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Abstract
Query optimization is a pivotal part of every database management system (DBMS) since it determines the efficiency of
query execution. Numerous works have introduced Machine Learning (ML) techniques to this field, but few of them are
proven practical due to long training time, lack of interpretability, and integration cost. A recent study provides a practical
method to optimize queries by recommending per-query hints but it suffers from two inherited problems. First, it follows the
regression framework to predict the absolute latency of each query plan, which is very challenging because the latencies of
query plans for a certain query may span multiple orders of magnitude. Second, it requires training a model for each dataset,
which restricts the application of the trained models in practice.

In this paper, we proposeCOOOL to predict the Cost Orders of query plans to cOOperate with DBMS by Learning-To-Rank.
Instead of estimating absolute costs, COOOL uses ranking-based approaches to compute relative ranking scores of query
plans. We show that COOOL is theoretically valid to distinguish between good and bad query plans. We implement COOOL
on PostgreSQL. Extensive experiments on join-order-benchmark and TPC-H data demonstrate that COOOL outperforms
PostgreSQL and state-of-the-art methods on both single-dataset tasks and multiple-dataset tasks. Our experiments also shed
some light on why COOOL outperforms regression approaches from the representation learning perspective, which may
guide future research.
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1. Introduction
Query optimization is vital to the performance of every
database management system (DBMS). A SQL query typ-
ically has many candidate plans that are equivalent in
terms of final output but differ a lot in execution latency.
The goal of query optimization is to select the candidate
plan with the lowest latency for each query from a vast
search space with sufficient accuracy.

Query optimization has been studied for decades [1]
and is still an active research field [2]. Various ML-based
research lines have been proposed: cost modeling, car-
dinality estimation, end-to-end query optimization, etc.,
among which the most practical approach is Bao [3]. Bao
is a query optimization system leveraging tree convolu-
tional neural networks (TCNN) [4] and Thompson sam-
pling [5] to recommend SQL hints. These hints offer ad-
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ditional information for the underlying optimizer to gen-
erate plans, thereby improving query performance. Bao
has made a remarkable improvement in the practicality
of end-to-end query optimization, but it suffers from two
problems inherited from previous models [6, 7, 8, 9, 10].
(1) The regression paradigmmay limit the potential
of models for query plan selection. Bao follows the
regression paradigm where the model must predict the
exact cost of each plan in order to select the plan with
the minimum cost. While accurately estimating the cost
is sometimes desirable, it is very challenging for existing
models [11, 12, 13]. Moreover, the model may sacrifice
the accuracy of fast query plans for the accuracy of slow
query plans, which leads to a suboptimal query plan se-
lection. (2) Limited generalizability. Bao respectively
trains a model for each dataset and evaluates the model
on the corresponding dataset. The datasets vary among
DBMS instances and it is exceedingly costly to train and
maintain individual models for every dataset. The gen-
eralizability of the model is desirable in real-world sce-
narios, therefore, it is expected to train a single model to
improve query plans from multiple datasets.

To address these issues, we propose COOOL to esti-
mate the Cost Orders of query plans to cOOperate with
DBMS leveraging Learning-To-Rank (LTR) techniques.
COOOL is designed on top of an existing DBMS, and we
make similar assumptions as Bao in order to inherit its
advantages for practical applicability: we assume that a
finite set of hint sets are predefined and all hint sets result
in semantically equivalent query plans. We leverage the
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widely used TCNN [4, 3, 14] as the underlying model.
LTR is a supervised learning framework to train mod-

els for ranking tasks. There are primarily three categories
of LTR approaches: pointwise, pairwise, and listwise.
Most pointwise methods are the same as the regression
paradigm. Pairwise methods concern the relative order
between two items, and listwise methods focus on the
order of items in the entire list. The three approaches
can be applied to most existing models, e.g., neural net-
works, and the only difference lies in the loss function.
To train an LTR model for query optimization, we use the
orders of latencies as labels, which has the potential to
be more robust than regression models against the large
range of orders of magnitude in query plan latencies.
By transforming the absolute cost estimation problem
into relative cost order prediction, COOOL can utilize
LTR techniques to train the TCNN so that the output
tells which plan is the best. In this paper, we investigate
the performance of pairwise (COOOL-pair) and listwise
(COOOL-list) approaches on SQL hints recommendation
for query optimization.
COOOL methods (LTR approaches) have advantages

over BAO (regression approach) for the following rea-
sons. (1) Accurately estimating the cost of every query
plan is not necessary since the optimizer only needs to
select one of them to execute. A higher accuracy for
a regression-based model does not always lead to the
optimal plan selection because improving the accuracy
on the slow query plans does not directly help. On the
contrary, predicting the cost orders of query plans with
high accuracy is more likely to help find the optimal
one, which is exactly the objective of LTR. (2) Predict-
ing the exact cost of a plan is extremely difficult. The
plan execution latency ranges from several milliseconds
to thousands of seconds. Minor structure differences in
semantically equivalent plans may lead to large latency
differences. The regression paradigm aims to minimize
𝐿2 error, but the squared error formula is sensitive to
anomalous large or small latencies, making model per-
formance unstable [14]. Even though normalization can
alleviate this, it may distort the latency distribution. By
contrast, LTR approaches focus on the cost orders rather
than the exact costs, which can alleviate the impact of
outlier-prone data distributions.

We compare COOOL and BAO on both single-dataset
tasks and multiple-dataset tasks and provide elaborate
analysis on how to maintain a unified model to improve
query plans from multiple datasets. Our experiments
show that COOOL can consistently improve query plans
in various settings, achieving as large as 6.09× total query
execution speedup over PostgreSQL on single-dataset
tasks and 6.73× speedup on multiple-dataset tasks. More-
over, we investigate the regression framework and rank-
ing strategies from the perspective of representation
learning [15]. We show that the model trained by the re-

gression approach has a dimensional collapse [16] in the
plan embedding space. Whereas COOOL does not have a
dimensional collapse using the same embedding method.
The dimensional collapse will hurt the performance of
ML methods in building a unified model because the col-
lapsed dimensions may be different for different datasets.
This can result in features learned from one dataset be-
coming noise when applied to another dataset. Further-
more, Bao requires more effort to implement because it is
fully integrated into PostgreSQL, while COOOL is built
on top of PostgreSQL.

To summarize, we make the following contributions:

• We propose COOOL, a learned model that pre-
dictsCostOrders of the query plans to cOOperate
with DBMS by LTR techniques, to recommend
better SQL hints for query optimization. To our
best knowledge, it is the first end-to-end query op-
timization method that maintains a unified model
to optimize queries from multiple datasets.

• We theoretically show that COOOL can distin-
guish between good and bad query plans when
optimizing the loss functions, and verify that
COOOL is superior to regression approaches
from the representation learning perspective.

• Comprehensive experiments on join-order-
benchmark and TPC-H show that COOOL
can outperform PostgreSQL and state-of-
the-art methods on multiple dimensions of
evaluation criteria on both single-dataset and
multiple-dataset tasks.

2. Preliminaries

2.1. Task Definition and Formalization
Let 𝑄 denote the set of queries and ℋ =
{𝐻𝑆1, 𝐻𝑆2, … , 𝐻𝑆𝑛} be the set of 𝑛 hint sets. Each
hint set 𝐻𝑆𝑖 ∈ ℋ contains only boolean flag SQL hints
(e.g., enable hash join, disable index scan). For any query
𝑞 ∈ 𝑄 and 𝑖 ∈ {1, 2, … , 𝑛}, the traditional optimizer 𝑂𝑝𝑡
can generate the corresponding plan tree 𝑡𝑞𝑖 with the
hint set 𝐻𝑆𝑖

𝑡𝑞𝑖 = 𝑂𝑝𝑡(𝑞, 𝐻𝑆𝑖). (1)

Let 𝑇 𝑞 = {𝑡𝑞1 , 𝑡
𝑞
2 , … , 𝑡𝑞𝑛 } denote the set of candidate plans

of query 𝑞. The query plans in 𝑇 𝑞 are semantically equiva-
lent, but may have different execution latencies. A model
𝑀 is a function that takes the candidate plan tree as input
and produces a score for the plan tree.

𝑠𝑞𝑖 = 𝑀(𝑞, 𝑡𝑞𝑖 ; 𝜃), (2)

where 𝜃 is the parameter of the model to be trained. The
query execution engine then selects the plan with the
highest predicted ranking score in the scenario of LTR.



̂𝐻 𝑆
𝑞
= 𝐻𝑆argmax

𝑖
𝑠𝑞𝑖
, (3)

where ̂𝐻 𝑆
𝑞
is the hint set with the maximum score, cor-

responding to the minimum estimated cost.

2.2. Learning-To-Rank (LTR)
LTR is a machine learning approach aiming to auto-
matically rank items based on their relevance or impor-
tance [17]. It is a natural approach for the SQL hint
recommendation task, which selects the optimal query
plan for execution, as shown in Equation (3).

In the context of LTR, ℋ is the set of items, and the
goal is to recommend the best item fromℋ for each 𝑞 ∈ 𝑄.
More specifically, LTR is to define a loss function on 𝑠𝑞𝑖 ’s
so that the underlying model 𝑀 can be properly trained
to predict the orders of query plans. Throughout this
paper, “𝑡𝑞𝑖1 ≻ 𝑡𝑞𝑖2” means the plan 𝑡𝑞𝑖1 is superior to (has a
lower latency than) 𝑡𝑞𝑖2 . Given a query 𝑞 ∈ 𝑄, let 𝜎𝑞 = 𝑡𝑞𝑖1 ≻
𝑡𝑞𝑖2 ≻ … ≻ 𝑡𝑞𝑖𝑛 denote the total order of query plans w.r.t.
their latencies, where 𝑡𝑞𝑖1 has the lowest latency, 𝑡𝑞𝑖2 has
the second lowest latency, and 𝑡𝑞𝑖𝑛 has the highest latency.

Before delving into our approaches, we first introduce
the Plackett-Luce model (PL) [18, 19], which serves as the
basis for our ranking methods. PL is a pioneering work
in LTR and stands as one of the most popular models
for discrete choices, which was later used as a listwise
loss function in information retrieval [17] and softmax
function in classification tasks [20]. In the context of SQL
hint recommendations, we provide a definition of PL as
follows. Given any 𝑞 ∈ 𝑄, the probability of 𝜎𝑞 = 𝑡𝑞𝑖1 ≻
𝑡𝑞𝑖2 ≻ … ≻ 𝑡𝑞𝑖𝑛 is

PrPL(𝑡
𝑞
𝑖1 ≻ 𝑡𝑞𝑖2 ≻ … ≻ 𝑡𝑞𝑖𝑛 ; 𝜃) =

𝑛
∏
𝑗=1

exp(𝑠𝑞𝑖𝑗)

∑𝑛
𝑚=𝑗 exp(𝑠

𝑞
𝑖𝑚)

, (4)

where 𝑠𝑞𝑖 ’s are functions of the parameter 𝜃 defined in
Equation (2). The rankings of multiple queries are as-
sumed to be independent. Therefore, the probability of
multiple rankings is simply the product of the probability
of each individual ranking. The marginal probability of
any pairwise comparison 𝑡𝑞𝑖 ≻ 𝑡𝑞𝑗 is

PrPL(𝑡
𝑞
𝑖 ≻ 𝑡𝑞𝑗 ; 𝜃) =

exp(𝑠𝑞𝑖 )

exp(𝑠𝑞𝑖 ) + exp(𝑠𝑞𝑗 )
. (5)

2.2.1. Listwise Loss Function

Given the training data {𝜎𝑞|∀𝑞 ∈ 𝑄}, the listwise loss
function is simply the negative log-likelihood function:

ℒlist(𝜃) = −∑
𝑞∈𝑄

ln PrPL(𝜎𝑞; 𝜃), (6)

where PrPL(𝜎𝑞; 𝜃) is defined in Equation (4). This list-
wise loss function also coincides with the listMLE loss
by [21]. [21] proved that this loss function is consistent,
which means as the size of the dataset goes to infinity,
the learned ranking converges to the optimal one.

2.2.2. Pairwise Loss Function

To apply a pairwise loss function, the full rankings 𝜎𝑞
for all 𝑞 ∈ 𝑄 need to be converted to pairwise compar-
isons. This process is called rank-breaking [22]. A rank-
breaking method defines how the full rankings should
be converted to pairwise comparisons. Basic breakings
include full breaking, adjacent breaking, and others [22].
Full breaking means extracting all pairwise comparisons
from a ranking, and adjacent breaking means extracting
only adjacent pairwise comparisons. For example, given
a ranking 𝑡1 ≻ 𝑡2 ≻ 𝑡3, full breaking converts it to (𝑡1 ≻ 𝑡2,
𝑡1 ≻ 𝑡3, 𝑡2 ≻ 𝑡3) while adjacent breaking converts it to
(𝑡1 ≻ 𝑡2, 𝑡2 ≻ 𝑡3). Though adjacent breaking is simple and
plausible, [22] proved that adjacent breaking can lead
to inconsistent parameter estimation, which means that
even if the model is trained using an infinite amount of
data, it may not make unbiased predictions. On the other
hand, full breaking is proven consistent [22, 23]. Other
breakings are more complicated and beyond the scope of
this paper, so we employ the full breaking strategy.

Let 𝑃 = {𝜋1, 𝜋2, … , 𝜋𝑚} be the dataset of pairwise com-
parisons, where ∀𝑗 ∈ {1, 2, … , 𝑚}, 𝜋𝑗 has the form of

𝑡
𝑞𝑗
𝑖1 ≻ 𝑡

𝑞𝑗
𝑖2 . Here 𝑞𝑗 denotes the corresponding query for

𝜋𝑗. For different 𝑗 values, 𝑞𝑗 may refer to the same query
since different pairwise comparisons can be extracted
from the same query. The objective function is

ℒpair(𝜃) = −
𝑚
∑
𝑗=1

ln PrPL(𝜋𝑗; 𝜃), (7)

where PrPL(𝑝𝑗; 𝜃) is defined in Equation (5). The model

parameter can be estimated by maximizing 𝐿pair(𝜃).
This is equivalent to maximizing the composite

marginal log-likelihood based on Equation (5). [24] and
[23] proved that 𝜃 can be efficiently estimated under a con-
sistent rank breaking method. And full breaking, which
extracts all pairwise comparisons from the full rankings,
is one of the consistent breaking methods.

3. COOOL Architeture
The data flow pipeline of COOOL is shown in Figure 1,
where model-related modules are shown in green, and
existing DBMS modules are displayed in blue. Given a
query (SQL), we use the hint sets in ℋ to generate the
corresponding query plans 𝑡1, 𝑡2, … , 𝑡𝑛 (with possible du-
plicates). At the training stage, we execute plans and
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Figure 1: A brief view of the COOOL pipeline.

collect their performance as training data. Then we uti-
lize the pairwise or listwise approach to train the ranking
scorer. At the inference stage, when a user submits a
query, the traditional optimizer will generate 𝑛 query
plans by utilizing the corresponding hint sets. Next, the
scorer will compute the relative ranking score of each
plan and recommends the optimal one for the execution
engine to obtain results. For the models trained by differ-
ent methods, they are exactly the same at the inference
stage.

Data Collection Our approach is trained in a standard
supervised learning paradigm. For the given queries, we
generate 𝑛 query plans that correspond to the hint sets
ℋ for each query by the underlying traditional optimizer.
Then we sent them to the execution engine and record
the observed execution performance of each query plan.
The collected data is used to train the neural ranking
scorer, and the training stage is separate from the DBMS.

Cost Order Estimation To execute the optimal plan
with minimum estimated latency, we need to recommend
its corresponding hint set to the DBMS. The scorer takes
a plan tree as input and outputs the ranking score of
the plan, the estimated latency orders can be acquired
by sorting the scores of all candidate plans. Specifically,
we first transform the nodes of the input plan tree into
vectors, then feed the vector tree into a plan embedding
model constructed by a TCNN. Finally, we feed the plan
embedding into a multilayer perceptron (MLP) to com-
pute the estimated score of the plan. At the training
stage, we use the collected plan and latency data to train
the model. So it can estimate relative orders of plans
by latency and cooperate with DBMS to improve query
plans at the inference stage.

Assumptions and Comparisons We assume that ap-
plying each hint set to the given query will generate
semantically equivalent plans. Besides, the hints are ap-
plied to the entire query rather than the partial plan.

Though allowing fine-grained hints (e.g., allows nested
loop joins between specific tables, others not.) are avail-
able, it will bring an exponential candidate plan search
space, which significantly increases training and infer-
ence overhead. We make the same assumption as Bao
for practicality.

Bao requires more effort to implement because it is
fully integrated into PostgreSQL, while we build on top
of PostgreSQL, which makes it easy for COOOL to mi-
grate to other DBMSs. Moreover, we take a step forward
to maintain a unified model to optimize queries from
different datasets, which has not been investigated in the
previous end-to-end query optimization studies.

4. COOOL for Hint
Recommendations

The architecture of COOOL is shown in Figure 2, with
model-related modules depicted in green, existing DBMS
modules in blue, and training stages in red. We utilize
the underlying DBMS optimizer to generate candidate
plans using the hint sets in ℋ. Then we vectorize plan
tree nodes and binarize the plan, facilitating TCNN ap-
plication to acquire the plan embedding 𝑝. Subsequently,
we employ an MLP to compute the score of each plan,
supporting either pairwise or listwise training loops.

4.1. Cost Order Estimation
Each hint set corresponds to a query plan tree, so recom-
mending the optimal hint set for given queries is to select
the plan tree with the maximum ranking score, as shown
in Equation (3). Similar to [6, 3, 14], we use a TCNN to
obtain plan embeddings and leverage an MLP to compute
the ranking scores.

Plan Tree Vectorization We can use the EXPLAIN
command provided by the underlying optimizer to ob-
tain the plan tree text, as shown in Equation (1). First,
we need to transform each node in the plan tree into a
vector. The same as in [3], we use a data/schema agnos-
tic encoding scheme, which solely contains a one-hot
encoding of operator types, and cardinality and cost pro-
vided by the underlying traditional optimizer. Then, we
transform the original tree into a binary tree to facilitate
tree convolution operations.

One-hot Node Operation Type Encoding. We sum-
marize the types of all operations (nested loop, hash join,
merge join, seq scan, index scan, index only scan, and
bitmap index scan) in the plan trees and number these
seven operations. Then we create a vector for each node
with the number of types of bits, and we set the bit of
the type corresponding to each node to the high bit. For
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Figure 2: Cost order estimation for tree convolutional neural network using pairwise and listwise LTR techniques.

instance, 𝐸𝑜(𝑣) is the one-hot encoding of node 𝑣 and
𝐸𝑜(𝑣)[𝑖] = 1 indicates node 𝑣 is the 𝑖-th operation type
and the rest elements in 𝐸𝑜(𝑣) are 0. Though one-hot
node type encoding is simple, it is capable to extract
structural information in plan trees.

Tree Nodes Vectorization. Apart from the oper-
ation information, each node can contain the cost
and cardinality. It is applicable to acquire cost and
cardinality from multiple traditional optimizers and
learned models, but we only use two values obtained
from the underlying traditional optimizer for simplic-
ity. Therefore, the node encoding is the concatenation
of operation type encoding, cardinality, and cost, i.e.,
𝐸(𝑣) = Concat(𝐸𝑜(𝑣),Cost(𝑣),Card(𝑣)), where Cost(𝑣)
and Card(𝑣) are the cost and cardinality estimated by the
traditional optimizer, respectively. We apply the node
encoding method to the nodes in the plan tree to obtain
a vectorized plan tree.

Tree Structure Binarization. Some nodes in a plan
tree may have only one child, e.g., nodes for aggregation
and sorting operations. To facilitate tree convolution
operations, we transform the non-binary trees into binary
trees by adding a pseudo-child node Null to each node
with only one child node, and the costs and cardinalities
of pseudo-child nodes are 0. Then the original plan tree 𝑡
can be transformed into vectorized tree 𝑝.

4.1.1. TCNN Plan Embedding

TCNN was proposed in [4] to treat tree structure data
in programming language processing. TCNN was first

introduced in plan representation in [6], and it was well-
established in [3, 14]. We briefly introduce how to repre-
sent a plan using TCNN in this section. More technical
details can be found in [4, 6].

During the execution of the original plan tree in execu-
tion engines, the computation of one node relies on the
results of its child nodes. Based on this fact, the plan em-
bedding method should reflect the recursive properties
to obtain a proper inductive bias [25]. To be consistent
with plan execution, the model is naturally required to
simultaneously capture the features of a node and its
child nodes. Specifically, let 𝑙(𝑣) and 𝑟(𝑣) denote the left
and right child nodes of node 𝑣, respectively. The statis-
tic cost/cardinality information in vector 𝐸(𝑣) is closely
related to 𝐸(𝑙(𝑣)) and 𝐸(𝑟(𝑣)). Tree convolution can nat-
urally address this requirement.

Tree convolution is similar to image convolution, it
has binary tree structure filters to capture local features.
We take a tree convolution filer as an example, there are
three weight vectors in the filter, i.e., 𝑤, 𝑤𝑙, 𝑤𝑟. Applying
tree convolution to the current node 𝐸(𝑣) can acquire the
new representation:

𝐸(𝑣)′ = 𝜎(𝐸(𝑣) ⊙ 𝑤 + 𝐸(𝑙(𝑣)) ⊙ 𝑤𝑙 + 𝐸(𝑟(𝑣)) ⊙ 𝑤𝑟), (8)

where 𝜎 is a non-linear activation function, ⊙ is a dot
product operation. The new representation of node 𝑣
contains its child nodes’ information. By this means, the
model is able to capture high-level features of a long
chain of plan execution for representing one node. The
output of tree convolution operations is a tree with the
same structure as the input, and we employ a dynamic
pooling method to aggregate the latent representations of
all nodes to represent the query plan. To sum up, we can



obtain plan embedding by 𝑝 = TCNN(𝑝), where 𝑝 ∈ ℝℎ
is the vector of plan representation and ℎ is the size of
plan tree embedding space.

4.1.2. Ranking Score Computation

Finally, we can leverage plan embedding to compute the
relative ranking score. We use a simple MLP to take
the plan embedding vector as input and output a scalar
as the ranking score 𝑠, i.e., 𝑠 = MLP(𝑝). Stacking fully
connected layers and non-linear activation functions in
the MLP can enhance the representation ability, and this
practice has been widely adopted in query optimizations
[6, 14]. We add a hidden layer and an activation function
for simplicity. The cost orders can be obtained by sorting
the ranking scores of all candidate plans.

4.2. Learning-To-Rank Training Loop
The training loop consists of three parts: data collec-
tion and deduplication, label mapping and pairwise data
extraction, and model training and evaluation.

Data Collection and Deduplication Let 𝑄train de-
note the set of training queries. We generate 𝑛 plans
for each query 𝑞 ∈ 𝑄train by the traditional optimizer,
as shown in Equation (1). Then we sent the plans
to the execution engine, and record each data point
(query = 𝑞, plan = 𝑡, latency = 𝑙). There are duplicate
query plans because, for a given query, different hints
may result in the same query plan. We remove the du-
plicate query plans for pairwise and listwise training
loops.

Label Mapping and Pairwise Data Extraction Be-
cause a lower latency indicates a better plan, we use the
reciprocal of the latency of each query plan as the label
to reverse the orders of query plans. Any other mapping
function that reverses the orders works equivalently be-
cause only the orders matter.

After the label mapping, we get a list of query plans
ordered by the reciprocals of their latencies for each
query. For each list of 𝑛𝑞 query plans (𝑛𝑞 ≤ 𝑛 after dedu-
plication), we extract all (𝑛

𝑞

2 ) pairwise comparisons to
get the pairwise data 𝑃 = {𝜋1, 𝜋2, … , 𝜋𝑚}, where for any
𝑗 ∈ {1, 2, … , 𝑚}, 𝜋𝑗 = 𝑡

𝑞𝑗
𝑖1 ≻ 𝑡

𝑞𝑗
𝑖2 .

Model Training and Evaluation At the training
stage, the model parameter 𝜃 is updated by optimizing
the loss function. Specifically, for the listwise approach,
the model parameter 𝜃 is computed by minimizing the
listwise loss defined in Equation (6). For the pairwise
approach, 𝜃 is computed by minimizing the pairwise loss
defined in Equation (7).

During the inference stage, we use the learned model
to compute the score for each candidate plan and sort
the scores to obtain the corresponding orders, then we
select the estimated best plan for each query to execute.

4.3. Theoretical Basis and Comprehension
4.3.1. Theoretical Analysis

In this section, we briefly analyze how COOOL learns
from the order of latencies of different query plans. To
show that, we consider the query plans {𝑡1, 𝑡2, … , 𝑡𝑛} with
the corresponding latencies {𝑙1, 𝑙2, … , 𝑙𝑛} for a given query
𝑞 ∈ 𝑄. Our goal is to select the best plan using the model.
At the training stage, they have different initial scores
{𝑠1, 𝑠2, … , 𝑠𝑛}. Without loss of generality, we assume 𝑙1 >
𝑙2 > … > 𝑙𝑛. We focus on the difference between the
model outputs of adjacent query plans, we denote 𝛿𝑖 =
𝑠𝑖+1 − 𝑠𝑖, ∀𝑖 ∈ {1, 2, … , 𝑛 − 1}. For convenience, we define
𝛿0 = 0. Then ∀𝑖 = {1, 2, … , 𝑛}, we have 𝑠𝑖 = 𝑠1 + ∑𝑖−1

𝑗=0 𝛿𝑗.
The loss function of the listwise approach can be written
as:

ℒ𝑙 𝑖𝑠𝑡 = − ln
𝑛

∏
𝑗=1

exp(𝑠𝑛−𝑗+1)

∑𝑛−𝑗+1
𝑚=1 exp(𝑠𝑚)

= −
𝑛
∑
𝑗=1

ln
exp(𝑠1 +∑𝑛−𝑗

𝑘=0 𝛿𝑘)

∑𝑛−𝑗+1
𝑚=1 exp(𝑠1 +∑𝑚−1

𝑘=0 𝛿𝑘)

= −
𝑛
∑
𝑗=1

ln
exp(∑𝑛−𝑗

𝑘=0 𝛿𝑘)

∑𝑛−𝑗+1
𝑚=1 exp(∑𝑚−1

𝑘=0 𝛿𝑘)

= −
𝑛
∑
𝑗=1

(
𝑛−𝑗
∑
𝑘=0

𝛿𝑘 − ln(
𝑛−𝑗+1
∑
𝑚=1

exp(
𝑚−1
∑
𝑘=0

𝛿𝑘))) .

In this equation, the first equality is obtained by sub-
stituting Equation (4) in Equation (6), and the second
equality is obtained by substituting 𝑠𝑖 with 𝑠1 + ∑𝑖−1

𝑗=0 𝛿𝑖.
The third equality is obtained by dividing both the nu-
merator and denominator by exp(𝑠1) since exp(𝑠1) > 0.
And the last equality is due to the property of the ln()
function. Now we compute the partial derivative of ℒ𝑙 𝑖𝑠𝑡
with respect to 𝛿𝑖 for any 𝑖 ∈ {1, 2, … , 𝑛 − 1}:

𝜕ℒ𝑙 𝑖𝑠𝑡
𝜕𝛿𝑖

= −
𝑛−𝑖
∑
𝑗=1

(1 −
∑𝑛−𝑗+1

𝑚=𝑖+1 exp(∑
𝑚−1
𝑘=0 𝛿𝑘)

∑𝑛−𝑗+1
𝑚=1 exp(∑𝑚−1

𝑘=0 𝛿𝑘)
) < 0. (9)

The inequality holds because when 1 ≤ 𝑖 ≤ 𝑛 − 𝑗, we
have∑𝑛−𝑗+1

𝑚=𝑖+1 exp(∑
𝑚−1
𝑘=0 𝛿𝑘) < ∑𝑛−𝑗+1

𝑚=1 exp(∑𝑚−1
𝑘=0 𝛿𝑘).This

means ∀𝑖 ∈ {1, 2, … , 𝑛}, an increase in 𝛿𝑖 leads to a decrease
in the loss function ℒ𝑙 𝑖𝑠𝑡. 𝛿𝑖 tends to go up while the loss
function ℒ𝑙 𝑖𝑠𝑡 is minimized during the training process,
which is desired. We omit the theoretical analysis of the
pairwise approach, as it follows a similar logic to the
listwise method.



To summarize, by minimizing ℒ𝑙 𝑖𝑠𝑡 or ℒ𝑝𝑎𝑖𝑟, the dif-
ferences between the ranking scores of different query
plans tend to increase, which means that our approaches
are able to distinguish the best plans from others.

4.3.2. Intuitive Explanation

To intuitively demonstrate the effectiveness of our ap-
proaches, we present an illustrative example to explain
how the regression and ranking strategies work based
on Section 4.3.1.

Given the assumption that 𝑙1 > 𝑙2 > … > 𝑙𝑛, where
plan tree 𝑡𝑛 has the lowest latency represents the optimal
plan. For the regression paradigm, the model endeavors
to learn to minimize the gap between each of the model
output score 𝑠𝑖 and the corresponding latency 𝑙𝑖. The
pairwise ranking strategy enables the model to learn to
discriminate the preferable plan by assigning it a higher
score, whereas the listwise ranking strategy allows the
model to learn to provide the order score of each plan
in the given plan list. Essentially, the regression and
ranking strategies train the model to output ideal scores
of plan trees under their respective training paradigms,
whereby the optimal plan selection operation is accom-
plished through the procedure of sorting the model out-
put scores. On the one hand, the three strategies have
different objectives and train the model in different ways,
while the goal of query optimization is to simply select
the optimal single plan, which is the approach of the
ranking strategies. On the other hand, for the scenario
of unseen query plans, it may be difficult to predict the
exact latency of the plans, yet predicting the orders of
plans may alleviate this issue.

In summary, the proposed COOOL methods can ef-
fectively distinguish between better and worse plans to
achieve excellent optimization performance.

5. Experiments

5.1. Experimental Setup
Datasets and Workloads To promote reproducibility,
we use two widely-used open-source datasets (IMDB,
TPC-H) and their corresponding workloads (JOB, TPC-
H). To maintain a fair comparison, we do not alter the
original queries.

• Join Order Benchmark (JOB). JOB [26] con-
tains 113 analytical queries, which are designed
to stress test query optimizers over the Internet
Movie Data Base (IMDB) collected from the real
world. These queries from 33 templates involve
complex joins (ranging from 3 to 16 joins, aver-
aging 8 joins per query).

• TPC-H. TPC-H [27] is a standard analytical
benchmark that data and queries are generated
from uniform distributions. We use a scale fac-
tor of 10. There are 22 templates in TPC-H, we
omit templates #2 and #19 because some nodes in
their plan trees have over two child nodes, which
makes tree convolution operation unable to han-
dle. For each template, we generate 10 queries by
the official TPC-H query generation program1.

Baseline Methods. We compare our proposed model
with traditional and state-of-the-art (SOTA) methods as
follows.

• PostgreSQL: We use the optimizer of PostgreSQL
(version 12.5) itself with default settings.

• Bao: We substantially optimize the Bao source
code2 as follows. First, we use all 48 hint sets
in Bao paper, rather than the 5 hint sets in the
open-sourced code. Second, because we use the
standard benchmarks without modifying queries,
we train Bao on all sufficiently explored execution
experiences of the training set.

Model Implementation We use a three-layer TCNN
and the number of channels are respectively set as {256,
128, 64}, the plan embedding size ℎ is 64, and the hidden
size of MLP is set as 32. The activation function is Leaky
ReLU [28], the optimizer is Adam [29] with an initial
learning rate of 0.001, the batch size is 128, we apply an
early stopping mechanism in 10 epochs on the training
loss, we save the model that performed best on the val-
idation set and report the results on the test set. The
validation set is 10% of the training set, except for TPC-H
“repeat” settings, where we use 20% of the training set.
We implement our models in Pytorch 1.12.0.

Device and PostgreSQL Configurations We use a
virtual machine with 16 GB of RAM, an 8-core Xeon(R)
Platinum 8260 2.4GHz CPU, and an NVIDIA V100 GPU.
For excellent PostgreSQL performance, we set Post-
greSQL configurations suggested by PGTune3 in this
paper: 4 GB of shared buffers, 12 GB of effective cache
size, etc.

Scenario Descriptions To comprehensively evaluate
the performance of models, we examine three scenarios:
single instance, workload transfer, and maintain-
ing a model (i.e., a unified model). The first scenario is
common in ML for query optimization, which refers to

1https://www.tpc.org/tpc_documents_current_versions/current_
specifications5.asp

2https://github.com/learnedsystems/baoforpostgresql
3https://pgtune.leopard.in.ua/#/

https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://github.com/learnedsystems/baoforpostgresql
https://pgtune.leopard.in.ua/#/


learning amodel for each dataset. The others are not com-
monly studied but are crucial for ML model deployment
in the DBMS. Workload transfer indicates the scenario
where a model is trained on one workload and evaulated
on another. The last scenario implies training a model to
improve query plans from different datasets.

Definition of Latency and Speedup We repeat each
experiment 10 times and exclude the best and the worst
test results except for the unified model scenario, then we
report the average performance of the rest runs. There
are two aspects of performance we consider: one is la-
tency, and the other is speedup. The total execution
latency is defined as the sum of per-query execution
latency. The speedup represents the acceleration ratio
of executing queries with the ML model compared to
using PostgreSQL’s default optimizer under the same
PostgreSQL configurations. A speedup greater than 1
indicates that the model performs better than the default
PostgreSQL optimizer.

Model Performance Evaluation Criteria According
to the evaluation details in the previous works [3, 14],
there are primarily two types of evaluation settings in
the scenario of single instance optimization: 1) randomly
dividing the standard benchmark into train and test sets.
2) Using the standard benchmark as the test set while aug-
menting queries by randomly replacing predicates, en-
suring that the training data covers all templates present
in the test set. These two evaluation aspects may not
provide a comprehensive assessment, so we adapt them
as follows while using the standard benchmark without
adding extra queries.

First, we consider two situations that frequently arise
in practical settings, which we refer to as adhoc and
repeat. The former refers to a common real-world sit-
uation where the test templates have not been covered
in the model’s training set, we use queries from seven
templates in the JOB dataset and four templates in the
TPC-H dataset respectively as test sets for this setting.
The latter represents the queries in the test data are “sim-
ilar” to the queries in the training data, but not the same.
Here “similar” means the queries are from the same tem-
plates as in the training data. In practice, we take one
or multiple queries from each template as the test set
and keep the remaining queries in the training set. For
the JOB dataset, we take one query from each template
and for the TPC-H dataset, we take two queries from
each template as test data. For queries from the same
template, we take their average latency to represent the
corresponding template’s latency.

Then, to substantially evaluate the general and tail
latency query performance, we develop two methods to
select the test sets. For both “adhoc” and “repeat” set-

tings, we have two options for selecting test sets from
the dataset: we can either randomly select templates/-
queries, denoted by rand, or choose the slowest tem-
plates/queries, referred to as slow.

Therefore, we can establish four evaluation criteria for
a single dataset in a specific scenario.

Research Questions (RQs) We conduct extensive ex-
periments to primarily answer the following RQs:

• RQ1: can COOOL achieve the best performance
compared to the baseline methods in terms of total
query execution latency and improvement on slow
queries?

• RQ2: is it possible to directly transfer a schema
agnostic model to another dataset?

• RQ3: can the proposed methods improve query
plans from different datasets compared with Post-
greSQL by maintaining a unified model?

• RQ4: can the experiments provide some insight
on why COOOL methods are better than the
regression-based approach?

5.2. Single Instance Experiments (RQ1)
In this section, we focus on the performance in the single
instance scenario, and the overall results are summarized
in Table 1. The individual query performance in “repeat”
settings is shown in Figure 3, where we depict queries
with an execution latency greater than 1s on PostgreSQL
to facilitate observation, and “Optimal” represents the
lowest latency under the given ℋ.

Observations In Table 1, there are four settings for
each of the two workloads and we observe that:

• The listwise approach (COOOL-list) achieves the
best performance in most settings, and beats Bao
by large margins in almost all settings except for
“repeat-rand” on JOB, where COOOL is slightly
slower than Bao.

• The pairwise approach (COOOL-pair) also out-
performs Bao in almost all settings except for
“adhoc-rand” on TPC-H. It achieves the best per-
formance on three settings (“repeat-rand” on JOB,
“adhoc-slow” and “repeat-slow” on TPC-H). In
most settings, the performances of COOOL-pair
and COOOL-list are similar.

• Bao does not have the best performance under
any of these settings. For “adhoc-slow” on JOB,
Bao even has a total execution latency regression,
which means the running speed is lower than the
PostgreSQL optimizer itself.

Combined with Figure 3, we have the following obser-
vations:



Table 1
Total query execution latency speedups on single datasets over PostgreSQL. The best performance on each workload is in
boldface.

JOB TPC-H
adhoc-rand adhoc-slow repeat-rand repeat-slow adhoc-rand adhoc-slow repeat-rand repeat-slow

Bao 1.07 0.91 3.02 1.37 5.36 1.17 5.28 4.73
COOOL-list 1.35 1.46 3.01 1.57 6.09 3.63 5.33 5.55
COOOL-pair 1.30 1.36 3.47 1.56 3.86 3.86 5.28 5.56

Table 2
Number of regressions for Bao and COOOL compared with
PostgreSQL (single instance)

Setting Bao COOOL-list COOOL-pair

JOB repeat-rand 24 17 13
JOB repeat-slow 17 11 8

TPC-H repeat-rand 3 1 1
TPC-H repeat-slow 1 1 1

• Bao is significantly worse than COOOL on some
queries under “slow” settings (20c in “repeat-
slow” on JOB and template 9 in “repeat-slow”
on TPC-H.). “Slow” settings are obviously more
challenging for ML models than “rand” settings
and COOOL has clear advantages over Bao.

• Both COOOL and Bao are close to optimal on
“repeat-rand” scenarios for JOB and TPC-H data.

• It happens that Bao or COOOL are not as good
as PostgreSQL on a small number of queries,
which is normal for ML models. Nevertheless,
performance regressions occur less frequently on
COOOL models than Bao models in most set-
tings, and COOOL-pair has the lowest number of
query regressions for these settings. See Table 2
for details.

To summarize, we observe that COOOLmethods have
advantages over Bao in speeding up total query execu-
tion, alleviating individual query performance regression,
and optimizing slow queries. Besides, although COOOL-
list is better than COOOL-pair in total query execution
latency speedups, it is not as good in avoiding individual
query regression.

5.3. Workload Transfer Investigation
(RQ2)

It is widely acknowledged that an instance-optimized
model may exhibit poor performance on another work-
load because it does not learn the patterns from the un-
seen data. DespitemostMLmodels being schema specific,
hindering model transferability, there is limited research
on schema agnostic models. In this section, our goal is to

provide an intuitive perspective on directly transferring a
learned model to another workload. More concretely, we
train a model on a source workload and then test its per-
formance on another workload, namely target workload
(source→target).

We conduct experiments on training on JOB data and
evaluating the model on TPC-H data (JOB→TPC-H), as
well as training a model on TPC-H data and evaluating
its performance on JOB data (TPC-H→JOB). In these set-
tings, we also consider the aforementioned “adhoc” and
“repeat” scenarios under “rand” and “slow” settings. To
make an intuitive comparison, we train the model on the
source workload’s training set and show the performance
on the target workload’s test set.

The overall query execution speedups are shown in
Table 4, and we have the following observations.

• The difference of the performances of models
is unstable compared with the corresponding
instance-optimized models, and most settings
have a performance decline. Our experiments
show that directly applying a model trained on
one workload to another workload cannot obtain
good performances even if the model is schema
agnostic.

• Compared with instance-optimized models, most
models learned on TPC-H perform worse on JOB.
By contrast, there is a performance improvement
on “TPC-H adhoc” settings especially on “TPC-H
adhoc-slow”. We may conclude that the data in
JOB may benefit TPC-H and especially improve
the performance of slow queries. We will provide
a deeper analysis in Section 5.5.2.

• We show the plan tree statistics for nodes and
depth of the two workloads in Table 3. On the
one hand, it indicates that JOB is more com-
plicated than TPC-H, so directly transferring a
model learned on JOB helps optimize queries from
TPC-H. On the other hand, it suggests that data
distributions in different datasets affect the per-
formance of ML models in workload transfer, be-
cause the experiment results on “TPCH repeat”
settings demonstrate that a model learned on the
templates from JOB cannot achieve the same per-
formance as that learned on the template from



(a) JOB repeat-rand

(b) JOB repeat-slow

(c) TPC-H repeat-rand

(d) TPC-H repeat-slow

Figure 3: Individual query performance of the models in the
single instance scenario.

TPC-H.

Based on the observations, introducing JOB data has
a better performance than the model trained on TPC-
H “adhoc” settings. We can conclude that for a given
workload, using the training data from the same work-
load may not obtain satisfactory performance. Therefore,
how to utilize data from other workloads is an emerging
problem for query optimization models.

5.4. Unified Model Performance (RQ3)
In this section, our objective is to explore whether it is
possible to train a model on multiple datasets to improve

Table 3
Overall plan tree statistics of the two workloads.

Work-
load

Max
Nodes

Avg.
Nodes

Max
Depth

Avg.
Depth

JOB 72 23.6 36 12.0
TPC-H 35 14.3 20 9.6

(a) JOB repeat-rand

(b) JOB repeat-slow

(c) TPC-H repeat-rand

(d) TPC-H repeat-slow

Figure 4: Individual query performance of the unified model.

query plans in comparison with PostgreSQL. Similar to
the previous section, we consider the four scenarios for
each dataset. For each scenario, the training data of JOB
and TPC-H were combined as the new training set and
the model is respectively evaluated on JOB and TPC-H
test sets. The results are summarized in Table 5. We



Table 4
Total query execution latency speedups on the target workload over PostgreSQL of direct transfer, where ↑ indicates an
increase in performance compared to the corresponding instance-optimized model.

TPC-H→ JOB JOB → TPC-H
adhoc-rand adhoc-slow repeat-rand repeat-slow adhoc-rand adhoc-slow repeat-rand repeat-slow

Bao 1.07 1.19↑ 1.07 0.69 6.35↑ 1.56↑ 1.64 1.42
COOOL-list 0.97 0.93 0.92 0.82 0.85 4.70↑ 1.64 1.70
COOOL-pair 0.96 1.18 0.89 0.86 5.90↑ 4.60↑ 1.48 1.82

Table 5
Total query execution latency speedups of a unified model (trained on both JOB and TPC-H data) over PostgreSQL. The best
performance on each workload is in boldface. “↑” indicates that the performance of the unified model is better than that
trained on the corresponding single dataset.

JOB TPC-H
adhoc-rand adhoc-slow repeat-rand repeat-slow adhoc-rand adhoc-slow repeat-rand repeat-slow

Bao 0.80 0.92 2.79 1.21 5.77↑ 1.93 4.83 4.31
COOOL-list 1.00 1.21 3.24↑ 1.26 6.59↑ 2.91 5.37 5.53
COOOL-pair 1.06 1.71↑ 2.90 1.21 6.73↑ 3.92↑ 5.34↑ 5.51

Table 6
Number of regressions for Bao and COOOL compared with
PostgreSQL (unified model)

Setting Bao COOOL-list COOOL-pair

JOB repeat-rand 23 12 17
JOB repeat-slow 20 9 11

TPC-H repeat-rand 8 1 1
TPC-H repeat-slow 4 1 1

observe that:

• COOOL-pair performs the best in all “adhoc” set-
tings and COOOL-list performs the best in all
“repeat” settings. They have similar overall per-
formances, and outperform Bao in almost all sce-
narios.

• COOOL-pair has the most performance boost
when the model is trained using both JOB and
TPC-H datasets (unified model) compared with
Table 1, especially on TPC-H where the unified
model beats the single-instance model in three
out of four scenarios.

• Does a different training dataset help? We ob-
serve that JOB data help improve the model per-
formance on TPC-H test data, especially under
“adhoc” scenarios. While TPC-H training data do
not help improve the model performance on JOB
test data under most scenarios. We believe this is
because JOB queries are more complicated (more
nodes and larger depth than TPC-H queries as
shown in Table 3).

The individual query performance in “repeat” settings
of the unified models are shown in Figure 4, where we

also depict queries with an execution latency greater
than 1s on PostgreSQL. Combined with the observation
in Figure 4, we can get the following conclusions:

• The performances of both COOOL approaches
are close to optimal. This echoes our observation
that JOB training data help improve the model
performances on TPC-H.

• On the other hand, the model performances on
JOB test data are hurt by the TPC-H training data.
For example, both Bao andCOOOLmethods have
poor performances on query 19d in Figure 4b.

• In terms of the number of regressions in execution
time, we list the results in Table 6. Both COOOL-
pair and COOOL-list perform better than Bao,
and COOOL-list has the lowest number of query
regressions for these settings.

Summary on Model Performances Different data
distributions in different datasets is a challenge for a uni-
fied query optimization model, but COOOL models are
able to alleviate this issue to learn a unified model better
than the SOTA regression approach to speed up total
query execution, alleviate individual query regression,
and optimize slow queries. Our experiments have shown
the overwhelming advantages of our proposed models.
For the single instance scenarios, COOOL-list achieves
the best performance in total query execution speedups
while COOOL-pair is the best to reduce the number of
individual query regressions. When a unified model is
trained using multiple datasets, COOOL-list performs
the best in “repeat” settings, while COOOL-pair is the
best in “adhoc” settings and exhibits no total query exe-
cution performance regression. COOOL-pair is the best



(a) Bao (b) COOOL-pair (c) COOOL-list

Figure 5: Singular value spectrum of the plan embedding space for Bao and COOOL in “adhoc-slow” setting of the two
workloads in the scenarios of the single instance, workload transfer, and unified model.

Table 7
Comparison of training time required for convergence in the
“adhoc-slow” setting

JOB TPC-H Unified

Bao 119.5s 34.5s 265.9s
COOOL-list 167.0s 159.8s 317.1s
COOOL-pair 493.6s 222.8s 894.6s

approach among the three models in terms of perfor-
mance and stability.

5.5. Model Comparison and Analysis
(RQ4)

In COOOL methods, we use exactly the same plan repre-
sentation model as Bao to confirm that the improvements
are brought by our LTR methods. We analyze the “adhoc-
slow” setting of the two workloads in this section.

5.5.1. Model efficiency.

We compare the space and time efficiency of our ap-
proaches and the SOTA method.

• Space complexity. The two COOOLmodels use a
TCNN with the same structure and hidden sizes
as Bao, the number of parameters for all of them
is 132,353, i.e., 529,412 bytes. The storage con-
sumption of the model is about 0.5MB, which is
efficient enough in practice.

• The number of training samples. Let 𝑁 denote
the number of training queries. And there are
𝑛 candidate hint sets in ℋ for each query. The
number of training samples of Bao is 𝑁𝑛. Let 𝑚𝑖
denote the number of unique query plans for each
query given ℋ, where 1 ≤ 𝑖 ≤ 𝑁 , 𝑚𝑖 ≤ 𝑛. The
number of samples is Θ(∑𝑁

𝑖=1
𝑚𝑖(𝑚𝑖−1)

2 ) = 𝑂(𝑁𝑛2)

for COOOL-pair. For COOOL-list, there are 𝑁
samples.

• Training time consumption. To intuitively
demonstrate the time efficiency of the three meth-
ods, we summarize the average training time re-
quired for convergence in the “adhoc-slow” set-
tings, as shown in Table 7. COOOLmodels neces-
sitate more training time for convergence than
Bao. Besides, COOOL-pair requires much more
time for convergence than COOOL-list due to
much more training samples.

• Conclusion. Notwithstanding COOOL-pair and
COOOL-list require longer convergence time
than Bao, they have the same inference effi-
ciency and the number parameters as Bao.
Therefore, we can conclude that COOOL exhibits
comparable practicality to Bao.

5.5.2. A representation learning perspective for
plan tree embeddings.

We have conducted extensive experiments and obtained
promising results. But it is not clear how the ranking
strategies affect the model training. This section aims to
provide insight on why the two COOOL models outper-
form Bao, especially for the unified model training.

Let an ℎ-dimensional vector zi denote the embedding
for query plan 𝑖. We compute the covariance matrix
𝐶 ∈ ℝℎ×ℎ for all plan embeddings obtained by the model.
Formally,

𝐶 = 1
𝑀

𝑀
∑
𝑖=1

(zi − z)(zi − z)⊤,

where𝑀 is the number of plans, z = 1
𝑀 ∑𝑀

𝑖=1 zi. Then, we
apply singular value decomposition on 𝐶 s.t. 𝐶 = 𝑈𝑆𝑉⊤,
where 𝑆 = 𝑑𝑖𝑎𝑔(𝜎𝑘). Then we can obtain the singular
value spectrum in sorted order and logarithmic scale
(lg(𝜎𝑘)). We depict the singular value spectrum of the
plan embedding space of the three models learned in



different scenarios in “adhoc-slow” setting, as shown in
Figure 5. We have the following observations.

• In Figure 5a, we observe a significant drop in sin-
gular values on a logarithmic scale (lg(𝜎𝑘)) in all
tasks. The curve approaches zero (less than 1e-7)
in the spectrum, indicating that a dimensional
collapse [16] occurs in Bao’s embedding space in
each of Bao’s experimental scenarios. The model
learned on JOB even collapsed in half of the plan
embedding space. Bao’s plan embedding vectors
only spans a lower-dimensional subspace, which
harm the representation ability of the model and
therefore hurt the performance. Moreover, the
models in the single instance scenario on different
datasets result in a different number of collapsed
dimensions. Based on the workload transfer sce-
nario curves, we observe that the plan embedding
space of the target workload spans the same num-
ber of dimensions as the source workload. So we
can conclude that the embedding space is depen-
dent on the training data.

• In Figures 5b and 5c, singular values of the
COOOL approaches do not drop abruptly and
greater than 1e-7, meaning that there is no col-
lapse in their plan embedding space. The plan em-
beddingmethods of Bao andCOOOL are the same,
and the comparison reflects that the embedding
spaces learned from the regression framework
and ranking strategies are significantly different.

• The spectrum of Bao’s unified model is closer
to the spectrum of the learned representation
from TPC-H data than that learned from JOB data,
whereas the spectra ofCOOOL-pair andCOOOL-
list are closer to the spectrum of the representa-
tion from JOB data than that learned from TPC-H
data. In fact, the number of training samples of
TPC-H is greater than that of JOB, but JOB is more
complicated than TPC-H (see Table 3). When
learning from multiple datasets, Bao’s perfor-
mance is affected more by the datasets with more
samples. By contrast, the two COOOL methods
are able to learn from sophisticated query plans.

• Singular values are related to the latent informa-
tion in the covariance matrix. We can get three
conclusions from this perspective. First, the over-
all spectrums of Bao in different settings are lower
than COOOL in terms of absolute singular value,
which indicates that the representation ability of
Bao is worse than COOOL. Second, the curve of
Bao’s unified model is not the highest in most
dimensions, while that of the two COOOL mod-
els are just the opposite. It may reveal that the
ranking strategies can help models learn latent
patterns from two workloads but the regression

framework cannot. Third, the range and the trend
of the curves ofCOOOL-pair andCOOOL-list are
different, which may explain the different perfor-
mances of the two models in different scenarios.

• The dimensional collapse issue may not greatly
hurt single instance optimization since the em-
bedding space is learned from one workload and
the latent collapsed dimensions are fixed when
the model converges. Because the collapsed di-
mensions may be different in different datasets,
there may be orthogonal situations, which may
cause the subspace representation learned in one
dataset to be noise in another, resulting in un-
stable performance. Therefore, it may limit the
scalability of machine learning query optimiza-
tion models.

To sum up, dimensional collapse in plan tree embed-
ding space is a challenge for machine learning query opti-
mization models in maintaining a unified model to learn
from different workloads. The two variants of COOOL
have the exact samemodel as Bao but consistently outper-
form Bao in almost all scenarios and settings. We provide
some insight on why COOOL methods outperform Bao
from the query plan representation perspective. It may
guide researchers to further improve the performance of
ML models for query optimization.

6. Related work

6.1. Machine Learning for Query
Optimization

Traditional cost-based query optimizers aim to select
the candidate plan with the minimum estimated cost,
where cost represents the execution latency or other
user-defined resource consumption metrics. Various
techniques have been proposed in cost-based optimiz-
ers [30, 31, 32], such as sketches, histograms, probability
models, etc. Besides, they work with different assump-
tions (e.g., attribute value independence [33], uniformity
[34], data independence [35]) and when these cannot
be met, the techniques usually fall back to an educated
guess [36]. Traditional optimizers have been studied for
decades [1], focusing on manually-crafted and heuris-
tic methods to predict costs, estimate cardinality, and
generate plans [37]. However, the effect of heuristics
depends on data distribution, cardinality estimation, and
cost modeling. Therefore, query optimization has been
proven difficult to solve [38]. Consequently, cost-based
optimizers may generate plans with poor performance.

Therefore, the database community has attempted to
apply machine learning techniques to solve these is-
sues. For example, some efforts introduced reinforce-
ment learning and Monte Carlo Tree Search (MCTS) to



optimize the join order selection task [39, 40, 41, 42, 43],
and some studies use neural networks to accomplish cost
modeling and cardinality estimation [7, 8, 9, 10]. Refer
to surveys [44, 45] for more ML for query optimization
details. These works depict that the elaborated models
can improve the performance of parts of those compo-
nents in query optimization. However, they may not
improve the performance of optimizers since none of
them demonstrate that the performance improvement of
a single component can actually result in a better query
plan [46].

In recent years, some studies have attempted to build
end-to-end ML models for query optimization [6, 3, 14].
They all use a TCNN to predict the cost/latency of query
plans and leverage a deep reinforcement learning frame-
work to train the model. Though they have made im-
provements compared with the previous works of replac-
ing some components of the optimizer with ML models,
an optimizer should be evaluated in multiple dimensions
[2], and some of the most concerned aspects are practical-
ity, explainability, performance, generalizability, whether
it is data/schema agnostic, etc. Neo [6] learns row vec-
tor embeddings from tables, so it needs to maintain row
vector embeddings for different data. Balsa [14] can not
treat advanced SQL features (e.g., sub-queries) due to its
dependency, which limits its generalizability. Further-
more, Neo and Balsa are less practical than Bao [3]. Bao
introduced a novel approach to end-to-end query opti-
mization that recommends per-query SQL hints over an
existing optimizer. SQL hints can limit the search space
of existing optimizers and each set of hints corresponds
to a plan, which makes it practical in real scenarios.

6.2. Learning-To-Rank
The objective of LTR is to develop MLmodels that can au-
tomatically rank items according to their relevance or sig-
nificance (such as relevance score or query latency). LTR
is an active research topic [47] and has many applications
in information retrieval [17], meta-search engines [48],
recommendation systems [49], preference learning [50],
etc. A search engine or a recommendation system usu-
ally needs to rank a large and variable number of items
(webpages, movies, for example). The SQL hint recom-
mendation problem is more like the preference learning
problem, where a relatively small and fixed number of
items (SQL hints in our case), are to be ranked for each
user (SQL query in our case). Many studies have been
conducted in the field of LTR (see the survey [51, 52, 17]
for a comprehensive review). We briefly discuss Plackett-
Luce model [18, 19] in this section. Plackett-Luce model,
which was later used as a listwise loss function in in-
formation retrieval [17] and softmax function in classi-
fication tasks [20], is one of the most popular models
in preference learning, which fits the task of SQL hint

recommendation well. It is a listwise model but can be
learned efficiently with pairwise methods [24, 23], by
breaking the full rankings into pairwise comparisons and
minimizing a pairwise loss function. Similar to [24] and
[23], we maximize the marginal pairwise likelihood for
its simplicity.

7. Conclusion
In this paper, we propose COOOL that predicts cost or-
ders of query plans to cooperate with DBMS by LTR tech-
niques to recommend SQL hints for query optimization.
COOOL includes both pairwise and listwise methods,
which can improve overall query execution speed, es-
pecially on slow queries, and alleviate individual query
regression. Moreover, COOOL makes a step forward
to maintaining a unified end-to-end query optimization
ML model on two datasets. We shed some light on why
COOOL approaches outperform Bao from the represen-
tation learning perspective, and the elaborated analy-
sis may provide preliminary for large-scale pre-trained
query optimization models. While COOOL methods are
promising, they cannot estimate the cost of the recom-
mended query plan, or quantitatively compare the costs
of two query plans.

For future work, we plan to investigate the evalua-
tion metrics for ranking candidate plans that differ by
multiple orders of magnitude in execution latency for
query optimization, which facilitates the introduction
of state-of-the-art LTR techniques. LTR is still an active
research field in recent years, so there are considerable fu-
ture works to be explored in query optimization. Besides,
developing a large-scale pre-trained query optimization
model to improve query plans from multiple datasets
and quantitatively comparing the costs of different query
plans accurately are also challenging future directions.
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A. Online Resources
The source code of our paper is available at https://github.
com/xianghongxu/COOOL.

https://github.com/xianghongxu/COOOL
https://github.com/xianghongxu/COOOL
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