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Abstract
Data scientists are often eager to develop new operators for data science and machine learning applications, which can be
written as matrix multiplication-like nested loops. However, these matrix multiplication-like tasks are not supported in stan-
dard libraries and often struggle to achieve high performance. Deep learning compilers can optimize some of these operations,
but they require significant time to search for optimal configurations. To address these issues, we introduce operators in
relational algebra to extend matrix multiplications from a database point of view and develop a matrix multiplication-like
task library for GPU. Our library, Gamut, can recognize and generate optimized code for a variety of tasks, and we propose a
tile-based model to incorporate relational algebra operators. Through experiments, we demonstrate that Gamut achieves high
performance with low compilation overhead compared to both matrix multiplication libraries and deep learning compilers.
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1. Introduction
As memory capacity rises, more data analytical tasks are
entirely put into RAM in order to eliminate the bottle-
neck of disk I/O. With the utilization of High-Bandwidth
Memory (HBM) coupled with thousands of cores [1],
graphics processing units (GPUs) have increasingly been
used for data science tasks [2]. It can provide these tasks
with higher memory throughput and parallelism than the
CPU, which facilitates the development of data science,
especially machine and deep learning.
Matrix multiplication is one of the most basic build-

ing blocks in data science tasks [3]. Many tasks can be
represented as simple variants of standard matrix multi-
plication, which share a similar nested “for” loop struc-
ture. One typical example is convolution, which usually
is implemented as matrix multiplication using toeplitz
matrices [4]. Here are two additional examples of matrix
multiplication-like tasks (MMLTs).

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

for (k = 0; k < K; k++)
N[i, j] += S[i, k]*W[k, j] +

(S[i, k]*W[k, j] > thres[i]) * (S[i, k]*W[k, j] - thres[i]);

Figure 1: Example 1. A task that amplifies strong signals
and generates a weighted combination of signals in different
spectra.
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for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

for (k = 0; k < K; k++)
C[Pzip[i], Rzip[j]] += P[i, k] * R[k, j];

Figure 2: Example 2. A task that calculates people’s prefer-
ence for eating at different restaurants.

The first example (Figure 1) comes from Amulet [5, 6],
which is used to amplify strong signals in a machine
learning application. Suppose that 𝑆[𝑖, ∶] represents a
signal vector at location 𝑖 with 𝐾 features. Each feature
corresponds to an intensity at each spectrum. 𝑊[∶, 𝑗]
is a weight vector of observation 𝑗. Each observation is
a weighted combination of the signal strength of each
spectrum. And 𝑁[𝑖, 𝑗] is the score for each observation
𝑗 at location 𝑖. This query filters out signals of spectra
whose weighted intensity is less than the threshold at
location 𝑖, and doubles the stronger parts of the scores.
Consider another example (Figure 2) from the recom-

mendation system, which analyzes the willingness of
people to eat at a restaurant. 𝑃[𝑖, ∶] corresponds to a
weight vector of people 𝑖’s taste. Each feature 𝑘 can
represent people’s preference towards degree of spici-
ness, degree of saltiness, etc. 𝑅[∶, 𝑗] is a style vector of
restaurant 𝑗, which records the style of dishes this restau-
rant advocates. 𝑃𝑧𝑖𝑝 and 𝑅𝑧𝑖𝑝 are the zip code of peo-
ple’s addresses and restaurants’ addresses, respectively.
Therefore, 𝐶[𝑃𝑧𝑖𝑝[𝑖], 𝑅𝑧𝑖𝑝[𝑗]] shows that people living in
different areas prefer to eat which area’s restaurants.

Although these tasks can be written by similar nested
loops with standard matrix multiplications, they are not
as well-studied as standard matrix multiplications whose
efficient GPU algorithms have already been encapsulated
by libraries such as cuBLAS [7] and CUTLASS [8]. Tun-
ing these libraries manually is not flexible enough to fit
various MMLTs. This requires a good understanding
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of GPU architecture and the large code base of those
libraries.
On the other hand, compilers specifically for deep

learning have been developed, such as TVM [9]. New
operators can be passed to the compiler as nested loops,
and computation optimizations such as loop reordering
and tiling are applied to generate efficient GPU codes.
Compared with libraries, compilers are more flexible but
spend more time on compiling, from several minutes to
hours depending on the problem size. And for each size,
codes need to be regenerated. Although some works,
such as ROLLER [10], try to reduce compilation time,
they limit tasks to those that can be expressed as lambda
functions.
As a result, MMLTs face the trade-off between im-

plementation flexibility and compiling performance
[11]. Matrix multiplication libraries can compile once
and run multiple times but with limited extendability;
while deep learning compilers can compile more matrix
multiplication-like queries but with high compilation
time, and the compiled codes cannot be reused for queries
with different operand sizes. These issues obstruct the ap-
plication of matrix multiplication-like operations in the
machine learning community due to slow performance
and low scalability [5, 6].
In this paper, we propose Gamut1, a growing library

that can generate and optimize GPU codes for MMLTs.
We extend the range of MMLT studied in Amulet [5, 6]
by introducing operators from relational algebra [12], so
MMLTs are not limited to simply changing inner arith-
metic. We create a declarative syntax for programmers to
specify an MMLT. Our library then parses the inputs and
recognizes corresponding operators. To better integrate
these operators into current fast matrix multiplication al-
gorithms on GPU, we present a tile-based iterator model
which fuses operators into data loading and storing iter-
ators. After compilation into GPU machine code, meta
information and object files are stored into our library.
In this way, when similar queries, even with different
operand sizes, arrive, they are not compiled again but
are directly executed in order to amortize compilation
overhead.
We study a wide range of MMLT examples. Through

experiments, we show that our library performs simi-
larly to matrix multiplication libraries for standard ma-
trixmultiplication. Formatrixmultiplication-like queries,
Gamut achieves speedups compared to deep learning
compilers while reducing a large amount of compilation
time. Our compilation time is stable and manageable for
different problem sizes.
The remainder of the paper is structured as follows.

After providing background information in Section 2, we
define the matrix multiplication-like tasks in Section 3,
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including the introduction of relational algebra operators
that expand the scope of MMLTs. We then discuss the de-
sign of Gamut in Section 4 and evaluate its performance
in Section 5.

2. Background
In this section, we describe Amulet [5, 6], the prior work
of MMLT on CPU and TVM, a deep learning compiler.
We also present a brief summary of GPU architecture.

2.1. Amulet
Amulet [5, 6] is built on an open-source compiler that
can identify and optimize MMLTs. It applies an adaptive
strategy that finds the best configuration during execu-
tion. After recognition of MMLT, Amulet transforms
the three-level nested loop into a parameterizable tiled
loop. At runtime, a small subset of input data is used to
find the performant parameters, and then the remaining
computation continues with the found parameters.
Amulet achieves speedups compared to the state-of-

the-art compiler and decent performance compared to
libraries, but it still has some limitations. As discussed in
the previous section, Amulet only supports the MMLT
that changes the inner arithmetic of the nested loop.
In addition, although Amulet explores data parallelism
(SIMD, Single Instruction Multiple Data), it is not con-
cerned about task parallelism since CPUs have limited
cores. GPUs use Single Instruction Multiple Thread
(SIMT) models with thousands of cores, which have
higher flexibility than SIMD instructions [13, 14]. This
presents an opportunity for extending MMLTs to more
diverse queries.

2.2. TVM
TVM [9] is a deep learning compiler that enables graph-
and operator-level optimizations for a deep learning
model on a wide range of different hardware platforms.
Operators are translated into nestedmulti-level loops. Af-
ter translation, they use optimizations such as loop tiling,
cache read and write, etc., to rearrange the nested loops.
TVM also optimizes computation graphs via operator
fusion and data layout transformation techniques. The
combination of all these techniques introduces a large
search space. To search efficiently, hardwares are ab-
stracted into a cost-based model, and TVM uses machine
learning-based models such as XGBoost [15] to search
optimal configurations. Despite all these search methods,
TVM still needs a long time of tuning, ranging from days
to weeks, depending on the size of a DNN model [10].
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Figure 3: GPU Thread and Memory Architecture. (SM is the
abbreviation for Streaming Multiprocessor.)

2.3. GPU Architecture
GPUs provide the ability to run thousands of threads in
parallel by leveraging multi-core architecture and high-
bandwidth memory [13, 14]. The simplified architecture
is shown in Figure 3.
To organize a large number of threads, GPU uses

thread hierarchy. The smallest unit of execution is the
thread. Thirty-two threads are automatically grouped
into a warp by hardware. Threads within the same warp
execute the same instruction, known as SIMT (single
instruction multiple threads). Multiple warps are then
grouped into a thread block. The thread block is the ba-
sic scheduling unit and runs on a Streaming Processor.
Note that when the resources that a thread block requires
exceed the resources a streaming processor can provide,
it will fail to run. A program can launch multiple thread
blocks to compute.

Memory has a similar hierarchical structure to thread.
The largest but slowest one is global memory, which is
shared across all streaming processors. Programmers
can allocate and manage global memory. L2 cache is also
shared by all the thread blocks, but it is not programmable.
It is smaller but faster than global memory. L1 cache, also
called shared memory in the programming model, is local
to all the threads within one thread block. Threads of
one thread block cannot access others’ shared memory.
Different from the CPU’s L1 cache, shared memory is
explicitly manageable by programmers. The smallest but
fastest layer is the register file, which is local to each
thread.

3. Extension of Matrix
Multiplication

In this section, we try to define matrix multiplication-
like tasks and discuss how to apply relational alge-
bra to MMLTs. We will focus our discussion on two-
dimensional matrices. For higher-dimensional matrix

multiplication, the problem can be decomposed into mul-
tiple two-dimensional matrix multiplications, each of
which can be launched as a CUDA stream or processed
by separate GPUs.

3.1. Generalizing Matrix Multiplication

for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)

for (int k = 0; k < K; k++)
C[i, j] += A[i, k] * B[k, j];

SELECT
A.ind AS i, B.ind AS j,
dot(A.a, B.b) AS C[i,j]

FROM A, B

(a) (b) (c)

Figure 4: Three representations of standard matrix multipli-
cation. (a) Mathematical Representation. (b) Nested Loop
Representation. (c) SQL Representation.

The simplest form of matrix multiplication-like tasks
involves all the three nested “for” loops, but this broad
structure is too general to be optimized effectively. To
address this, more specific characteristics are identified
and utilized to generalize matrix multiplication.
First, three axes, typically denoted by 𝑖, 𝑗, and 𝑘, are

independent. For instance, the starting point of the 𝑗 axis
is not related to the current state of the 𝑖 axis. These axes
can be categorized into two types: two spatial axes (𝑖 and
𝑗) and one reduction axis (𝑘). The spatial axes correspond
to the rows and columns of the resulting matrix. The
reduction axis refers to the dimension that is collapsed
during the calculation. In standard matrix multiplication,
the reduction axis is typically the column of the first
matrix and the row of the second matrix. By classifying
the axes in this manner, we can categorize the input and
output matrices of MMLTs into four types based on their
indexing in the inner operator.

1. Two spatial axes. It is indexed by 𝑖, 𝑗 or 𝑗, 𝑖. And
this is the only type of output matrix since the re-
duction axis is always collapsed after calculation.

2. One spatial axis with one reduction axis. It is in-
dexed by 𝑖, 𝑘 or 𝑘, 𝑗 and vice versa. The input
matrices of standard matrix multiplication can be
classified into this type.

3. Only one spatial axis. It is indexed by 𝑖 or 𝑗. The
input matrix is actually a vector.

4. Only one reduction axis. It is indexed by 𝑘.

While standard matrix multiplication uses the “+=” op-
erator in the inner operation to accumulate the elements
along the reduction axis into a single scalar value, MMLTs
are not limited to this method. The accumulation opera-
tion could take on various forms, such as “*=”, maximum,
average, and so on.



Nested Loop SQL

SELECT
A.ind AS i, B.ind AS j,
dot(A.a, B.b) AS c,
proj(c) AS R[i,j]

FROM A, B

SELECT
A.ind AS i, B.ind AS j,
dot(A.a, B.b) AS C[i,j]

FROM A, B
WHERE C[i,j] > 10

for i in range(M):

for j in range(N):
for k in range(K):

c += A[i, k] * B[k, j]
R[i, j] = proj(c)

for i in range(M):

for j in range(N):
for k in range(K):

c += A[i, k] * B[k, j]
if c > 10: C_sparse.put(c)

SELECT
SUM(dot(A.a, B.b)) AS C[A.ai, B.bi]

FROM A, B
GROUP BY A.ai, B.bi

for i in range(M):

for j in range(N):
for k in range(K):

C[A[i].ai, B[j].bi]
+= A[i, k] * B[k, j]

SELECT
A.ind AS i, B.ind AS j,
dot(A.a, B.b) AS C[i,j]

FROM A, B
WHERE A.ai = B.bi

for i in range(M):

for j in range(N):
if A[i].ai != B[j].bi: continue

for k in range(K):
C[i, j] += A[i, k] * B[k, j]

Project

Select

Aggregate

Join

Figure 5: Conversion between relational algebra operators
and nested loops.

3.2. Applying Relational Algebra
The form of MMLT described in the previous section only
focuses on changing the inner operator, which is limited.
To achieve further generality, we can view MMLT from
a database perspective.

Considering a matrix 𝐴 of size𝑀 ×𝐾, we can treat it as
a database table with 𝑀 records and 𝐾 attributes. In the
case of standard matrix multiplication, where 𝐶 = 𝐴𝐵⊤
and 𝐵 has size 𝑁 ×𝐾, we can interpret this as each row of
the 𝐴 table being dot producted with each row of the 𝐵
table, which is equivalent to taking the Cartesian product
of the two relations 𝐴 and 𝐵.
Assuming that each table includes an 𝑖𝑛𝑑 column in-

dicating the index of each row, 𝐴.𝑖𝑛𝑑 corresponds to 𝑖-th
row in matrix 𝐴 and 𝐵.𝑖𝑛𝑑 corresponds to 𝑗-th column in
matrix 𝐵⊤. Additionally, let 𝐴.𝑎 represent a row vector
composed of𝐴.𝑐𝑜𝑙𝑢𝑚𝑛1, 𝐴.𝑐𝑜𝑙𝑢𝑚𝑛2, ⋯, 𝐴.𝑐𝑜𝑙𝑢𝑚𝑛𝑛, and 𝐵.𝑏
is similar. Other columns in the table can represent addi-
tional information, which will be discussed later. As a re-
sult, matrix multiplication can be expressed as a straight-
forward SQL query, as shown in Figure 4. With this
query as a starting point, we can explore the possibility
of incorporating additional relational algebra operators.
Next, we will review the frequently used relational alge-
bra operators and discuss how to convert them back into
nested loops, shown in Figure 5.
The Project operator corresponds to the inner prod-

uct between two row vectors, and can also denote the
operation applied to the resulting scalar output. In ML
applications, it can be used to integrate element-wise
functions such as activation layers. The Select oper-
ator determines whether the resulting scalar output is
relevant. Typically, the predicate is selective, so the out-
put is often a sparse matrix. In ML, it can function as
a filter to eliminate undesired results. The Aggregate
operator groups together output elements that share the

same spatial information, for instance, max pooling in
ML. To accomplish this, two additional indexing matri-
ces are required for each spatial axis, which indicate the
spatial information (e.g., column 𝐴.𝑎𝑖 and column 𝐵.𝑏𝑖).
The Join operator filters out computations where the
operands do not satisfy the predicate, thus performing
a check before reduction takes place. It can be used to
cluster data in the same group or classification.

We can also incorporate duplicate elimination by utiliz-
ing a hash table as an output data structure. For ordering
a limited number of output records, we can employ a
heap data structure.

4. Gamut Design
In this section, we discuss how we generate code for
MMLT and the design of our library.

4.1. Fast Matrix Multiplication on GPU

(a) Loading

gmem→smem smem→reg

reg→smem smem→gmem

(b) Storing
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Figure 6: Fast Matrix Multiplication Algorithm on GPU.

We first provide a brief overview of CUTLASS’s fast
matrix multiplication algorithm on GPU. The whole pro-
cess is shown in Figure 6

Assume that 𝐶 = 𝐴𝐵 has a problem size of 𝑀 × 𝑁 × 𝐾,
where 𝐴 is an 𝑀 × 𝐾 matrix, 𝐵 is a 𝐾 × 𝑁 matrix, and 𝐶
is an 𝑀 × 𝑁 matrix. The reduction computation of each
element of 𝐶 is independent, allowing for the distribution
of computation to separate threads. To maintain good
locality, each thread typically computes a block of ele-
ments in 𝐶 of size𝑀𝑇 ×𝑁𝑇. As a result, a thread must load



a 𝑀𝑇 × 𝐾 submatrix from 𝐴 and a 𝐾 × 𝑁𝑇 submatrix from
𝐵. However, due to the limited size of registers within
a thread, it may not be possible to hold these matrices,
particularly if 𝐾 is large. Therefore, each thread loads
only a slice of the matrices at a time, which is a 𝑀𝑇 × 1
vector from 𝐴 and a 1 × 𝑁𝑇 vector from 𝐵.

Using the thread hierarchy of the GPU, the algorithm
groups adjacent threads into thread blocks, assuming
a block matrix size of 𝑀𝐵 × 𝑁𝐵. Consequently, there
are 𝑀𝐵

𝑀𝑇
× 𝑁𝐵

𝑁𝑇
threads within each thread block. To take

advantage of the GPU’s memory hierarchy, the algorithm
typically fetches data in a step-by-step manner. Initially,
one thread block fetches a 𝑀𝐵 × 𝐾𝐵 submatrix from 𝐴
and a 𝐾𝐵 ×𝑀𝐵 submatrix from 𝐵 into the shared memory.
Subsequently, each thread retrieves its own vectors to
registers and performs the computations.
After the computations are complete, storing the re-

sults is also performed in a step-by-step manner. Since
each thread has an 𝑀𝑇 × 𝑁𝑇 sized register, each thread
block produces a 𝑀𝐵 × 𝑁𝐵 sized result, which typically
exceeds the size of shared memory. Therefore, only a
1×𝑁𝑇 sized slice of the resulting matrix from each thread
is output from the register to the shared memory at a
time. Similarly, a 𝑀𝐵

𝑀𝑇
× 𝑁𝑇 sized matrix is output from

the shared memory to the global memory. The entire
process consists of 𝑀𝑇 iterations.

4.2. MMLT Code Construction

Algorithm 1Main Loop Pseudo-Code
1: for 𝑘𝑘 ∶= 1 to 𝑁 step 𝐾𝐵 do
2: Load tiles to shared memory.
3: TileModelIn(block)
4: for 𝑘 ∶= 1 to 𝐾𝐵 step 1 do
5: Load slices to register.
6: InnerOp(slices)
7: end for
8: for 𝑖 ∶= 1 to 𝑀𝑇 step 1 do
9: Store one row to shared memory.
10: TileModelOut(block)
11: Store one block to global memory.
12: end for
13: end for

To better adapt the standard fast algorithm to MMLTs,
the algorithm is divided into four components: loading
iterators, inner computation, a storing iterator, and a
skeleton main loop.
The pseudo-code for the main loop is shown in Algo-

rithm 1, which remains unchanged during code genera-
tion. The loading iterator for each input loads a tile of
data hierarchically from the global memory to the regis-
ters. The inner computation of one thread computes via

small data slices, and the results are accumulated repeat-
edly until the final result is computed and then output
hierarchically by the storing iterator.

Due to the hierarchical structure of GPU memory, the
iterator consists of two components: thread block-level
data transfer between global memory and shared mem-
ory, and thread-level data transfer between shared mem-
ory and register. Since the data is categorized into four
types in Section 3.1, we can design an iterator for each
type.

1. One spatial axis with one reduction axis. This type
can reuse the method that the standard matrix
multiplication algorithm uses to load its data. As-
suming the size of the spatial axis is 𝑃, and the
size of the reduction axis is 𝐾, the iterator of one
thread block loads a 𝑃𝐵 × 𝐾𝐵 tile from the global
memory to the shared memory. The iterator of
one thread loads a 𝑃𝑇 × 1 slice from the shared
memory to the register.

2. Only one reduction axis. Instead of loading a 𝐾𝐵
sized vector into the shared memory and then
loading one element into the register, we can di-
rectly load a 𝐾𝐵 sized vector into the register ev-
ery iteration since 𝐾𝐵 is not large.

3. Spatial axis only. Since this type of data is irrele-
vant to the reduction axis, only a single loading
operation is required for all the iterations. We can
directly load a 𝑃𝐵 sized vector into the register
once from the global memory in the first iteration.
In the following iterations, we can read directly
from the register.

The inner computation then computes a block whose
problem size is 𝑀𝑇 × 𝑁𝑇 × 1. It can directly read from
the registers and output to a resulting register sized
𝑀𝑇 × 𝑁𝑇. The initialization of the resulting register may
differ based on the accumulation operator. For instance,
summation initializes the register to all zeros, while the
maximum may initialize the register to the minimum
number of data precision.

4.3. Tile-based Iterator Model
One simple approach for applying relational algebra op-
erators like Project, Select, and Aggregate involves
storing the intermediate results back into global memory
before launching another kernel to process them. How-
ever, given the opportunity presented by threads within
a thread block cooperating to store a tile of data from
shared memory to global memory, it is possible to per-
form data transformations within the iterator. To this
end, we propose a tile-based iterator model that inte-
grates these operators with the data loading and storing
process.



Table 1
Pesudo Code of each Tile-based Iterator Category

Category Pseudo Code

Direct Mapping
1: Load 𝑖𝑛𝑑𝑟𝑜𝑤, 𝑖𝑛𝑑𝑐𝑜𝑙 before storing.
2: For Element (𝑖, 𝑗), atomicOp(𝑜𝑢𝑡𝑝𝑢𝑡[𝑖𝑛𝑑𝑟𝑜𝑤[𝑖], 𝑖𝑛𝑑𝑐𝑜𝑙[𝑗]], 𝑣𝑎𝑙𝑢𝑒)

Linear Mapping

1: Store #output for thread 𝑖 in 𝑙𝑐𝑜𝑢𝑛𝑡𝑒𝑟[𝑖].
2: for 𝑖 ∶= 2 to 𝑁𝑡ℎ𝑟𝑒𝑎𝑑 do ▷ Compute prefix-sum.
3: 𝑙𝑐𝑜𝑢𝑛𝑡𝑒𝑟[𝑖] = 𝑙𝑐𝑜𝑢𝑛𝑡𝑒𝑟[𝑖] + 𝑙𝑐𝑜𝑢𝑛𝑡𝑒𝑟[𝑖 − 1]
4: end for
5: 𝑐𝑢𝑟𝐼 𝑛𝑑 ← atomicAdd(𝑔𝑐𝑜𝑢𝑛𝑡𝑒𝑟 , 𝑙𝑐𝑜𝑢𝑛𝑡𝑒𝑟[𝑁𝑡ℎ𝑟𝑒𝑎𝑑]) ▷ atomicAdd returns value before

adding.
6: For 𝑖-th thread, storing process starts from 𝑐𝑢𝑟𝐼 𝑛𝑑 + 𝑙𝑐𝑜𝑢𝑛𝑡𝑒𝑟[𝑖].

Nonlinear Mapping

1: procedure reg → smem
2: localLock.acquire()
3: Store data to 𝑙𝑜𝑐𝑎𝑙.
4: localLock.release()
5: end procedure
6: procedure smem → gmem
7: if threadId == 0 then
8: globalLock.acquire()
9: Store data to 𝑔𝑙𝑜𝑏𝑎𝑙.
10: globalLock.release()
11: end if
12: synchronize()
13: end procedure

After obtaining the intermediate results, we identify
two types of mappings: one-to-one mapping and many-
to-one mapping. One-to-one mapping, like Project, can
be directly computed in-register after reduction. Our
tile-based iterator model, on the other hand, is designed
to address the many-to-one mapping.

Tile-based iterators are categorized based on how they
index into the output, with the pseudo-code available in
Table 1. The first category is direct mapping, as seen in
Aggregate, where the output position of each element
is already known before computation. To facilitate this,
two slices of indexing information, one for each spatial
axis, each sized 𝑃𝐵, are loaded into shared memory be-
fore output. During output, we can use the information
in shared memory to index, and because multiple ele-
ments are accumulated into one output position, atomic
primitives provided by CUDA can be directly used.
The two remaining cases of the tile-based iterator

model do not have knowledge of the output position
prior to computation. In one of these cases, where the
data is output to a linear data structure, such as Select,
a global counter is used to indicate the next output posi-
tion. The number of outputs for each thread is computed
and stored in a local counter array in shared memory.
Then, a single thread computes the prefix sum [16] and
reserves a block for the thread block in global memory
by incrementing the global counter using “atomicAdd”.
Each thread can then determine its output position by
adding the prefix sum of the corresponding thread to the
start pointer of the reserved block.

For the last case, where the data structure is nonlinear,
like a heap or hash map, a hierarchical structure is used.
This involves storing a local data structure for each thread
block in shared memory, and a global data structure in
global memory, along with a local lock in shared memory
and a global lock in global memory. Each thread first
acquires the local lock of its thread block, outputs its data
to shared memory, and then one thread in the thread
block acquires the global lock and merges the data in the
local data structure into the global data structure.

We concentrate on natural join for the Join operator.
Instead of using a hash map in hash join algorithms [17,
18], a set of CUDA streams is created, with each stream
focusing on one key. The whole computation is divided
into multiple small blocked MMLTs. For one blocked
MMLT, we initially retrieve the indices of input matrices
that match the key for which this stream is responsible.
Thus, we can select data from global memory based on
the computed indices instead of creating an additional
copy for each blocked MMLT.

4.4. Growing Library
We use a declarative syntax similar to AMULET [5, 6], as
illustrated in Figure 7, but with the added requirement
for users to specify both the spatial and reduction axes
explicitly. The range of 𝑣𝑎𝑟𝑛 in the syntax denotes [𝑠𝑛, 𝑒𝑛).
The loop in Figure 2 is rewritten in declarative form in
Figure 8.

Gamut generates code from the declarative syntax by



where (var1 in [s1, e1], var2 in [s2, e2]) when (/* Join Condition */) {
accum = /* Initialization */;
reduce (var3 in [s3, e3]) {
/* Inner Computation */

}
/* Output Operator */

}

Figure 7: Declarative Syntax of Gamut Query.

where (i in [0, M], j in [0, N]) {
accum = 0;
reduce (k in [0, K]) {
accum += P[i, k] * R[k, j];

}
C[Pzip[i], Rzip[j]] += accum;

}

Figure 8: Declarative Syntax of Example 2.

first parsing the inner computation and selecting iter-
ators based on the indexing type. Checks are also per-
formed during parsing to ensure the query conforms to
the MMLT definition. These checks ensure that there are
only three axes and that two spatial axes are associated
with the output matrix. Additionally, input matrices are
identified as different types, and each input matrix is
assigned an input iterator based on its recognized type.
Then, the library recognizes the relational algebra opera-
tor pattern and selects the appropriate algorithm for that
operator, which is fused into the output iterators.
The code generated by Gamut is parameterized by a

set of parameters described in Section 4.1, which is 𝑀𝐵,
𝑁𝐵, 𝑀𝑇, 𝑁𝑇, and 𝐾𝐵. However, not all combinations can
be run on a GPU due to limitations on the number of
registers, shared memory size, and the number of threads
inside one thread block. To reduce the search space,
we use a heuristic from CUTLASS that favors square-
shaped thread tiles by fixing 𝑀𝐵 ∶ 𝑁𝐵 = 1 ∶ 1 and
𝑀𝑇 ∶ 𝑁𝑇 = 1 ∶ 1. Through experiments, we found that
the problem size has little effect on the best configura-
tion when launched thread blocks exceed the number of
multiprocessors in GPU. The thread block under the best
configuration tends to be close to the largest runnable
setting. This is because larger thread blocks result in
fewer launched thread blocks and fewer thread blocks
running on each multiprocessor, which in turn reduces
the overhead of context switching and minimizes cache
thrashing while maximizing the throughput. Therefore,
we use the scale-up-before-scale-out principle to avoid
blind searching.

Upon installation of the library, Gamut finds the best
parameters for standard matrix multiplication and saves
them as starting parameters taking into account the
resource differences among various GPUs. For a new
MMLT query, the library searches for the best configura-
tion starting from the saved parameters. If the starting

parameters cannot fully occupy a streaming processor
of GPU, Gamut scales up by increasing the size of tiles.
Otherwise, for applications that have more data in each
thread block, Gamut decreases the tile footprint until
the setting becomes runnable. The occupation can be
calculated using the compilation information provided
by the compiler and hardware specialization [19]. If there
are multiple optional configurations, Gamut launches
one thread block for each configuration and selects the
configuration with the best performance.
GPU code compilation takes a large amount of time

compared to computation, even if the parameters are
fixed. For example, a standard matrix multiplication with
a problem size of 4096 × 4096 × 4096 takes 5 seconds for
compilation and only 80 milliseconds for computation.
To amortize the compilation time, the parsing and pa-
rameter information, along with a hashing summary of
the parse tree, are stored with the compiled object file
into storage. This information is used to compare parse
trees when encountering similar queries, and if a dupli-
cate query is encountered, the compiled object is linked
directly, thus saving compilation time.

5. Evaluation
The core of Gamut is implemented in CUDA C++, and
it utilizes a custom parser built by ANTLR [20] and a
search algorithm implemented by CuPy [21].

All experiments2 are conducted on an Nvidia T4 GPU
with an Intel Haswell CPU running Ubuntu 22.04 and
CUDA 11.7. It is assumed that the GPU memory is suf-
ficient to accommodate all data. Each experiment is re-
peated 10 times, and the average execution time is re-
ported.

The same performancemeasurement as Amulet, which
is Scaled Processing Rate (SPR), is used [5, 6]. For a
problem size of𝑀×𝑁 ×𝐾 and execution time 𝑇 in seconds,
SPR is calculated as 𝑀𝑁𝐾

109𝑇 . Higher SPR indicates better
performance.

5.1. Standard Matrix Multiplication
Performance

To begin with, we demonstrate that our library per-
forms comparably to state-of-the-art matrix multipli-
cation libraries in standard matrix multiplication tasks.
We conducted experiments with square matrices (i.e.,
𝑀 = 𝐾 = 𝑁) of orders 1024, 2048, 4096, 8192, 16384, and
32768, referred to as 1k, 2k, 4k, 8k, 16k, and 32k, respec-
tively. Three baseline libraries were used in the experi-
ments: cuBLAS, which is the most widely used library
for linear algebra on GPUs; CUTLASS, an open-source

2Codes are available at https://github.com/xxcisxxc/GAMUT-release
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Figure 9: Standard Matrix Multiplication Performance
(Higher is Better).

matrix multiplication library on GPUs with similar per-
formance to cuBLAS; and TVM, a deep learning compiler.
We test two different settings for TVM: one where we
allow TVM to search from scratch with a fixed number
of searches, and another where we provide TVM with
CUTLASS’s default configuration to make an apple-to-
apple comparison with our library. As Gamut focuses on
optimizing the standard cubic matrix multiplication al-
gorithm on GPUs, we do not compare it with algorithms
such as the Strassen algorithm.

The performance comparison between our library and
three other baselines, cuBLAS, CUTLASS, and TVM, is
shown in Figure 9. The results reveal that cuBLAS and
CUTLASS perform slightly better than our library due to
their optimization techniques, such as avoiding memory
bank conflict and software pipelining. These techniques,
however, require a specific data layout and a larger shared
memory footprint, resulting in reduced flexibility. TVM
has reasonable performance when the configuration is
given. For TVM without configuration, its compilation
time increases with the problem size, shown by Table
2. As a result, our library is able to achieve high perfor-
mance while keeping the compilation time constant and
significantly less compared to TVM.

5.2. Performance on General Queries
To investigate the performance of other MMLT queries,
we examined a set of queries presented in Figure 10.
Queries 1 and 2 are examples from the introduction.
Query 3 calculates the number of people-restaurant pairs
within two areas where the mutual preference exceeds
a threshold. It utilizes the Project and Aggregate op-
erators. Query 4 only considers people and restaurants
in the same area and involves a Join operation. Query
5 outputs individual people-restaurant pairs whose mu-
tual preference is above a threshold. We assume that the
threshold is selective, meaning only a few pairs qualify,
resulting in a sparse matrix. Query 6 is similar to query

Query 1
where (i in [0, M], j in [0, N]) {

accum = 0;
reduce (k in [0, K]) {

accum += S[i, k]*W[k, j] +
(S[i, k]*W[k, j] > thres[i]) * (S[i, k]*W[k, j] - thres[i]);

}
N[i, j] = accum;

}

Query 2
where (i in [0, M], j in [0, N]) {

accum = 0;
reduce (k in [0, K]) {

accum += P[i, k] * R[k, j];
}
C[Pzip[i], Rzip[j]] += accum;

}

Query 3
where (i in [0, M], j in [0, N]) {

accum = 0;
reduce (k in [0, K]) {

accum += P[i, k] * R[k, j];
}
C[Pzip[i], Rzip[j]] += accum > val;

}

Query 4
where (i in [0, M], j in [0, N]) when (Pzip[i] == Rzip[j]) {

accum = 0;
reduce (k in [0, K]) {

accum += P[i, k] * R[k, j];
}
C[Pzip[i], Rzip[j]] += accum;

}

Query 5
where (i in [0, M], j in [0, N]) {

accum = 0;
reduce (k in [0, K]) {

accum += P[i, k] * R[k, j];
}
accum > thres ? C_sparse.add(accum);

}

Query 6
where (i in [0, M], j in [0, N]) {

accum = 0;
reduce (k in [0, K]) {

accum += max(R[i, k], R[k, j]) * max(R[i, k], R[k, j]);
}
accum > thres ? C_sparse.add(accum);

}

Query 7
where (i in [0, M], j in [0, N]) {

accum = 0;
reduce (k in [0, K]) {

accum += P[i, k] * R[k, j];
}
min_heap_128 .add(accum);

}

Figure 10: Studied Queries.

5, but with a different arithmetic, seeking restaurants
with complementary styles, where the style vector is
normalized. Therefore, two style vectors can be com-
bined through the maximum of each feature, and the dot
product of the combined vector will have a high absolute
value if the two vectors are complementary. Finally, the
last query returns the top 128 mutual preferences, so the
heap size is 128.
Different from Amulet [5, 6], Compilation of MMLTs

on GPUs is more involved than CPUs because perfor-
mance requires the efficient use of parallel resources.
Tools such as TVM provide infrastructure to help pro-



Table 2
Compilation Time of TVM without configuration.

1k 2k 4k 8k 16k 32k
TVM w/o-standard 2m 21.4s 4m 34.9s 15m 6.7s 33m 41.8s 47m 40.7s 51m 32.8s
TVM w/o-query 1 2m 29.6s 5m 4.8s 15m 49.9s 42m 26.4s 48m 33.8s 51m 16.7s

Table 3
Compilation Time of standard matrix multiplication for cuBLAS, CUTLASS, and Gamut

Gamut cuBLAS CUTLASS
First compilation 3.321s 1.661s 4.933s
Object file exists 0.132s 0.153s 0.157s

Table 4
Compilation time of studied queries for Gamut

query 1 query 2 query 3 query 4 query 5 query 6 query 7
First compilation 3.629s 3.413s 3.410s 3.318s 5.425s 5.483s 6.269s
Object file exists 0.141s 0.144s 0.139s 0.138s 0.144s 0.149s 0.192s
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Figure 11: Matrix Multiplication-like Tasks Performance (Higher is better)

grammers avoid low-level parallel programming. How-
ever, due to the limitations of TVM, we were only able to
compare Gamut with TVM on Query 1. This is because
TVM does not provide access to atomic or lock primitives,
as confirmed by the TVM community [22], preventing
the compilation of the other queries.
The results of all these queries are shown in Figure

11. It shows that TVM without default configuration
has much lower performance. This may be because TVM
does not optimize the loading of the extra threshold input.
Query 1 is approximately 3 times slower than stan-

dard matrix multiplications, even though it only mod-
ifies the inner loop computation. This is most likely
because the modified computation does not fit the nor-
mal matrix-multiply-add structure that is optimized by
specialized hardware in the GPU, leading to lower instruc-
tion throughput. Query 4 has a different performance
pattern compared to the other queries because it is bro-
ken down into multiple smaller matrix multiplications,
resulting in less computation than full multiplications.
Therefore, it has a much higher SPR and is slower to con-
verge. In the case of Query 7, it exhibits low performance



for small problem sizes due to lock contention. How-
ever, when the problem size increases, not all the thread
blocks can be launched simultaneously, and contention
overhead can be hidden by pipelining the computation
with merging the local heap to the global one.

In comparison to Amulet [5, 6], which is based on
single-threaded CPU execution, Gamut demonstrates
significant improvements, being approximately 50 times
faster for standard matrix multiplication and 75 times
faster for Query 1. This suggests that GPUs, with their
multiple threads and SIMT execution capabilities, show
greater potential for parallelism and flexibility in per-
forming a wide range of operators.

6. Conclusion
We propose Gamut, a GPU library for optimizing matrix
multiplication-like tasks that parses a custom declarative
syntax and generates optimized GPU codes for MMLT.
It extends MMLT by introducing relational algebra op-
erators and fuses them into MMLTs using a tile-based
iterator model. Our experiments show that Gamut can
optimize a wide range of MMLTs and performs similarly
to state-of-the-art matrix multiplication libraries, while
having faster compilation time and better performance
than deep learning compilers. Moreover, it is more flexi-
ble and can recognize a larger scope of MMLTs than deep
learning compilers, making it a potentially valuable tool
for theML community in developing new operators while
achieving high performance with minimal effort. For fu-
ture work, we plan to broaden the scope of MMLTs and
enhance optimization for high-dimensional matrix oper-
ations, as well as explore the possibility of incorporating
our library into existing deep learning frameworks. Fur-
thermore, we will intend to our library to support various
environments, such as embedded GPUs and distributed
GPU clusters.
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