
Improving K-means Clustering Using Speculation

Stefan Igescu1, Viktor Sanca1,∗, Eleni Zapridou1 and Anastasia Ailamaki1,2,†

1EPFL, Lausanne, Switzerland
2Google, Sunnyvale, USA

Abstract
K-means is one of the fundamental unsupervised data clustering and machine learning methods. It has been well studied over
the years: parallelized, approximated, and optimized for different cases and applications. With increasingly higher parallelism
leading to processing becoming bandwidth-bound, further speeding up iterative k-means would require data reduction using
sampling at the cost of accuracy.

We examine the use of speculation techniques to expedite the convergence of the iterative k-means algorithm without
affecting the accuracy of the results. We achieve this by introducing two cooperative and concurrent phases: one works on
the overall input data, and the other speculates and explores the space faster using sampling. At the end of every iteration,
the two phases vote and choose the best centroids according to the objective function. Our speculative technique reduces
the number of steps needed for convergence without compromising accuracy and, at the same time, provides an effective
mechanism to escape local minima without prior initialization cost through resampling.

Keywords
K-Means, Speculative Execution, Sampling, AI for DB, Clustering, Parallelization, Algorithm Co-Design, Analytics

1. Introduction
K-means clustering is an unsupervised machine learning
algorithm used for grouping data points into a predefined
number of clusters. It is one of the well-known and
commonly used clustering algorithms, and despite being
formulated in the 1960s, it is still widely applicable and
practical due to its simplicity and effectiveness[1].

K-means. Given a dataset 𝑋 with 𝑑-dimensional real
entries, 𝑋 ⊂ ℝ𝑑, and a positive integer 𝑘, find a set of cen-
troids (means) 𝐶, 𝐶 ⊂ ℝ𝑑 such that the objective function
𝐼 minimizes the within-cluster sum of squares:

𝐼 (𝐶, 𝑋) = ∑
𝑥∈𝑋

𝑚𝑖𝑛𝑐∈𝐶||𝑥 − 𝑐||2 (Objective function)

This process is iterated until no points change their as-
signments or the number of assigned iterations runs
out. Well-known Lloyd’s [2] variant is described in Al-
gorithm 1.

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — Workshop on Applied AI for Database Systems
and Applications (AIDB’23), August 28 - September 1, 2023, Vancouver,
Canada
∗Corresponding author.
†
Work done entirely at EPFL.

‡
GitHub Repository.
Envelope-Open stefan.igescu@epfl.ch (S. Igescu); viktor.sanca@epfl.ch
(V. Sanca); eleni.zapridou@epfl.ch (E. Zapridou);
anastasia.ailamaki@epfl.ch (A. Ailamaki)
GLOBE https://viktorsanca.com (V. Sanca)
Orcid 0000-0002-4799-8467 (V. Sanca); 0000-0002-5025-6835
(E. Zapridou); 0000-0002-9949-3639 (A. Ailamaki)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Algorithm 1 K-means Clustering
1: Initialize k centroids randomly
2: repeat
3: Calculate the distance between each data point

and the centroids
4: Assign each data point to the nearest centroid
5: Update the centroids by computing the mean of

all points assigned to each cluster
6: until The centroids no longer move or a maximum

number of iterations is reached
7: Return the final clusters and centroids

We can distinguish two main steps: the assignment
step, which includes lines 3 and 4, and the update step,
which includes line 5. As this is an iterative algorithm,
there is a dependency between the assignment step and
the update step in both directions:

1. To update the centroids, we need the assignments
of all data points to centroids,

2. To update the assignments of all data points, we
need the information about centroids.

By processing all the data points, K-means has an overall
time complexity of 𝑂(𝑛 ⋅ 𝑑 ⋅ 𝑘) and space complexity of
𝑂(𝑛 ⋅ (𝑘 +𝑑))where 𝑛 is the number of data points, 𝑑 is the
data dimensionality, and 𝑘 is the set number of clusters.
In the case of large datasets, the cost is dominated by
the input cardinality. Even if the data were partitioned
and processed in a data-parallel memory-bound way, the
algorithm’s complexity and the required number of steps
for convergence would remain the same.

To address the increasingly higher data volumes, and

https://github.com/nefagi-01/DIAS-semester-project
mailto:stefan.igescu@epfl.ch
mailto:viktor.sanca@epfl.ch
mailto:eleni.zapridou@epfl.ch
mailto:anastasia.ailamaki@epfl.ch
https://viktorsanca.com
https://orcid.org/0000-0002-4799-8467
https://orcid.org/0000-0002-5025-6835
https://orcid.org/0000-0002-9949-3639
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

lower the computation time and memory capacity re-
quirements, a possible approach is to take a random
sample of the given dataset. Still, sampling trades off
accuracy for a more compact data representation, which
comes at a cost, as random sampling can lead to bias,
inadvertently skipping data points that would change
the clustering. A random sample cannot always and in
an unsupervised fashion without further information
represent the entire dataset. As a consequence, the fi-
nal centroids that are found might not be the ones that
correctly represent the initial dataset and minimize the
objective function. Selecting the sample size dictates the
tradeoff between execution time and centroid quality.
The more we want to improve performance, the smaller
the sample size has to be, sacrificing how representative
the resulting centroids are. Furthermore, more elaborate
sampling schemes to find a biased sample might intro-
duce overheads that are not compatible and maskable by
the algorithm throughput [3].

Ideally, while observing the iterative nature of the
algorithm and the mutual dependencies in the steps, let’s
suppose there exists an oracle that informs the next step
at no cost about the centroids it found, avoiding full data
access. This would allow full data skipping with just
the cost of assignment of data points to centroids. Let’s
suppose next that this oracle manages to look in the
future over several next steps and propose with some
uncertainty what the centroids after several iterations
should be. This would lead not only to data skipping but
full iteration skipping, in an ideal scenario reducing the
algorithm to a single step only and fast-forwarding all
the work.

In practice, such approaches exist under the umbrella
term of speculation, as in hardware in microproces-
sors [4], and have also recently been applied in the do-
main of complex analytical queries [5]. The key char-
acteristic of speculation is to achieve seamless and fast
speculative steps and have a lightweight mechanism to
detect and repair wrong proposed decisions while avoid-
ing performance degradation.

We take the idea of speculation, tailor it for iterative
K-means, introduce a novel way of guiding the objective
function to converge in fewer steps without sacrificing
the resulting quality, and provide the following contribu-
tions by:

• formulating speculative K-means algorithm in
section 3 and show how to break iterative step
dependencies,

• bridging speculative actions which are approxi-
mate with exact execution phase in section 4, and
demonstrate cooperative, iterative dependency
reconstruction,

• showing that the speculative phase is enhanced

by sampling in section 5, which allows the spec-
ulative algorithm to quickly explore subsets of
data and escape local minima,

• evaluating our approach across datasets in sec-
tion 6, showing that speculative k-means con-
verge on average in fewer steps towards the opti-
mal solution, often finding a better solution than
methods with specialized centroid initialization
phases.

We provide a novel perspective for tuning a well-
established unsupervised learning algorithm and an ini-
tial blueprint for using speculation in iterative algo-
rithms.

2. Background and Related Work
K-means clustering is a widely used unsupervised ma-
chine learning algorithm for data partitioning and clus-
tering, and this section provides an overview of the basic
K-means algorithm, the existing initialization techniques,
the approximations which can be done to improve per-
formance, and the parallelization methods. We outline
the desirable characteristics of these approaches and de-
scribe speculation for breaking dependencies in analyti-
cal queries [5].

2.1. Clustering quality: inertia
Inertia measures how well the K-means algorithm clus-
tered a dataset. Inertia 𝐼 is defined as the sum of squared
distances of data points 𝑋 to their closest cluster center
𝑋 and weighted if required (𝑤):

𝐼 (𝐶, 𝑋) = ∑
𝑥∈𝑋

𝑚𝑖𝑛𝑐∈𝐶 𝑤𝑥,𝑐 ⋅ ||𝑥 − 𝑐||2 (Inertia)

It is exactly the objective function (Equation Objective
function) of the K-Means algorithm, where a good model
is one with low inertia for a given number of clusters
𝑘, as naturally, as the number of clusters increases the
inertia would decrease.

2.2. K-means++: improved initialization
K-means is sensitive to centroid initialization. In its clas-
sical form, the algorithm starts by randomly assigning a
set of centroids, which can lead to suboptimal solutions
when centroids are not carefully selected. To mitigate
this, it is important to use an appropriate initialization
strategy [6].

One such approach is K-means++ [7], which elects ini-
tial cluster centroids using sampling based on an empiri-
cal probability distribution that reflects the contribution

of the points to the overall inertia. This helps find the
global optimum and produce better quality clusters than
random initialization. In Algorithm 2, we describe the
steps for the centroid initialization.

Algorithm 2 K-means++ Initialization
1: Choose one center uniformly at random among the

data points.
2: for each data point x not chosen yet do
3: Compute 𝐷(𝑥), the distance between x and the

nearest center that has already been chosen.
4: end for
5: Choose one new data point at random as a new cen-

ter, using a weighted probability distribution where
a point x is chosen with probability proportional to
𝐷(𝑥)2.

6: repeat
7: Steps 2 to 5
8: until k centers have not been chosen
9: Return the initial centers have been chosen

The initialization involves the computation of the dis-
tances between each data point and the nearest center.
This is consequentially an expensive operation repeated
every time a new centroid is sampled. Therefore, all
the aforementioned benefits come to an initial time-cost
tradeoff and cost to pay before running the iterative clus-
tering phases of K-Means. This can be prohibitive in
particular applications, especially in the case of large
datasets.

2.3. Sampling: Mini-batch and online
K-means

Sampling-based approximations aim to improve perfor-
mance, usually execution time or memory constraints,
by using a randomized subset of the initial input data to
reduce the data volume. In addition, these algorithms are
practical when dealing with large datasets that would be
too costly to process fully in-memory in one go [8].

Mini-batch K-means is an iterative algorithm that uses
a subset of the data to update the cluster centers. At
each K-means iteration, a new mini-batch is sampled [9].
Online K-means is a streaming algorithm that updates
the cluster centers using one data point at a time [10].

These methods reduce the execution time or the
amount of memory needed to run K-means clustering.
However, this comes at a cost to the accuracy of the final
centroids found. The fact we are not using the entire
dataset to find the centroids leads to exploring a sub-
space of possible centroids and could lead to solutions
with higher inertia. Intuitively, when an unbiased sample
is taken, data populations that clustering was intended to
discover in the first place might be lost. Finally, elaborate

in-memory sampling schemes might be impractical and
costly, especially if the replaced computation via data
volume reduction does not match the sampling overhead
and overall throughput [3], or require workload-aware
and efficient online strategies [11].

Therefore, sampling uniformly at random provides a
data reduction and speedup strategy at the cost of im-
pacting the non-uniform distribution of clusters in the
original dataset.

2.4. Parallelization
With increasingly large datasets and system improve-
ments such as larger memory capacities, and parallel and
distributed architectures, one approach for addressing
K-means on large datasets is to adapt it to use available
hardware.

Distributed frameworks such as Spark [12, 13] and
MapReduce [14] take advantage of distributed compu-
tational resources to process large datasets quickly and
efficiently while keeping the dataset in memory in a scale-
out manner.

On the other hand, multi-processor setups and the
introduction of GPUs with higher memory capacities
were driving the formulation of scale-up implementa-
tions, which exploit available data and task parallelism
and high-bandwidth data access [15, 16].

Conceptually, the main goal of parallelization is to ef-
ficiently use abundant and available resources. Still, as
in the case of data parallelism, Amdahl’s law suggests
that an increase in resources often results in diminish-
ing returns [17]. Considering all the bottlenecks, such
as data exchange, data distribution disbalance, and com-
munication, especially in the critical sections, may lead
to resources remaining idle or underutilized. Adding
more resources does not necessarily lead to proportion-
ally faster execution.

Finally, parallelization does not change the algorithmic
complexity of the task. For example, the data-parallel for-
mulation conceptually just partitions the input data over
multiple workers, with defined synchronization over-
head. In the case of iterative algorithms and K-Means
in particular, there is a dependency between two steps
(Algorithm 1), where the order and sequence of iterations
must be executed one at a time, necessitating a full pass
over the data to proceed to the next step.

2.5. Speculative Execution for Analytics
Speculation for analytics [5] was introduced to strike a
balance between data and task parallelism and demon-
strate that idle hardware resources can be redirected to
breaking dependencies in complex queries that would
predominantly use data parallelism.

This novel processing paradigm accelerates inter-
dependent queries using speculation through approx-
imate query processing and subsequent repair mecha-
nism to achieve results equivalent to purely data-parallel
execution. The speculative technique used allows for
relaxing dependencies between queries, increasing task
parallelism, and reducing end-to-end latency. It works
by detecting dependencies between outer and inner sub-
queries and creating two separate execution paths: one
for speculative execution and one for validation/repairs.
The speculative execution path executes the outer query
by resolving any cross-query conditionswith the help of a
branch predictor. At the same time, the validation/repair
execution path performs three steps: (i) it fully computes
the inner query, (ii) it validates the speculative decisions,
and (iii) it repairs the results in case of mispredictions.
This technique decouples the inner and outer queries and
allows them to run in parallel or share data and operators
if they process rows from the same table.

Speculation allows better resource utilization through
data and task parallelism and subsequently opens op-
portunities to use techniques such as scan sharing or
shared-query execution. Still, a lightweight speculation
and repair mechanism is required to exploit proposed
desirable optimization opportunities.

3. Speculative K-Means
Taking into account the desirable characteristics of the
K-means algorithm, an improved algorithm would:

O1: reduce the number of steps and time needed to
converge,

O2: achieve equal or better centroid result quality,

O3: avoid costly initialization while escaping local
minima.

These objectives are seemingly contradictory and mu-
tually conflicting. O1 would imply an approximate so-
lution that conflicts with O2, while O3, in conjunction
with O1, would result in approximate and potentially sig-
nificantly reduced result quality. There is a clear tradeoff
between the resulting quality and necessary (pre)compu-
tation time [7].

To bridge these objectives, we propose a speculative
formulation where in conjunction with the exact execu-
tion, a speculative stepwill be happening that satisfies the
objectives and terminates with equal (or better) cluster
characteristics, i.e., lower inertia as a measure of cluster-
ing quality (Equation Inertia)We refer to Algorithm 1 and
assignment step (A) in lines 3 and 4, and update step
(B) in line 5, and the existence of strict cyclical depen-
dency between A and B that we want to break and allow

more quickly traversing the chain of iterations towards
the final solution.

Speculative K-Means (Figure 1, Algorithm 3) combines
the regular (slow) and speculative (fast) execution in a
task-parallel manner. Fast exploration is based on sam-
pling, managing to finish multiple iterations until syn-
chronization with the single slow iteration. The key
component to speculation is merging and repairing at
the end of every slow iteration. At that point, centroids
from fast execution (from an unreliable oracle) are com-
pared with slow execution using inertia (subsection 2.1),
and better centroids are selected.

Figure 1: Conceptual Design of Speculative K-means

The fast worker allows no-regret exploration and poten-
tially avoids traversing the entire chain to reach the final
solution by skipping some intermediate steps using the
sample-based prediction of clusters.

When the slow execution finishes processing its stage,
the fast one is interrupted. Both the fast and slow execu-
tion propose the centroids they found, and the best ones
are chosen by computing their inertia over the entire
dataset (i.e., objective function). The centroids which
lead to lower inertia are selected. This procedure is re-
peated until convergence or algorithm termination, start-
ing from the newly selected centroids.

Algorithm 3 K-means Clustering using Speculation
1: Initialize centroids 𝑐𝑖 randomly
2: Create two workers: slow and fast
3: Run 1 Assignment stage and 1 Update stage on the

slow execution starting from 𝑐𝑖
4: Run as many as possible stages on a sample of the

dataset on the fast execution starting from 𝑐𝑖
5: When slow execution finishes, stop fast execution.

Get the proposed centroids 𝑐𝑠𝑙𝑜𝑤, 𝑐𝑓 𝑎𝑠𝑡
6: Compute the inertia 𝐼 (𝑋 , 𝑐𝑠𝑙𝑜𝑤), 𝐼 (𝑋 , 𝑐𝑓 𝑎𝑠𝑡) on the en-

tire dataset 𝑋
7: 𝑐𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐(𝐼 (𝑋 , 𝑐𝑠𝑙𝑜𝑤), 𝐼 (𝑋 , 𝑐𝑓 𝑎𝑠𝑡)) select centroids

minimizing the inertia.
8: while not (centroids no longer move | a maximum

number of iterations is reached) do
9: repeat 2 to 7

10: end while
11: Return the final clusters and centroids

We satisfy the objectives (Algorithm 3) using collabora-
tively:

O1: sampling-based speculation to guide the objective
function (lines 4, 5),

O2: merge and vote on better centroids along the slow
step (lines 6, 7),

O3: space exploration by dropping-out points using
sampling (line 4).

This approach is not slower to converge than a standard
K-means in terms of steps, and it produces better clusters
than approximate methods thanks to the centroid voting
and consolidation, which we demonstrate in section 4.

Furthermore, it can converge closer to the global
minimum without costly centroid initialization as in K-
means++, as the centroids are resampled each time during
the fast execution. Since the K-means quality is strictly
conditioned by its initialization, by resampling the cen-
troids from which the fast execution starts each time, we
study the effect of avoiding local optima through random
space exploration in section 5.

4. Exploitation: Fast and Accurate
Firstly, we are interested in the qualitative behavior of
speculative K-means against vanilla K-means (Lloyd’s
algorithm) and K-Means++ as an approach with a bet-
ter initialization strategy. We observe and compare the
evolution of the clusters’ inertia against the computed
estimate of the optimal clustering and its respective iner-
tia. This will be essential to understand if our method is
reducing the inertia faster than existing methods and to
verify where our method is converging with respect to
the global minimum and, in particular, if it can reach it.

As the fast execution (Figure 1) performs several as-
signments and update steps, allowing it to converge
faster, the slow execution computes the result equiva-
lent to vanilla K-Means on the entire dataset. This means
that the fast execution can suggest centroids that are
closer to the final solution, reducing the total number of
steps needed to converge and, consequently, the overall
time of execution. At the same time, the quality of the
final solution is still comparable to the case when work-
ing with the entire dataset, thanks to the slow execution,
which can find the best (naive) position of the centroids
to reduce the inertia in case of bad speculation.

4.1. Breaking the K-means dependencies
The vanilla (naive) K-means Algorithm 1 consists of two
main steps: the assignment step and the update step. The
assignment step includes lines 3 and 4, while the update
step includes line 5. The two steps are dependent on each

other, as the assignment of data points depends on the
current cluster centers, which are, in turn, updated based
on the assignments. This creates a cyclical pattern in the
K-means algorithm.

We can group the K-means steps into stages, each
containing an Assignment step (A) and an Update step
(B), with many of these stages repeated in the K-means
algorithm until convergence. One way to speculate is to
try to run parallel the Assignment and the Update step,
thus reducing the overall time of execution of a single
stage. In particular, we would speculate the result of
the Assignment (or the Update) allowing the consequent
Update (or the Assignment) to start running concurrently.
Finally, we could perform a repair stage once the correct
result of the Assignment (or the Update) is available.

Figure 2: Evolution of ratio between the execution time of
Assignment and Update steps.

After a study of the time of executions (Figure 2), the
Assignment step takes more time than the Update step.
In particular, the ratio between the time of an Assign-
ment step and the time of the Update step increases with
𝑘. Consequently, the parallelization of Assignment and
Update in each stage is inefficient since the gain of added
task parallelism is irrelevant when 𝑡𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ≫ 𝑡𝑈𝑝𝑑𝑎𝑡𝑒.

Therefore, we must use an approach that allows fast
speculation (and repair) when implementing iterative
speculation. Instead of running Assignment and Update
concurrently for each stage, we run two independent
and concurrent executions of K-means (Fast and Slow,
Figure 1). Both executions start with the same given
centroids, but: the slow execution processes one stage
consisting of one Assignment stage and one Update step
using the full dataset, while the fast execution runs on
a sample of the dataset and is able to process multiple
stages in the same amount of time as the slow execution.
As soon as the slow execution finishes, the fast execu-
tion is interrupted, guaranteeing that they both take the

same amount of time. Finally, we compare the centroids
proposed by both executions, compute the overall objec-
tive function over the entire dataset given both proposed
centroids from Fast and Slow execution, and pick the cen-
troids with the lowest inertia. This step can be done in a
single scan of the data, overlapping it with the mandatory
step of the Slow execution path.

The fast execution of the K-means algorithm is used
to speculate and predict an approximation of future cen-
troids that the slow execution may encounter by travers-
ing a speculative path. If the prediction is correct, it will
allow skipping several stages of the K-means algorithm,
breaking the cyclic dependency. This is possible since it
works on a subset of the dataset, allowing it to execute
faster and dive deeper into the algorithm, guiding the
objective faster to convergence. However, as shown in
section 2.3, the approximate approach can lead to less
accurate results when applied to the full dataset due to
using an unbiased data sample. To address this issue,
Slow execution is deployed to compute the result using
the entire dataset, ensuring that Speculation K-means
will converge toward a solution that considers the entire
dataset. Thus, the two executions have different pur-
poses, with the fast execution being used to speculate
and the slow execution being used to ensure accuracy.

In Figure 1, the green shapes represent the steps exe-
cuted, whereas the red ones indicate the steps we would
save in case the speculation of the Fast execution suggests
a set of centroids with lower inertia.

The main difference between the speculative execution
used in [5], discussed in section 2.5, and the Speculation
K-means technique is that in the former, the speculation
is used to break the dependency between the inner and
outer query to increase parallelism, while in the latter,
the speculation is used to predict possible future results
(i.e., centroids). Therefore, we are breaking the depen-
dencies in a different sense: we are traversing the entire
chain of dependencies to arrive at the final result. Addi-
tionally, the correction phase in our approach ensures an
accurate convergence of a sequence of actions in an iter-
ative algorithm, rather than just the result of dependent
subqueries.

In Figure 3, we compare vanilla K-Means, K-Means++
(with better initialization), and speculative K-means as
proposed until now. All start from the same initial cen-
troid, except K-Means++, which has an additional step of
initial centroid computation which is not represented. Af-
ter this, they compute 𝑘 = 8 clusters on the OpenML [18]
Dataset 23395 [19]. OpenML Dataset 23395 and run for a
maximum of 50 stages. Additionally, the optimal inertia
achievable is estimated by running 50 times K-means++
with different initial centroids and then picking the solu-
tion with minimum inertia. The run with speculation is
more efficient, as it reaches convergence approximately
after 10 stages, while the vanilla implementation takes

Figure 3: Evolution of the inertia of two runs starting from
the same initial centroids: one based on Vanilla K-means, the
other on Speculation K-means, and K-Means++. The Figure
illustrates the estimated optimal achievable inertia and the
inertia of the centroids suggested by the slow run and the fast
run at each stage.

30 stages. Furthermore, the accuracy of the final result
is the same for both executions, showing how the slow
execution and the correction phase ensure a comparable
final inertia.

4.2. Reconstructing the dependencies
As the algorithm approaches convergence, the accuracy
and effectiveness of the speculation carried out by the
fast execution decrease, as shown in Figure 3. In the
initial stages, the inertia of the centroids proposed by the
fast execution is significantly smaller than that of the cen-
troids of the slow execution. Still, it becomes comparable
in the following 3/4 stages. Additionally, as we approach
convergence, the inertia of the fast execution’s centroids
is constantly greater than that of the slow execution. This
is because the last stages of K-means before convergence
need the entire datasets to compute the exact position of
the centroids, and we cannot do this by using a sample
of it. This leads us to question what to do with the fast
execution and if we can improve its prediction even dur-
ing the last stages before convergence. This is especially
noticeable, as in this formulation speculative approach
cannot offer better result quality, similar to K-means++.

First, we propose keeping track of the previously pre-
dicted centroids in fast execution. Every time a fast exe-
cution starts, we sample a different subset of the dataset it
will work on. Each subset will lead to a different centroids
prediction. Therefore we decide to keep their memory of
them using a tracing method, which consists in updating
the newly discovered 𝑐𝑓 𝑎𝑠𝑡 centroids with the 𝑐𝑝𝑎𝑠𝑡𝑓 𝑎𝑠𝑡 past
centroids in the following way:

𝑐𝑓 𝑎𝑠𝑡 = 𝑞 ⋅ 𝑐𝑓 𝑎𝑠𝑡 + (1 − 𝑞) ⋅ 𝑐𝑝𝑎𝑠𝑡𝑓 𝑎𝑠𝑡 (1)

https://www.openml.org/d/23395

Again, we can see how 𝑞 plays the role of a hyperpa-
rameter which determines how much we should keep
track of the past speculated centroids. This type of trac-
ing leads to an exponential decay of the memory of the
past centroids. The reason why this method should help
the prediction of the fast execution in the late stages of
K-means is that it tries to combine the contribution of
different speculation passes. Suppose the problem is that
a dataset sample cannot represent the entire dataset in
the computation of the centroids. In that case, combining
the contribution of different samples should mitigate this
limitation. In Figure 4, we can see how with tracing, the
prediction of the fast execution is more accurate even
in the last stages and has lower variance guided by past
execution.

Figure 4: Evolution of the inertia of two runs starting from
the same initial centroids: one based on Vanilla K-means, the
other on Speculation K-means with tracing 𝑞 = 0.5, without
centroid resampling.

An alternative approach is to gradually increase the
sample size of the data points that the fast execution al-
gorithm is working with. As previously mentioned in
subsection 2.3, there is a trade-off between performance
and accuracy when using subsamples in K-means, with
smaller sample sizes leading to faster stages but less ac-
curate predictions. At the beginning of the algorithm, it
may be beneficial to use a small sample size to quickly
explore different speculation paths and arrive at centroid
estimates that are close to the final solution. In this phase,
the accuracy of the predicted centroids is not as impor-
tant as being able to delve into the speculation path for
numerous stages. However, as we approach convergence,
it becomes more crucial to have accurate speculation. In
this phase, we need to make small adjustments to the
centroids to find their optimal positions, and to do this,
we need access to the full dataset. Thus, we can gradually
increase the sample size to reduce the number of stages
processed by the fast execution (which is not a significant
concern at this point since we are close to convergence)

and improve the accuracy of our predictions by having
an increasing complete view of the data.

While this approach allows fast convergence informed
by previous speculative steps, Figure 4 demonstrates that
speculation does not yet approach the inertia as that of
dedicated centroid initialization (K-Means++).

5. Exploration: Escaping Local
Minima

Figure 3 illustrates that both the Speculation K-means
and the vanilla version do not converge to the optimal
minimum nearly as K-Means++ does in these runs. As
discussed in Section 2, this corroborates that the initial-
ization of K-means plays a crucial role in determining the
quality of the final clustering. Initialization techniques
like K-means++ improve the final results, but have an
initial time cost (that we do not include in the compar-
ison). We propose an alternative approach that avoids
this initial cost while still leading closer to a global mini-
mum by escaping the initial centroids through fast and
randomized space exploration.

Figure 1 and Algorithm 3 show how the fast execu-
tion starts from the same centroids as the slow execution.
However, by doing this, both executions are conditioned
by the first initialization of the centroids. Instead, we
modify our speculative approach and fast execution to
start from a slightly different set of centroids than the
slow one. This allows taking advantage of the fast execu-
tion to explore more of the solution space, searching for
global minima. At the same time, in the repair and consol-
idation stage, where we compare the found centroids by
computing their inertia with the slow phase, the results
will be at least as good as the vanilla approach if more
aggressive exploration failed. This method is similar to
having a vanilla K-means executed many times from dif-
ferent initial centroids and picking the best-obtained so-
lution. Still, it is implemented only on the fast execution,
and it is distributed over many speculative steps.

Each time before starting a fast speculation phase, we
sample 𝑘 data points from the dataset as new initial cen-
troids 𝑐′𝑖 and modify the starting centroids of the fast
execution by combining the given initial centroids and
the sampled ones linearly:

𝑐𝑖 = 𝑝 ⋅ 𝑐𝑖 + (1 − 𝑝) ⋅ 𝑐′𝑖 (2)

The value 𝑝 determines how intensely wewant to perturb
and mix the initial centroids: the closer it is to 0, the more
random the centroids are, and the more we explore the
solution space. This parameter expresses the degree of
exploration we want from the fast execution. It can be
set statically before the K-means execution to an optimal
value which may vary from dataset to dataset, or it can be
adapted at run time by adapting the randomness based on

the quality of solutions we are finding stage after stage.
In Figure 5 we can see how using the centroid resampling
technique with 𝑝 = 0.8 improves the inertia of the final
clusters.

Figure 5: Evolution of the inertia starting from the same
initial centroids: one based on Vanilla K-means, the other
on Speculation K-means with centroid resampling, and K-
Means++ with its own initialization step, 𝑝 = 0.8.

With centroid resampling and starting centroid perturba-
tion, we achieve guided and bounded randomization such
that the increased exploration opportunities potentially
break the bad initialization without an explicit and ex-
pensive initial centroid computation of K-Means++. Still,
while this speculative approach is probabilistic, it will
not be worse than the vanilla K-means, but it might not
yield better results in all cases, conditional on available
hyperparameters such as perturbation and sampling rate.

6. Holistic Evaluation
In this section we evaluate our speculative K-means
formulation against vanilla (Lloyd’s) K-means and K-
means++ with a better initialization step. We focus on
comparing the parameters such as inertia and the num-
ber of stages before convergence to allow an algorithmic-
oriented analysis of speed and quality of clustering.

We implement a prototype of speculative K-Means us-
ing Python and compare it against the K-means baselines
available in the widely used Scikit-learn [20] machine
learning library in Python.

6.1. Datasets
The datasets on which the evaluations are done are re-
trieved from OpenML [18] an online platform for ma-
chine learning research, which provides a database of
machine learning datasets. We query the platform for
10 datasets that follow the conditions shown in Table 1.
This allows us to report an averaged-out summary of

our findings that is not biased over a given dataset, to
improve the empirical evaluation using datasets available
on the platform.

NumberOfInstances > 5 ⋅ 105
NumberOfInstances < 107

NumberOfNumericFeatures > 5
NumberOfNumericFeatures < 50
NumberOfMissingValues = 0

NumberOfSymbolicFeatures = 0

Table 1
OpenML datasets features used in the evaluation.

6.2. Faster convergence with fewer stages
In this section, evaluate how speculative K-means can
improve the performance of the vanilla K-means by reduc-
ing the number of stages required to reach convergence.

We conduct experiments on 10 datasets with the char-
acteristics listed in Table 1, using both vanilla K-means
and speculative K-means with a number of clusters 𝑘
ranging from 3 to 10. We measure the number of stages
each algorithm took to reach convergence, which we de-
fined as the point when the relative difference in inertia
between two stages is below 10−3 or when the assign-
ments are not changing anymore. Next, we computed
the ratio of the number of stages taken by speculative K-
means to the number of stages taken by vanilla K-means
and plotted a histogram of these ratios. Additionally, we
computed the ratio of the inertia of the final centroids
obtained from the two algorithms.

In this setup, the goal is to achieve most of the stages
ratios below the value of 0.5, and ideally closer to 0. This
is because we are trying to reduce the convergence time
and to achieve a 50% reduction in overall time, it is, there-
fore, necessary to reduce the number of stages by at least
half. The results, shown in Figure 6, demonstrate that
speculative K-means is often successful in reducing the
number of stages to less than half the original amount in
most cases, with most of the ratios in the range of 0 to
0.5.

On the other hand, the ratio of inertia on the same
graph is better when the value approaches 1, showing
that the quality of the final centroids obtained using Spec-
ulative K-means is not compromised, and may even be
improved, despite the increased performance. This sug-
gests that Speculative K-means has the potential to signif-
icantly improve the efficiency of the K-means algorithm
without sacrificing solution quality.

Previously, we showed that the speculation technique
can significantly reduce the number of stages required
for convergence in K-means clustering. However, there
are some time offsets to consider due to the repair and
speculation processes, including sampling a subset of

Figure 6: The histograms show the distribution of the ratio of
the number of stages in speculative K-means to the number of
stages in vanilla K-means (orange) and the ratio of the inertia
in speculative K-means to the inertia in vanilla K-means (blue).
The speculative execution used 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 = 0.01 and
tracing 4.2 with 𝑞 = 0.5.

points for the fast execution and the repair step, which is
the most time-consuming due to the computation of iner-
tia of centroids from the fast and slow execution threads.
This computation is similar in complexity to the Assign-
ment step, the most time-consuming step in K-means,
as shown in Figure 2. In a simple implementation, there
would be 1 Assignment step for the slow execution and 2
Inertia steps for the repair, totaling 3 steps comparable to
the Assignment. This can be reduced to 2 steps by using
the results from the inertia computation in one stage to
compute the Assignment step in the next stage.

As the Assignment step is the most time-consuming,
each stage in Speculative K-means requires approxi-
mately double the time of a stage in Vanilla K-means
at most. While halving the total number of stages can
compensate for the increased time per stage, the overall
time of execution would still be the same. Improving
the computation of inertia through better parallelization,
evaluation using hardware accelerators, using techniques
such as scan sharing, or alternative approaches such as
avoiding explicit computation of inertia could further
improve the performance of Speculative K-means. These
approaches remain part of future work and directions.

6.3. Exploration and escaping the local
minima

In this section, we show how Speculative K-means can
escape local minima by using the resampling centroid
technique described in section 5. To demonstrate this,
we conducted executions with increasing values of 𝑘 in a
range of values between 3 and 10. We run three versions
of K-means: vanilla K-means, K-means++, and Specu-

lative K-means with centroid resampling. For all exe-
cutions, we also compute the optimal solution and the
respective inertia and then calculate the ratio of the in-
ertia of the solution found by each of the three methods
to the optimal one. Finally, we plotted histograms of
these ratios for all three methods. In these executions,
Vanilla and Speculative K-means always started from
the same initial centroids, whereas K-means++ used its
initialization technique.

Figure 7: The figure shows the ratio between the inertia
of the centroids found by Vanilla, Speculative K-means, and
K-means++ (ratio_pp) to the optimal inertia. Speculative K-
means used a 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 = 0.01 and centroids resampling
with 𝑝 = 0.5

As depicted in Figure 7, Speculative K-means had the
highest number of runs where the ratio was close to 1,
indicating that it was most successful in reaching closer
to the global minimum inertia. Then it is followed closely
by K-means++ and finally by Vanilla K-means.

These measurements suggest that Speculative K-
means, with centroid resampling, is indeed able to escape
local minima without an initial time cost. In this partic-
ular case, it also outperforms K-means++ due to faster
convergence and better exploration.

On the other hand, the same observation holds when
the distribution of the number of steps is plotted in Fig-
ure 8. While this corroborates that the initialization step
is important, as K-means++ requires fewer steps than
the vanilla K-means, speculation allows convergence in
fewer steps.

6.4. Adversarial dataset evaluation
Finally, we evaluate the performance of speculative K-
Means clustering over typical adversarial datasets de-
picted in Figure 9. K-means algorithm family cannot
provide satisfactory clustering and data separation that

Figure 8: The figure shows the histogram of the number
of steps required by Vanilla, Speculative K-means, and K-
means++ (steps_pp) to the optimal inertia. Speculative K-
means used a 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 = 0.01 and centroids resampling
with 𝑝 = 0.5.

follows the given patterns. Still, using these kinds of
datasets allow for exploring the impact of initialization
and speculative execution.

1. 2.

3. 4.

5. 6.

Figure 9: Adversarial/Difficult datasets: 1. noisy circles, 2.
varied, 3. noisy moons, 4. anisotropic, 5. no structure, 6. blobs.

We first compare the inertia obtained by Vanilla K-
Means, K-Means++, and Speculative K-Means in Fig-

ure 10. While the ideal inertia cannot be captured by
the objective function of the K-means clustering, the re-
sults show that Speculative K-Means is always better
or equal to Vanilla K-Means. On the other hand, the
default parameters of the exploration mechanism have
not always escaped the initial centroids in two cases, in
comparison to K-Means++. This motivates a more de-
tailed future case study regarding adaptive sampling and
runtime tuning of parameters that we introduced in the
speculative version of K-means.

Figure 10: Final inertia comparison over adversarial datasets
for different clustering methods.

Still, the number of steps to convergence, respectively
after the initialization step for K-Means++, as presented
in Figure 11 demonstrates that Speculative K-Means al-
lows consistently faster convergence with fewer iterative
steps.

Figure 11: Number of steps to convergence over adversarial
datasets for different clustering methods.

We have extensively evaluated our approach against
two baselines (K-means++ and vanilla K-Means) and mul-
tiple datasets, and we demonstrated our initial hypoth-
esis that speculation bridges faster convergence with-
out loss of accuracy and allows probabilistic exploration
to allow escaping local minima without prior initializa-
tion. Future directions include a thorough evaluation
of hardware-oriented optimizations, resource allocation,
and the impact of speculative execution on the overall
parallel execution cost.

7. Conclusion
Despite K-Means being a long-standing and well-studied
machine learning algorithm, systems and data analytics-
inspired tuning and optimizations such as speculation
can bridge strict tradeoffs between different desirable
characteristics of algorithm variants. We combine ran-
domized space exploration based on sampling to allow
escaping local minima while achieving strictly equal or
better results than the original K-Means formulation. We
break the cyclic dependency in the iterative K-Means for-
mulation while preserving the original algorithm output
quality.

The key characteristic of speculative K-Means is
that while phases are concurrently working on opti-
mizing task-local objectives, cooperative merging and
lightweight repair designed for speculation for iterative
algorithms allows merging and tuning to the desired
objective function. We extend speculative execution in
data analytics with the first iterative machine learning
algorithms and combine initially conflicting but advan-
tageous methods through cooperative algorithmic and
system design.

Acknowledgments
We thank the anonymous reviewers for their insightful
comments and detailed feedback. This work has been
partially supported by Facebook Next-generation Data
Infrastructure Research Award (2021).

References
[1] A. K. Jain, Data clustering: 50 years beyond

k-means, Pattern recognition letters 31 (2010)
651–666.

[2] S. Lloyd, Least squares quantization in pcm,
IEEE transactions on information theory 28 (1982)
129–137.

[3] V. Sanca, A. Ailamaki, Sampling-based aqp in
modern analytical engines, in: Data Manage-
ment on New Hardware, DaMoN’22, Association

for Computing Machinery, New York, NY, USA,
2022. URL: https://doi.org/10.1145/3533737.3535095.
doi:10.1145/3533737.3535095.

[4] J. L. Hennessy, D. A. Patterson, Hardware-based
speculation, in: Computer Architecture, Sixth Edi-
tion: A Quantitative Approach, 6th ed., Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2017, pp. 208–217.

[5] P. Sioulas, V. Sanca, I. Mytilinis, A. Ailamaki,
Accelerating complex analytics using specula-
tion, 2021. URL: https://www.cidrdb.org/cidr2021/
papers/cidr2021_paper03.pdf.

[6] P. Fränti, S. Sieranoja, How much can k-means
be improved by using better initialization
and repeats?, Pattern Recognition 93 (2019)
95–112. URL: https://www.sciencedirect.com/
science/article/pii/S0031320319301608. doi:https:
//doi.org/10.1016/j.patcog.2019.04.014.

[7] D. Arthur, S. Vassilvitskii, K-means++: The ad-
vantages of careful seeding, volume 8, 2007, pp.
1027–1035. doi:10.1145/1283383.1283494.

[8] J. Bejarano, K. Bose, T. Brannan, A. Thomas,
K. Adragni, N. K. Neerchal, G. Ostrouchov, Sam-
pling within k-means algorithm to cluster large
datasets, UMBC Student Collection (2011).

[9] D. Sculley, Web-scale k-means clustering, in: Pro-
ceedings of the 19th International Conference on
World Wide Web, WWW ’10, Association for Com-
puting Machinery, New York, NY, USA, 2010, p.
1177–1178. URL: https://doi.org/10.1145/1772690.
1772862. doi:10.1145/1772690.1772862.

[10] L. Bottou, Y. Bengio, Convergence properties of
the k-means algorithms, in: G. Tesauro, D. Touret-
zky, T. Leen (Eds.), Advances in Neural Informa-
tion Processing Systems, volume 7, MIT Press, 1994.
URL: https://proceedings.neurips.cc/paper/1994/
file/a1140a3d0df1c81e24ae954d935e8926-Paper.pdf.

[11] V. Sanca, P. Chrysogelos, A. Ailamaki, Laqy: Effi-
cient and reusable query approximations via lazy
sampling, 2023, p. 15. doi:10.1145/3589319.

[12] B. Wang, J. Yin, Q. Hua, Z. Wu, J. Cao, Paralleliz-
ing k-means-based clustering on spark, in: 2016
International Conference on Advanced Cloud and
Big Data (CBD), 2016, pp. 31–36. doi:10.1109/CBD.
2016.016.

[13] I. Kusuma, M. A. Ma’Sum, N. Habibie, W. Jatmiko,
H. Suhartanto, Design of intelligent k-means based
on spark for big data clustering, in: 2016 inter-
national workshop on Big Data and information
security (IWBIS), IEEE, 2016, pp. 89–96.

[14] W. Zhao, H. Ma, Q. He, Parallel k-means clustering
based on mapreduce, in: Cloud Computing: First
International Conference, CloudCom 2009, Beijing,
China, December 1-4, 2009. Proceedings 1, Springer,
2009, pp. 674–679.

https://doi.org/10.1145/3533737.3535095
http://dx.doi.org/10.1145/3533737.3535095
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper03.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper03.pdf
https://www.sciencedirect.com/science/article/pii/S0031320319301608
https://www.sciencedirect.com/science/article/pii/S0031320319301608
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2019.04.014
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2019.04.014
http://dx.doi.org/10.1145/1283383.1283494
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/1772690.1772862
http://dx.doi.org/10.1145/1772690.1772862
https://proceedings.neurips.cc/paper/1994/file/a1140a3d0df1c81e24ae954d935e8926-Paper.pdf
https://proceedings.neurips.cc/paper/1994/file/a1140a3d0df1c81e24ae954d935e8926-Paper.pdf
http://dx.doi.org/10.1145/3589319
http://dx.doi.org/10.1109/CBD.2016.016
http://dx.doi.org/10.1109/CBD.2016.016

[15] Y. Zhang, Z. Xiong, J. Mao, L. Ou, The study of
parallel k-means algorithm, in: 2006 6th World
Congress on Intelligent Control and Automation,
volume 2, IEEE, 2006, pp. 5868–5871.

[16] R. Farivar, D. Rebolledo, E. Chan, R. H. Campbell, A
parallel implementation of k-means clustering on
gpus., in: Pdpta, volume 13, 2008, pp. 212–312.

[17] Rules of thumb in data engineering, in: Proceedings
of 16th International Conference on Data Engineer-
ing (Cat. No. 00CB37073), IEEE, ????, pp. 3–10.

[18] J. Vanschoren, J. N. van Rijn, B. Bischl, L. Torgo,
Openml: networked science in machine learning,
SIGKDD Explorations 15 (2013) 49–60. URL: http://
doi.acm.org/10.1145/2641190.264119. doi:10.1145/
2641190.2641198.

[19] Openml dataset 23395, ???? URL: https://www.
openml.org/d/23395.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duch-
esnay, Scikit-learn: Machine learning in Python,
Journal of Machine Learning Research 12 (2011)
2825–2830.

http://doi.acm.org/10.1145/2641190.264119
http://doi.acm.org/10.1145/2641190.264119
http://dx.doi.org/10.1145/2641190.2641198
http://dx.doi.org/10.1145/2641190.2641198
https://www.openml.org/d/23395
https://www.openml.org/d/23395

	1 Introduction
	2 Background and Related Work
	2.1 Clustering quality: inertia
	2.2 K-means++: improved initialization
	2.3 Sampling: Mini-batch and online K-means
	2.4 Parallelization
	2.5 Speculative Execution for Analytics

	3 Speculative K-Means
	4 Exploitation: Fast and Accurate
	4.1 Breaking the K-means dependencies
	4.2 Reconstructing the dependencies

	5 Exploration: Escaping Local Minima
	6 Holistic Evaluation
	6.1 Datasets
	6.2 Faster convergence with fewer stages
	6.3 Exploration and escaping the local minima
	6.4 Adversarial dataset evaluation

	7 Conclusion

