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Abstract
Given the large amount of data that resides in relational database management systems (DBMS) and the fact that the DBMS
often run on powerful servers, there exist considerable efforts for integrating machine learning (ML) support into the DBMS.
This is particularly attractive in the explorative phase of data analytics that experiments with different ML algorithms on
various subsets of the data. However, collocating ML and query processing on the same machine requires a scheduling
mechanism that considers resource consumption, reasonable response times for interactive learning and the option to exploit
both CPU and GPU. We propose DBMLSched, a scheduling mechanism that performs ML runtime prediction whenever
possible and carefully monitors jobs and resources in the system, dynamically allocating ML jobs to their optimal device and
pausing jobs if any performance interference occurs while at the same time avoiding starvation. Our preliminary results
show a considerably improved response time compared to executing ML jobs in their order of arrival with less negative
impact on concurrent queries.
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1. Introduction
Many popular machine learning frameworks including
PyTorch, TensorFlow, Pandas and Spark load data into
their own execution environments, often on the user’s
own limited machine [1, 2, 3, 4]. If the data resides in
a relational DBMS this involves expensive data transfer.
Thus, there is a rising trend to integrate parts of an ML
workflow inside the database engine to reap the bene-
fits of a near-data approach [5, 6, 7, 8, 9, 10]. However,
ML jobs deviate significantly from traditional database
workloads in their computational and resource require-
ments making it necessary to rethink how to perform
task scheduling.

In this paper, we focus on the exploratory phase of data
science often performed in an interactive mode, and that
experiments with a variety of ML learning jobs, exploring
various subsets of the available data and smaller data sets,
as a precursor to deciding which data sets and attributes
are relevant to the problem. Thus, in our system, we
expect many different variations of ML algorithms that
run fairly short. We believe that it is beneficial to execute
such jobs in the DBMS, as to exploit the DBMS query
capacity to select data subsets and to avoid data trans-
fer. These ML jobs must then co-exist with traditional
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database queries.
Both ML and query scheduling has received wide

attention. However, ML scheduling often focuses on
long-running deep-learning jobs that are distributed on
GPU/CPU clusters [11, 12, 13, 14], while query scheduling
approaches do not take concurrent ML jobs into consid-
eration [15, 16].

To enable effective scheduling of explorative ML jobs
concurrently with DB queries, a scheduler needs to have
several capacities. First, it ideally can predict the run-
time of random ML jobs on both CPU and GPU [17]. As
a very general solution that is not restricted to specific
algorithms or systems’ traits, we suggest to exploit the
iterative behavior of ML algorithms and execute the first
few iterations of the learning loop as an indicator of how
long the overall job will take. Given that information
we can use a shortest-based first scheduling variation for
best average response times. Second, long-running jobs
should not delay short-running jobs but also not starve.
For that, we propose to split them into smaller jobs and
interleave them with other execution. Third, for some
jobs runtime prediction might not be possible, therefore
we also split them into smaller tasks should they run too
long. Fourth, concurrently running jobs might interfere
with each other. With many ad-hoc, short-running ML
algorithms using different ML libraries and packages, a
deep analysis of the programs and detailed distribution of
tasks to compute resources for concurrency is not feasi-
ble. Instead, we propose a reactive scheduler that reduces
concurrency whenever interference is detected. Finally,
ML jobs can also interfere with concurrent DB queries.
The scheduler must ensure that concurrent query pro-
cessing is not significantly impacted by a learning task,
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Figure 1: Execution time of concurrent ML jobs

in particular when it is executing on the CPU. Again, we
propose the scheduler to be reactive and pause learning
whenever database queries experience too much delay.

We have integrated DBMLSched, an initial implemen-
tation of these ideas, into AIDA [8], a Python-based in-
database analytic system residing inside a database en-
gine. In our preliminary evaluation, DBMLSched was
able to provide response times that were up to 2.9x faster
than if the jobs are executed in arrival order on the GPU
while impacting SQL queries to an acceptable degree.

2. Characteristics and Challenges
In the interactive environment that we envision, rela-
tional queries and ML jobs can be submitted simultane-
ously by different clients. In this section, we investigate
several characteristics and challenges of executing them
concurrently.

Inter-job Interference. We first have a look at how con-
current ML jobs can impact each other. Our experiments
use three neural networks NN1-NN3 with different in-
put sizes and iterations, along with a K-Means algorithm.
The ideal device for NN1, NN2 and K-Means is the GPU
due to the large amount of training data and complex
computations. NN3 is a very small job and runs faster
on the CPU.
Baseline Experiment. The first 4 columns in Figure 1

show the execution times for all four jobs when executed
individually on their preferred device. NN1 and K-means
use the GPU fully while NN2 only uses 78%. All three
require 10% CPU utilization. NN3 uses only 50% of the
CPU (half of the machine’s cores).
Concurrent Execution. We always run only one GPU-

based job given the large GPU utilization of each, and
then run NN3 concurrently on the CPU. In theory enough
CPU capacity is available to not incur any interference.
We consider two scenarios, one where the ML jobs run
within the same process using different threads, and the
other where the ML jobs run in different processes. ML
execution frameworks outside a DBMS will likely use

Figure 2: SQL Queries along k-means clustering

a multi-process (or even multi-container) approach for
isolation purposes. However, DBMS often run in a single
process; thus in-database analytics will likely be based
on multi-threading for concurrency. The right columns
of Figure 1 show the execution times for the various
combinations. The numbers above the bars indicate how
much slower the job runs compared to when it is run in
isolation.
We can see that the different combinations lead to

quite different interference, with no interference between
NN1 and NN3 as we originally anticipated, with signifi-
cant interference between NN2 and NN3 for both multi-
threading and multi-processing, and with K-means and
NN3 interfering little with multi-processing but signifi-
cantly with multi-threading. Running two NN3 jobs on
the CPU also causes interference. The underlying rea-
sons for these unexpected interferences can be related to
various causes such as bad concurrency within Python,
unexpected interactions between CPU and GPU, for in-
stance for NN2, or suboptimal assignment of cores to
different threads/processes.
Summary. While resource utilization can guide

scheduling decisions, interferences can occur unexpect-
edly. A system that needs to schedule unknown ML pro-
grams and wants to support arbitrary ML libraries whose
internals are not known, cannot simply concurrently run
multiple jobs even if sufficient resources appear to be
available. Hence, monitoring the system state and adjust-
ing scheduling dynamically will offer better flexibility.

Interference of ML jobs and SQL queries To illus-
trate how ML jobs affect concurrently executing SQL
queries, we have the DBMS host the data set of the TPC-H
benchmark and repetitively submit the medium-complex
query 17 of the benchmark. In parallel, we submit twice
a data science workflow also on the TPC-H data set. The
pre-processing phase, among other things, submits SQL
queries to retrieve the relevant learning data; learning
uses K-means clustering. Pre-processing always executes
on the CPU while the clustering job in the first submis-
sion executes on the CPU, and in the second submission
on the GPU.



Figure 2 shows query response time (pink bars), and
CPU utilization over time. The vertical lines mark when
the pre-processing and clustering start and end. Response
time for query 17 is 13 ms when it runs alone, increases
slightly when the workflow starts pre-processing (con-
current SQL queries), and then increases heavily when
learning starts on the CPU. In contrast, when we execute
clustering on the GPU, there is little impact on query
response time. The result is directly related to the CPU
utilization caused by the different phases of the data sci-
ence workload, that reaches 80% only when learning
occurs on the CPU.
For interactive environments, query response times

are an important metric. For short queries, this might not
be an issue but for queries where the base response time
is already close to a perceptible threshold, the impact due
to long-running ML jobs may be not acceptable, and it
might be desirable to hold back the execution of ML jobs.
However, real-time monitoring of the query response
times requires tight integration with the database exe-
cution engine and will have to be custom designed for
each database engine. Thus, we propose a more modular
but still effective approach where the ML job scheduler
dynamically monitors the CPU utilization of the system
in order to make its scheduling decisions.

Predicting Execution Times of ML Jobs
While there is some work to predict the execution

times of specific ML algorithms [18, 12], working with
a wide variety of ad-hoc ML algorithms makes applying
them challenging. However, it has already been observed
that individual iterations of many popular learning al-
gorithms often take similar amount of time. Indeed, we
trained 6 models with different parameters ranging from
neural networks to clustering, both on CPU and GPU
with increasing number of iterations. The actual execu-
tion times depend heavily on the ML algorithm, the input
data sizes, and whether execution is on CPU or GPU, but
all show linear behavior in regard to the number of itera-
tions.
ML programmers might indicate a certain condition

that needs to be fulfilled to stop training (e.g., prediction
error under a threshold). The number of iterations is
thus determined during run-time. However, explicitly
setting such termination conditions might not always be
appropriate. Given the variety of algorithms, data scien-
tists might not know in advance what a good termination
condition is. Further, while exploring, they likely want
to keep the execution times relatively short, in order to
produce quick assessments for various algorithms. Thus,
we believe that while not all, many ML programs will
actually have a predefined number of iterations. We refer
to them as explicit jobs. For these explicit jobs, once we
know how long one iteration takes we can make a good
estimation of the overall execution time. In contrast, jobs

that work with termination conditions or for jobs that
do not follow the paradigm that all iterations have the
same length (that might be the case, e.g., with decision
trees), overall runtime is difficult to predict. We refer to
them as implicit jobs.

3. DBMLSched
We propose DBMLSched as a scheduling mechanism that
controls the execution of ML jobs within a DBMS. As ML
jobs arrive DBMLSched assigns them to either GPU or
CPU. As the characteristics of the jobs are not known in
advance and the DBMSmight at the same time experience
various loads in regard to database queries DBMLSched
has an observer component that monitors the CPU/GPU
utilization overall and of the individual jobs. This in-
formation is used by the scheduler to decide where to
execute a job and also to halt jobs if there is interference.

Integration into AIDA. AIDA [8] is a data science plat-
form that facilitates the execution of analytical tasks
within the database system. AIDA clients use a standard-
ized set of Python APIs and interactive programming
environments such as Jupyter to perform linear and re-
lational algebra transformations or write complete ML
functions. All calls/functions are shipped to the AIDA
server that resides inside the embedded Python inter-
preter of the DBMS. It executes relational algebra op-
erations using the DBMS query engine while relational
algebra operations and ML functions are executed within
the Python environment using existing ML libraries such
as NumPy and PyTorch. Data remains within the DBMS
space unless explicitly requested by the client. We have
integrated DBMLSched into the AIDA server. We have
also slightly adjusted the Pytorch-based API provided by
AIDA in order to facilitate easy extraction of the iterative
component of an ML job. On the server side, these ML
jobs are then intercepted and controlled by DBMLSched.

Scheduler Overview. The overall idea of DBMSched
is (1) to estimate the run-time of newly incoming jobs
for both CPU and GPU, to (2) schedule them so that the
overall service time is short and to (3) readjust when new
jobs arrive or interference is observed. Given the complex
interference we have observed in regard to concurrent
ML jobs our current solution lets at most one job run
on each CPU and GPU. We first outline our proposal
assuming only explicit jobs and then extend the solution
to also handle implicit jobs.
Runtime estimation When a new job arrives, DBM-

Sched first checks whether it runs faster on CPU or GPU
and estimates runtime. To do so, it pauses for each device
the current job and executes the new job for a specific
time. The current job is paused at the end of its cur-
rent iteration because recent work [19] has shown that



memory usage is the lowest at the end of an iteration,
leading to less overhead when switching jobs. The length
of this estimation phase is set dynamically such that if
the new job is significantly shorter than the current job,
it might actually finish during estimation. Otherwise,
DBMLSched checks how many iterations have been com-
pleted during that time and confirms that they have the
same length. From there it determines device preference
and run-time. Note that if the individual iterations of the
job do not have the same execution time or the job does
not at least finish two iterations during the estimation
phase, then we cannot make any time prediction, and the
job becomes an implicit job.

Scheduling jobs The service time for a job is the sum of
its execution time and all the execution times of jobs that
execute before it in a given device. DBMLSched keeps
two waiting queues, one for the GPU and one for the
CPU. Whenever a new explicit job arrives with estimated
execution times on GPU and CPU, DBMSched reorders
all jobs in both the GPU and CPU waiting lists accord-
ing to the shortest remaining service time first (SRTF), a
preemptive version of the shortest job, as it minimizes
the average amount of time each job has to wait until its
execution is complete when new jobs arrive on a contin-
uous basis. Thus, we not only consider whether a job
runs faster on the GPU or the CPU but also consider its
waiting time. Thus, a job might run faster on the GPU
than on the CPU but could be still scheduled on the CPU
because it would have to wait longer to even start on the
GPU.
Whenever a job completes on the GPU resp. CPU,

the scheduler takes the first job from the correspond-
ing queue (if there is any) and usually executes it until
completion. A new job, however, might preempt the
currently running job as described before.

Implicit jobs For implicit jobs, we can determine during
the estimation phase whether they run better on the
CPU or the GPU but we cannot estimate their run-time.
Therefore, we split their execution into several tasks,
each of which runs for a limited time, to avoid that they
delay short-running jobs for too long. We guarantee
that whenever they are scheduled at least one iteration
is executed in order to guarantee progress. In order to
ensure that our system is starvation free, we treat explicit
jobs that have been staying in the system for a long time
as implicit jobs.
We maintain separate queues for implicit jobs and

schedule jobs for one device in a round-robin fashion,
i.e., one explicit job, which will fully complete execution,
and then one implicit job, which will execute for a quota
of time and go to the end of the implicit queue. Service
time calculations are accordingly adjusted considering
in each round the time quota an implicit job will get.

Observer Overview. The DBMLSched observer moni-

tors CPU and GPU utilization and responds to high uti-
lization rates, which could be an indicator of resource
contention.

The GPU utilization is recorded during the estimation
phase since we do not run any other ML job on the GPU,
while the difference between the CPU utilization during
and before estimation is used as an estimation of the
actual CPU utilization of the job, in case CPU is also oc-
cupied by queries or pre-processing of other ML jobs. At
any given time, the observer keeps track of the estimated
CPU utilization of the jobs that are currently running on
CPU and GPU.
Interference with queries If the actual CPU utilization

is much higher and above a certain threshold, then this
indicates that there are concurrent SQL queries and / or
pre-processing tasks which might be impacted by the
ML job running on the CPU. Thus, the job on the CPU is
paused. Once the CPU utilization falls again below this
threshold, ML job execution on the CPU resumes.
Interference with ML jobs As observed in Section 2,

ML jobs running on the GPU might be impacted by jobs
running on the CPU even if they only use a relatively
small amount of CPU. In order to detect such interference,
we observe GPU utilization. If it is significantly lower
than the estimatedGPUutilization and a job is running on
the CPU, we will pause the CPU job until the job running
on the GPU has been completed. Once the GPU has
finished, rescheduling happens as described above. With
this, jobs that were assigned during the last scheduling
phase to the CPU might now be reassigned to the GPU.
We prioritize the GPU because we assume that most jobs
run significantly faster on the GPU and the CPU might
mainly be a backup resource. Should there be many jobs
that have true CPU affinity, other prioritization can be
used.

4. Preliminary Experiments
We first look at how our scheduler can address interfer-
ence with SQL queries. Figure 3 shows an execution over
time where at the beginning a (blue) ML job is executed
on the CPU and then a (red) ML job is scheduled on the
GPU. Then first a lightweight SQL workload is activated
causing a CPU utilization of roughly 20% if run alone
in the system and then a heavier SQL workload with
complex queries requiring roughly 40% of the CPU. If
there is no observer (Fig. 3(a)) query response times are
slightly higher for the light workload than if no ML job
is run on the CPU (orange vs. add-on blue bars), while
the more complex queries are heavily impacted by the
ML job running on the CPU, having nearly 50% larger re-
sponse times. In contrast, the observer (Fig. 3(b)) detects
that the CPU threshold is passed and the ML job on the
CPU is stopped, which prevents the severe delay.



Figure 3: SQL queries concurrent to ML jobs on GPU and CPU

Figure 4: Average service times using different quotas

Figure 5: The number of jobs in the system

In the next experiment, we look at how the scheduling
policy takes effect on a hybrid workload of implicit and
explicit jobs, and also how the choice of quota affects
overall behavior. Our workload consists of 5 machine
learning jobs: two implicit jobs LONG/SHORT submitted
first and last with three identical explicit neural network
(NN) jobs in between, with a 3-second submission inter-
val. Figure 4 shows that DBMLSched always performs

better than sequential execution and short quotas for im-
plicit jobs behave better than longer ones in 2 of the three
situations. The shorter quotas allow the shorter jobs in
the implicit and the explicit queues to be less delayed by
the LONG job. Of course, one has to be careful not to set
the quota too short as this could then delay the long job in
case short jobs come into the system continuously. The
values chosen for the time quota of implicit and long jobs
clearly influence the prioritization of long/implicit jobs
vs. short explicit jobs and are something that could be
adjusted depending on the typical workload that might
be submitted to the system and user expectations.

Lastly, we experimented during a 15-minute period to
test the stable behavior of our scheduling system. The
workload here consisted of a set of neural networks (both
implicit and explicit), K-Means jobs and regression jobs of
various lengths. Overall, service times using DBMLSched
were 2.9x faster than when jobs are executed on the GPU
sequentially in the order of arrival. Figure 5 shows the
number of jobs that were in the system at any time during
the experiment. We can see that relatively early in the
experiment many jobs were submitted and our scheduler
was able to work them off much quicker than sequential
scheduling, keeping the waiting queues much shorter
throughout the experiment. The reason is that our sched-
uler executes the shorter K-Means jobs first and also
executes some jobs on the CPU, relieving the pressure on
the GPU. Also as the short implicit jobs are executed in a
round-robin fashion with the explicit jobs, they complete
quickly.

5. Conclusion and Future Work
DBMSched is a resource-aware scheduler that can handle
arbitrary jobs and observes their behavior to perform
scheduling decisions. In future work we would like to
extend it to also consider memory aspects. Better control
over which CPU cores are used by which tasks might
also help in avoiding interference.
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