm in the whileLoopHeader block
by checking if the remaining length of the input text is
sufficient. In this check, we can inline the size of the pat-
tern into the arithmetic expression 1 . Then, we move to
the correct pattern position to continue the comparisons
from this position. We generate the comparisons out of



the pattern from left to right 2 . If the characters match,
we proceed directly to the next character, but if there is a
mismatch, we jump to the performShift block. In this
block, we choose the shift value from the inlined lps ta-
ble 3 based on the position of the failed comparison. We
then determine how to proceed and continue the search
by jumping back to the whileLoopHeader.

3.2. Boyer-Moore Algorithm
In 1977, Boyer and Moore presented a pattern-matching
algorithm that iterates backwards over the pattern to
search it in the input text [8]. We focus on their fast
implementation shown in Listing 2.

1 BM(text, pattern):
2 pSize = pattern.size()
3 tSize = text.size()
4 // Ψ > tSize + pSize for all inputs
5 Ψ = 1 << 48; pPos = pSize - 1; tPos = pPos
6 𝛿1 = preprocessBadCharacterHeuristic(pattern)
7 𝛿2 = preprocessGoodSuffixHeuristic(pattern)
8 𝛿0 = 𝛿1
9 𝛿0[pattern[pSize - 1]] = Ψ
10 while (tPos < tSize)
11 tPos += 𝛿0[text[tPos]]
12 if (tPos >= Ψ)
13 tPos = tPos - Ψ - 1
14 if (pSize == 1) return true
15 else
16 pPos = pSize - 2
17 while (pPos && text[tPos] == pattern[pPos])
18 pPos--; tPos--
19 if (!pPos && text[tPos] == pattern[pPos])
20 return true
21 tPos += max(𝛿1[text[tPos]], 𝛿2[pPos])
22 return false

Listing 2: Pseudocode for the Boyer-Moore algorithm

Before the search phase begins, the algorithm requires
two preprocessing steps, namely Bad Character Heuris-
tic (BCH) in line 6 and Good Suffix Heuristic (GSH) in
line 7. The BCH ensures that the text’s letter at which
the mismatch occurred aligns with its rightmost occur-
rence in the pattern. Alternatively, the GSH shifts the
pattern based on the longest suffix of the matched input
text. This part is aligned with the rightmost occurrence
of that character sequence in the pattern (except for the
suffix of the pattern itself). Both heuristics precalculate
shift values for the pattern and store them in tables. The
original papers contain a more detailed explanation of
the heuristics and their effects [8, 9].

The fast implementation requires a third table, 𝛿0, which
is essentially a copy of the result of BCH but holds the
value Ψ (called large in [8]) for the last character of the
pattern. This value needs to be greater than the sum of
the lengths of all possible input texts and patterns. At the
beginning of the search phase, the pattern is aligned with
the start of the input text and the comparison starts from

the rightmost character. The implementation looks up
the value in 𝛿0 and either shifts the pattern to the right or
adds Ψ to the current position (line 11 of Listing 2). This
allows us to scan through the input text, and once we
add Ψ to the current position, we know the last character
was found. Thus, the algorithm recalculates the index
for the second last character and starts comparing the
pattern from right to left with the input text (lines 16
to 20). In case of a mismatch during this comparison, the
algorithm applies the maximum of the shifts according
to the heuristics (line 21) before the search for the last
character of the pattern restarts.

3.2.1. Preprocessed approach

As the BCH table contains 256 values and the size of the
GSH table matches the pattern length, repetitive process-
ing is quite expensive. Like the KMP algorithm, we move
all preprocessing steps to code generation and store the
resulting tables directly along with their corresponding
pattern. When storing the tables, we do not require ad-
ditional information since the size of the tables is either
known beforehand or can be derived from the pattern
size. We replace the calls to the preprocessing functions
(lines 6 to 7) with pointers to the corresponding table.
As the only difference between 𝛿0 and 𝛿1 is the value
for the pattern’s last character, we do not copy the table
but instead, modify the code in the search phase loop to
actively add the correct value, so either the value Ψ or
the value from 𝛿1.

3.2.2. Generated approach

Similar to the KMP algorithm, we rebuild the Boyer-
Moore algorithm to get pattern-specific code. Figure 3
presents the conceptual control flow for searching the pat-
tern 'TUM' in the input text. We check whether enough
characters are left in the input string before we start the
matching process in the whileLoopHeader block. If so,
we get the shift value from the inlined 𝛿0 table 1 and add
it to the pattern position. If that value is smaller than Ψ,
we continue in this loop by going to the whileLoopHeader
block. Otherwise, we know the input text contains the
last character of the pattern, so further checks are re-
quired. Before the checks, we recalculate the charac-
ter index aligned with the second last character in the
pattern. In order to proceed, we check the text based
on the reversed pattern 2 . In case of a mismatch, we
jump to the performShift block. In this block, we de-
termine goodShift from 𝛿2 3 based on the preceding
block and the badShift from 𝛿1 4 based on the mis-
matching text character. We then add the maximum of
both shift values to the text position before returning
to the whileLoopHeader to continue with the matching
process.



whileLoopHeader:
check tPos < text.size()

return false

𝛿0-shift = match text[tPos] {'T': 2, 'U': 1, 'M':Ψ, _: 3}
tPos = tPos + 𝛿0-shift
check tPos < Ψ

tPos = tPos - Ψ - 1
check text[tPos] = 'U'

tPos--
check text[tPos] = 'T'

return true

performShift:
goodShift = 𝜙 [5, 4]
badShift = match text[tPos] {'T': 2, 'U': 1, 'M': 0, _: 3}
tPos = tPos + max(badShift, goodShift)

1

2

3
4

Figure 3: Control flow of the generated code for the BM
algorithm to search for the pattern 'TUM'. The green arrows
( ) are taken if the condition evaluated to true, the red or
otherwise colored arrows ( ) if not.

When analyzing the instructions in the performShift
block of Figure 3, one may mistakenly perceive the in-
clusion of the inlined 𝛿1 table for determining the shift
caused by the BCH as unnecessary. This impression
arises from the fact that the minimum shift resulting
from the GSH is always greater than the maximum pos-
sible shift caused by the BCH. Consequently, the maxi-
mum shift is consistently determined by the good suffix
heuristics. It is important to note, however, that this ob-
servation cannot be universally applied to all patterns.
To address this, we have implemented an optimization
in the code generation process, which generates code for
determining the BCH shift only when it is truly required.

3.3. Two-Way Algorithm
As an alternative to the Knuth-Morris-Pratt and Boyer-
Moore algorithms, Crochemore and Perrin presented the
Two-Way String-Matching algorithm (TW) which com-
bines both previous algorithms into one [11]. To achieve
this, the algorithm first splits the pattern according to
the known Critical Factorization Theorem [25]. With
that, the pattern is theoretically split into a left and right
part. In the search phase, the right half is compared from
left to right first; if all characters match, then the left

half is compared from right to left. If any mismatches
during the comparisons occur, the pattern is shifted by a
certain number of positions. After a close analysis of the
interpreting Two-Way algorithm, its functionality can be
rebuilt using the available code generation framework as
for the other algorithms.
Again, we implement a Naïve, Preprocessed , and Gen-

erated version for the Two-Way algorithm. In the Naïve
version, the Critical Factorization preprocessing step is
performed repeatedly for each input text. In the Pre-
processed version, we store the necessary preprocessed
result along with the pattern in the data section of the
generated code. This value is then loaded along with the
pattern when needed and used in an interpretive algo-
rithm. The Generated version of the algorithm depends
on the output of the preprocessing function. It generates
the relevant part of the Two-Way algorithm based on the
outcome of the Critical Factorization step and inlines as
much of the information as possible into the algorithm.

3.4. Hybrid-Search Algorithm
Sitaridi et al. have introduced an algorithm which uses
the SSE 4.2 SIMD instruction set, which comprises in-
structions that efficiently accelerate string and text pro-
cessing [12]. According to Intel, these instructions are
designed to enhance the performance of databases or
complex searching and pattern matching algorithms [26].
However, the presented algorithm is restricted to patterns
to fit into a 128-bit SIMD register.

1 HS(text, pattern):
2 if (pattern.size() <= 16 && text.size() >= 16)
3 iter = text.begin(); end = text.end()
4 safeMatch = 17 - pattern.size()
5 pattern16 = load16(pattern)
6 while ((iter + 16) < end)
7 match = pcmpistri(pattern16, load16(iter))
8 if (match < safeMatch) return true
9 iter += safeMatch
10 if (iter < end)
11 match = pcmpistri(pattern16, load16(end - 16))
12 return match < safeMatch
13 return false
14 return TW(text, pattern)

Listing 3: Pseudocode for the Hybrid Search algorithm

With our Hybrid Search, we extend this algorithm to
handle any size of input text and pattern, as presented
in Listing 3: For patterns up to the length of a vector
register, we use the pcmpistri instruction, given that
the input text is at least 16 bytes long. In such cases, we
process 16 bytes of the input text at once until less than
16 bytes are left (lines 6 to 9). To check the end of the
input text, we load the last 16 bytes of the input text,
which is safe since we know that the input text is long
enough (lines 10 to 12). However, if either of the input
parameters does not meet its length criterion, we resort



to a default string search algorithm. In our case, it is
the Two-Way algorithm (line 14). Considering that the
best-suited algorithm depends on various factors, such
as the pattern and workload, it would be beneficial to
implement multiple fallback algorithms, allowing the
selection of the most appropriate one.

3.4.1. Preprocessed approach.

Based on the chosen fallback algorithm, one might con-
sider how to include the corresponding Preprocessed func-
tion of the chosen algorithm. To match the chosen Two-
Way algorithm as default fallback algorithm in the Naïve
approach, we chose the Preprocessed version for this ap-
proach.

3.4.2. Generated approach.

To generate code for our Hybrid Search, we extended
the custom code generation framework of Umbra to sup-
port the necessary SSE instruction for comparing packed
strings. This enables us to generate the parts of the algo-
rithm needed for the specific pattern. For patterns that
are longer than 12 bytes, we only generate the code for
the default matching algorithm, as we do not use the
SSE instruction for that kind of patterns. For shorter
patterns, we generate both the part using the SSE instruc-
tion and the default fallback. While executing the code,
we determine which part of the algorithm to use based
on the length of the input text. The decision to set the
limit to 12 bytes is guided by the fact that this still allows
performant shifting of the input pattern (cf. safeMatch,
measured in Figure 9 in Section 4.3.1).

3.5. Blockwise Processing Optimization
Blockwise Processing can improve the initial pattern
search. It draws inspiration from SIMD within a register
(SWAR) [27] and enhances the efficiency of character
search in an input text over the naïve idea. This would
involve iterating over the text and examining each char-
acter resulting in a wastage of cycles simply searching
for the desired character. However, blockwise processing
can be implemented to rapidly locate the first charac-
ter of the pattern and then continue with the chosen
pattern-matching algorithm. Listing 4 demonstrates the
algorithm to detect the presence of the ASCII character
'T' in the block. We read the next eight bytes from the
input text into a register. With another register having
the character broadcasted to each byte, we perform vari-
ous bitwise operations between the registers and specific
constants. After these operations, we get a value back
which is either 0, so 'T' could not be found in block, or
the highest bit of the byte at which the character appeared
is set. This code can also be adjusted for non-ASCII char-
acters which have the highest bit set. While certain SSE

instructions may provide similar functionality, our objec-
tive is to present a versatile approach that is not limited
to any specific hardware support.

1 uint64_t block = loadNext8Bytes(...)
2 // broadcast 'T' to each byte: 0x5454545454545454ull
3 uint64_t searchedChar = broadcast('T')
4 const uint64_t high = 0x8080808080808080ull
5 const uint64_t low = ~high
6 uint64_t lowChars = (~block) & high
7 uint64_t cleared = (block & low) ^ searchedChar
8 uint64_t found = ~((cleared + low) & high)
9 uint64_t matches = found & lowChars
10 bool matchFound = matches != 0

Listing 4: Blockwise search for ASCII character T

3.6. SSE-Search Algorithm
The Hybrid Search algorithm employs an SSE instruction
for pattern matching, limiting the pattern length to at
most 16 bytes. For longer patterns, the algorithm pro-
vides an alternative approach that does not use the SSE
instruction. Expanding the algorithm to handle longer
patterns with SSE instructions is feasible but significantly
increases its complexity.

However, the emergence of code-generating database
engines has opened up new possibilities for generating
code optimized with SSE instructions that are specifically
tailored to long patterns. In Figure 4, we present the
conceptual design of the generated code for searching the
pattern 'Technical University of Munich'. Similar
to the KMP algorithm, we initially check if the pattern
can fit within the remaining text by directly including
the pattern length 1 . If there are enough characters
remaining, we proceed with the comparison.

The search algorithm aims to locate the starting posi-
tion of the pattern within the input text. Once the start
position is found, we continue comparing subsequent
parts of the pattern and text sequentially from that posi-
tion.
To achieve this, we extract the first 16 bytes of the

pattern and load the next 16 bytes from the text. Using
the SSE instruction pcmpistri, we search for the start of
the pattern in the input text 2 . If no match is found, we
shift the text position to the right and restart the overall
search for the pattern start in the input text. In the case
of a match, we enter the generated code, which loads
the next 16 bytes from the input text and compares them
to the corresponding part of the pattern. This compar-
ison can be performed using either the SSE instruction
pcmpistri or another binary comparison function for
vector registers. Since we know that the subsequent pat-
tern blocks must follow the previous ones, we can easily
generate code to handle this logic. This is repeated until
less than 16 bytes of the pattern are left.



whileLoopHeader:
check tPos + 30 ≤ text.size()

return false

data = load16(text, tPos)
match = pcmpistri('Technical Univer', data)
check match == 0

tPos = tPos + 1

data, size = loadAtMost16(text, tPos + 16)
match = pcmpestri('sity of Munich', 14, data, size)
check match == 0

return true

performShift:
tPos = applyShift(tPos)

1

2

3

Figure 4: Control flow of the generated code for the SSE
Search algorithm to search for the long pattern 'Technical
University of Munich'. The green arrows ( ) are taken
if the condition evaluated to true, the red or otherwise colored
arrows ( ) if not.

Handling the remaining bytes of the pattern requires
special handling, as both the pattern and input text may
not fully occupy an SSE register. Therefore, we load a
maximum of 16 bytes from the input text and also return
how many bytes were read. With the loaded block and
the number of read bytes, we employ the SSE instruc-
tion pcmpestri 3 . This instruction requires explicit
specification of the length of the input data as additional
arguments.

If there is a mismatch between one of the blocks of the
pattern and the corresponding text block, we stop the
comparison and go to the performShift block. Within
this block, we apply a shift heuristic that moves the pat-
tern as far to the right as feasible. Following the pattern
shift, we return to the whileLoopHeader to resume the
matching process by checking the remaining length of
the text.

Shift heuristics. For shift heuristics, we have two op-
tions: a simple shift to the right by one position or a
more advanced KMP-like heuristic. The latter relies on
identifying the longest suffix of the already matched pat-
tern that is also a proper prefix. This operation results
in no additional runtime overhead since it can be prepro-
cessed during code generation and is directly written to
code.

Size of start block. Figure 4 presents the version of
the algorithm, which directly loads the first 16 bytes

of the pattern into a vector register. However, when
fully utilizing the vector register, one can only shift one
position to the right if the start of the pattern does not
match the loaded text block. To increase the possible
shift in case this part is not found in the loaded input
text, we can reduce the number of bytes loaded from the
pattern.

4. Evaluation
In order to check our implementations on a more realistic
dataset, we use ClickBench1. It includes typical modern
workloads and queries used in ad-hoc analytics and real-
time dashboards. The data used in the benchmark is col-
lected from a real-world web analytics platform. While
it is anonymized, it retains the essential distributions of
the data, including non-ASCII characters. For our ex-
periments, we used the queries 20, 21, 22, and 23 from
the ClickBench benchmark, which contain the following
LIKE predicates:

Q20, 21, 23: url like '%google%'
Q22: title like '%Google%'

and url not like '%.google.%'
Query 20 scans the relation hits and counts howmany

tuples fulfill the predicate; the other queries involve more
operators like aggregates or sorting, so the overall perfor-
mance is not entirely dominated by the pattern matching
algorithm.
Since the patterns mentioned above are shorter than

the length of a vector register, we classify them as short
patterns. To evaluate the effects of longer patterns, we
increased the pattern length for Q 20 to 31, 160, and 291
characters, categorizing them as long patterns.
We run the microbenchmarks on an Intel i9-7900X

CPU (Skylake-X, 3.3-4.5 GHz) with 10 cores and 128 GB
4-channel DDR4-2133 memory, running Ubuntu 22.10
(Kernel 5.19, gcc 12.2), and repeat all measurements five
times.

4.1. Full System Comparison
Wecompared ourGenerated approaches for patternmatch-
ing with other popular database systems, namely Post-
gres, DuckDB, Hyper, and ClickHouse. Figure 5 demon-
strates that our approach of generating pattern-specific
code performs better than the other databases. While
Umbra outperforms the other databases for Query 21
and 22, Hyper is slightly faster than our Boyer-Moore
algorithm for Query 20 but slower than the other three
algorithms. However, Hyper uses a pattern matching
algorithm which is quite similar to our Hybrid-Search
algorithm, also using an SSE instruction to search for
the given pattern. As our pattern is relatively short, we

1https://benchmark.clickhouse.com

https://benchmark.clickhouse.com
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Figure 5: In a system comparison, Umbra’s code generation
approaches outperform the other database systems using each
system’s default setting for the parallelism.

observe that in nearly all cases we benefit from gener-
ating pattern specific code. Due to the shortness of the
pattern, one can observe that the Hybrid-Search benefits
from the SSE instruction, as it clearly dominates the other
algorithms, especially for Query 20.

4.2. Short Pattern Microbenchmark
We continue our comparison within our database system
Umbra to analyze the differences between the algorithms
in detail. In this section, we will focus on the more com-
mon case of short patterns.

4.2.1. Blockwise Processing

Our initial investigation evaluates the efficacy of using
Blockwise Processing in combination with KMP as ex-
plained in Sections 3.1 and 3.5. If a mismatch occurs, we
check how the KMP algorithm would shift the pattern
according to its preprocessing. In case the pattern would
be shifted by one character, we switch back to blockwise
processing and restart the search for the first charac-
ter of the pattern. Figure 6 illustrates the advantages
of blockwise processing compared to the non-blockwise
approach for Query 20 on the ClickBench dataset. By
applying this optimization, larger blocks of the input text
can be processed at once instead of reading byte by byte.

In the non-blockwise case, both the Naïve and Prepro-
cessed versions show similar throughputs. After conduct-
ing a performance analysis, we identified that loading
the lps table values from the data section in the Prepro-
cessed approach yields performance similar to repeatedly
preprocessing the relatively short pattern in the Naïve
approach. By using the Generated approach, we can com-
pletely avoid any indirections, resulting in the highest
throughput for the KMP algorithm.

In the blockwise algorithms, larger blocks of the input
text can be skipped if the first character of the pattern is
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Figure 6: The KMP algorithm with Blockwise Processing
outperforms the unoptimized KMP using one thread for Q 20.

not found. Consequently, the Preprocessed approach is
faster than the Naïve one since it doesn’t need to access
the lps table as often. Still, the Generated approach re-
mains superior to the other alternatives. Based on these
findings, we directly focus further analysis on the KMP
algorithm with blockwise processing.

4.2.2. Algorithm Comparison

Figure 7 illustrates the results of comparing the matching
algorithms discussed in Section 3 for Q 20 and Q 21 of the
ClickBench benchmark. The Preprocessed and Generated
approaches outperform the interpreting approaches.
This is because the preprocessing phases of the KMP

and BM algorithms generate large lookup tables. By
employing code generation capabilities for the Prepro-
cessed approach, we can avoid redundant preprocessing
of the pattern. Storing the tables in the data section of
the generated program leads to a substantial improve-
ment in throughput. As the Generated approach suggests,
generating highly specialized code further enhances per-
formance. However, for the Boyer-Moore algorithm, the
performance improves less in Query 20. According to
further analysis, this is due to many branches in the
generated code, which can result in mispredictions and
overall slow performance.

For Query 21, we observe similar behavior as for Query
20. However, the generated code for the Boyer-Moore
algorithm appears marginally different, leading to higher
performance improvement for the Generated approach
over the Preprocessed version.

The preprocessing function of the Two-Way algorithm
only returns a number, so it does not have to generate a
table as the other two algorithms. Consequently, the Gen-
erated approach achieves a higher throughput compared
to the Naïve approach.
When it comes to the Hybrid-Search algorithm, one

can see the benefit of using SSE instructions to search
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Figure 7: Single threaded throughputs for the different algo-
rithms running Q 20 and Q 21.

for a pattern in an input text. For each approach, this
algorithm dominates all the other algorithms. Addition-
ally, it benefits from avoiding repetitive function calls to
the matching function, resulting in the throughput of the
Generated version being nearly 2.5× the throughput of
the Naïve approach.

4.2.3. Multithreading

The final interesting aspect of our microbenchmarks is
how throughput develops when running queries using
multiple threads. We expect the throughput to scale
linearly with an increasing number of threads, as Umbra
usesmorsel-driven parallelism [28]. As shown in Figure 8,
this expectation aligns with the observed results. When
hyperthreading is reached, the throughput still increases,
but at a different rate than before.
Our different degrees of code generation provide the

most benefit to the KMP algorithm when comparing the
different approaches. In the Generated version, we can
nearly double the throughput compared to the Naïve
approach, while the Preprocessed version is in the middle.
The Boyer-Moore algorithm also benefits from the

code generation approaches. However, the Preprocessed
and Generated versions are much closer together, and
when it comes to hyperthreading, both versions are ap-
proaching each other. Nevertheless, the main problem
with this algorithm is the higher number of branches
required to get the correct shift from the BCH table. In
the Preprocessed approach, this is just a memory lookup.
With more branches, more mispredictions happen to
cause a generic function to outperform specifically gen-
erated code.
Lastly, the Generated version of the Two-Way algo-

rithm is also slightly faster than its Naïve version. Due to
the less complexity of the preprocessing phase, the differ-
ence between both versions is small. Still, the Generated
version has higher throughput.

Analyzing the Hybrid-Search algorithm is a bit more
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Figure 8: Development of the multi-threaded performance
for the different pattern matching implementations for Q 20.

Table 1
Execution (20 threads) and compilation time ([s]) for Q 20.

Naïve Preprocessed Generated

comp. exec. comp. exec. comp. exec.

KMP 0.008 0.493 0.008 0.297 0.010 0.221
BM 0.008 0.740 0.008 0.366 0.010 0.346
TW 0.008 0.774 0.008 0.618 0.009 0.501
HS 0.008 0.325 0.008 0.196 0.010 0.178
SSE - - - - 0.009 0.189

involved, as it depends on both the pattern and input text
which specific part of the algorithm is executed. In the ex-
periment, the pattern falls within the length limit and the
input texts are on average also large enough. Therefore,
the Hybrid-Search algorithm predominantly executes
the search with the SSE instruction and rarely falls back
to the default algorithm. This method of utilizing SSE
instructions for pattern matching shows a significant per-
formance improvement, even with the Naïve approach.
By applying the Generated approach and eliminating the
overhead of the repeated function calls, the throughput
further increases. However, after using more than eight
threads, the throughput levels out because it approaches
the memory limit of the machine.

Table 1 presents the execution times of the different ap-
proaches for Query 20 using 20 threads. One can observe
that, with the Generated approach, the SSE Search algo-
rithm is slightly slower than the Hybrid-Search algorithm.
This can be attributed to the SSE Search algorithm’s need
for specialized handling of short patterns and input texts,
resulting in more complex code and slower execution.

4.2.4. Compilation Overhead

When dealing with code-generating database engines, it
is essential to consider the overhead of compilation. In
Table 1, we also show the compilation times for Query



20 using the LLVM backend of Umbra. The data reveals
that as we move from the Naïve to the Generated ap-
proach, the compilation times for the algorithms increase
marginally. Nevertheless, this increase is balanced out
by the reduction in execution time.
Moreover, it is worth mentioning that Umbra could

employ the Flying Start technique or the FireARM back-
end. This means that the compilation overhead could be
concealed by using a specific backend until the compiled
LLVM function becomes available [19, 29]. However,
in our experiments, we did not employ this option, as
during compilation, only 0.5% of the tuples could be pro-
cessed when running the Hybrid-Search algorithm fully
multi-threaded.

4.3. Long Pattern Microbenchmark
As the final part of the evaluation, we look at the effect
of long patterns. We classify a pattern which exceeds the
length of a single vector register (16 bytes) as a long pat-
tern. For our experiments, we use three patterns: pattern
A with 31 characters, pattern B with 160 characters, and
pattern C is a combination of three long patterns totaling
291 characters.

4.3.1. Size of start block

Figure 9 presents the results of varying the number of
characters in the start block, which is employed to locate
a potential pattern start. The top plots visualize the per-
formance using only one thread, while the bottom ones
show performance with 20 threads.
When executing with a single thread, the algorithm

achieves peak performance when three bytes of the pat-
tern are employed in the localization phase. This size al-
lows for sufficient shifting of the pattern to the right while
minimizing false positives. When utilizing 20 threads,
the performance remains largely unaffected by the size
of the start block. The limiting factor in this scenario
is the available memory bandwidth, which operates at
68GB/s and is utilized over 90%.

Moreover, the combination of longer patterns and the
early return implementation proves advantageous, lead-
ing to increased throughput with larger pattern sizes.

4.3.2. Algorithm overview

Finally, the comparison of different code generating al-
gorithms using 20 threads in terms of long patterns is
illustrated in Figure 10. For the SSE Search algorithms,
we have chosen the start size with the highest perfor-
mance. Since the fallback option for the Hybrid-Search
algorithm is the Two-Way algorithm for long patterns,
both algorithms show similar performance.

For all patterns, the SSE Search algorithm, which gen-
erates pattern specific code for the matching process,
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Figure 9: Experimental evaluation for the optimal start block
size of the SSE Search. We found using 3 to 5 bytes of the
pattern yields the highest performance. In case of mismatches,
this range allows shifts of 14 to 12 bytes, respectively.
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Figure 10: Performance of the code generating patternmatch-
ing algorithms for the long patterns using 20 threads.

outperforms the other algorithms. Furthermore, as pat-
terns become longer, the algorithms demonstrate im-
proved performance, as more input texts are too short
for the given pattern. The performance for the Boyer-
Moore algorithm is quite similar, except for the pattern
C which is composed of multiple long patterns. In this
case, the SSE Search algorithm clearly outperforms the
others. Despite the increasing length of the pattern, the
performance of the Knuth-Morris-Pratt algorithm only
increases marginally compared to the other algorithms.

5. Lessons Learned
Each matching algorithm combined with a code genera-
tion approach offers different performance benefits and
use cases but also challenges.

Knuth-Morris-Pratt is relatively straightforward to im-
plement in all three approaches. It can be enhanced by
adding blockwise optimization with just a few modifi-
cations. Our experiments demonstrated that the code-



generating approach significantly improved the perfor-
mance of the KMP algorithm. The blockwise version
of KMP is particularly effective when the first character
of the pattern has a low frequency of occurrence in the
input text. This allows efficient consumption of large por-
tions of the text. Applying the early return optimization
further enhances the performance. This optimization
discards longer patterns faster once they no longer fit
in the input text. Additionally, the KMP algorithm it-
erates over the input text from left to right. Thus, the
algorithm can also process texts with Unicode characters
based on their codepoints rather than only their bytewise
representation.

Boyer-Moore is also easy to realize in the Naïve and
Preprocessed approaches. The Generated approach re-
quires more bookkeeping during code generation for
correct SSA form. The experiments show that Generated
is superior, while Preprocessed is better in case of hyper-
threading. This algorithm is more effective when the last
pattern character has a lower distribution than the first
character. It also works better with longer patterns due
to early rejection once they exceed the input text.

Two-Way is complex to implement in both approaches. In
our experiments, Generated is slightly faster than Naïve,
due to its less costly preprocessing function. However,
the performance varies depending on pattern factoriza-
tion. The pattern of the experiment was not optimally
factorized, leading to a similar performance as for the
KMP algorithm. With a pattern better suited for factor-
ization, performance improves.

Hybrid-Search ’s complexity is relatively low when using
the Naïve approach, and it depends solely on the chosen
default algorithm. Implementing the SSE search compo-
nent is a simple task and completely decoupled from the
fallback algorithm. However, integrating the Generated
approach into Umbra and its backends requires more
effort. This is because we needed to introduce a new in-
ternal instruction for the SSE string comparison function
which then maps to the corresponding function for the
backend. Nevertheless, this algorithm shows the most
promise and consistently outperforms the other algo-
rithms in all three approaches. The Generated approach
is only limited by the memory speed of the machine.
Since the SSE part has a pattern length restriction, this
algorithm is particularly suitable for short patterns. For
longer patterns, it is necessary to carefully investigate
the selected default algorithm.

SSE Search introduces an innovative method for generat-
ing specialized code for long patterns by leveraging SSE
vector instructions. Incorporating this algorithm into a
code-generating database engine is straightforward. The
only challenge is adding the necessary SSE instructions
to the backends. Furthermore, this approach facilitates
the seamless implementation of various shift heuristics

and dynamic adjustment of the size of the start block.
The performance of the algorithm surpasses that of al-
ternative methods across all three versions, consistently
delivering superior results. Moreover, the performance
is mostly bound by the available memory bandwidth.

Ultimately, tuning the performance for the pattern-
matching algorithms in a code-generating database sys-
tem is still a trade-off. The Preprocessed approach is suf-
ficient to improve performance compared to the classic
Naïve approach while keeping the complexity of gen-
erated code low. However, generating pattern-specific
code for the matching process further improves over-
all query throughput at the cost of increased code com-
plexity. Utilizing specific SSE instructions for pattern
matching offers the dual advantage of enhancing perfor-
mance and reducing code complexity in certain aspects
of the matching algorithm. Based on our experimental
findings, it can be inferred that when the required SSE
instructions are not supported by the hardware, no single
matching algorithm exhibits consistently superior perfor-
mance across all patterns. However, if hardware support
is available, we can conclude that for short patterns the
Hybrid Search algorithm is superior, while for long pat-
terns, the new SSE Search algorithm is more effective.
Integrating both the Hybrid Search algorithms and the
SSE Search algorithm into a code-generating database
engine can be achieved seamlessly by designating the
SSE Search algorithm as the default fallback. Further-
more, employing algorithms that utilize SSE instructions
offers an additional advantage. The code required in the
database engine for these algorithms is relatively small
and straightforward to maintain and the generated code
is clear and well-structured, facilitating easy verification
and debugging processes.

6. Conclusion
This paper demonstrates the effectiveness of code gener-
ation for pattern-matching algorithms to evaluate LIKE
predicates. The performance increases by up to a fac-
tor of two compared to function calls and outperforms
state-of-the-art systems like Postgres, DuckDB, Hyper, or
ClickHouse on text-heavy datasets like ClickBench. The
results indicate that replacing generic function calls with
pattern-specific generated code significantly increases
the throughput. We have also demonstrated that using
SSE instructions to compare packed strings has a posi-
tive impact on overall performance, particularly when
incorporating them into the generated code. Addition-
ally, we have presented a generalized algorithm which
uses multiple SSE instructions to perform efficient pat-
tern matching for long patterns as a favorable alternative
to classic algorithms.
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