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Abstract
A bitmap index is a secondary index structure that supports equality and range predicates. In its simplest form, a bitmap index
stores one bitmap per unique column value indicating qualifying tuples. To use such indexes in large-scale data warehousing,
they need to be space efficient. Existing schemes such as Roaring can compress individual bitmaps but do not consider
cross-column compression.

In this paper, we introduce CorBit, a technique that leverages column correlations to compress bitmap indexes on a given
table. The high-level idea is to only store the bits that need to be flipped (the diff) when encoding the bitmaps of a column that
correlates with another column that already has a bitmap index in place. CorBit automatically determines which columns to
store an index for and which column bitmaps to diff-encode, minimizing the overall size of the index. Compared to Roaring,
CorBit consumes 9.1% less space on the DMV dataset while incurring a 12.6% runtime overhead.

1. Introduction
Bitmap indexes are a well-known indexing technique in
data warehousing. For example, YouTube’s SQL engine,
Google Procella, uses Roaring bitmaps for indexing adver-
tising experiments. Such indexes can achieve tremendous
speedups for selective queries, e.g., Procella claims 500×
faster queries due to such indexes [1].

A straightforward implementation of a bitmap index
is to store one bitmap per unique column value. For
example, the Germany bitmap would indicate the posi-
tions (row numbers) of all tuples that have Germany as
a column value. To trade precision for footprint, bitmap
indexes can be used at the block level and individual col-
umn values can be binned together. However, even with
these optimizations, bitmap indexes can consume too
much space to use them in large-scale data warehousing.
Bitmap compression schemes such as Roaring [2, 3, 4] or
Tree-Encoded Bitmaps [5] do very well in compressing
individual bitmaps while maintaining fast lookup perfor-
mance, but they do not consider cross-column compres-
sion opportunities.

In this paper, we introduce CorBit, a new bitmap com-
pression scheme that exploits column correlations to com-
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press multiple bitmap indexes defined on a single table.
On a high level, CorBit stores the bit differences between
two given bitmap indexes and only fully materializes
one of the two indexes. We also introduce a new cor-
relation metric, Total Reduced Popcnt, that captures the
compression opportunity between two columns. We fur-
ther propose a greedy algorithm to decide which bitmap
indexes to materialize and which indexes to diff-encode,
minimizing overall index size.

We experiment with three real-world datasets and
show that CorBit improves upon Roaring in space while
incurring a small runtime overhead.

2. Compressing Bitmap Indexes

Basic Idea. If two columns in a table are highly corre-
lated, we only materialize the bitmap index of one col-
umn. For each unique value in the other column, we
find the closest bitmap in the materialized column w.r.t.
Hamming distance [6] and only store the differences in
its bitmap. If the Hamming distance is small, the diff-
encoded bitmaps will be sparse, allowing various bitmap
compression methods such as Roaring or run-length en-
coding to save more space.

For example, the two columns Language and Country
in a user information table are usually highly correlated.
A sample contingency table is shown in Table 1. The
skewed frequency counts in the table indicate that if we
would materialize the bitmaps of the Country column,
using diff-encoding for the Language column would save
space. E.g., for the value German in Language we choose
the Germany bitmap as reference and store the difference
of the two bitmaps, i.e., the XOR of the two bitmaps. In
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Table 1
Contingency table for Language and Country

Language Country (materialized)

(diff-encoded) Germany United States China Total

German 1000 200 100 1300
English 100 1050 150 1300

Chinese 50 100 1100 1250

Total 1150 1350 1350 3850

our experiments, we use Roaring as the bitmap encoding
and serialization algorithm, which is faster and smaller
than uncompressed bitsets [2, 3, 4].

Measuring Correlation. To decide which column pairs
to consider for our cross-column compression scheme,
we need to measure the correlation between columns. A
naïve approach would be to consider all pairs of columns.
More specifically, for each bitmap in one column, we find
the closest one in the bitmaps of the other column w.r.t.
Hamming distance [6], and finally sum up all the dis-
tances as a measure of correlation. The smaller the total,
the higher the correlation between the two columns.

Unfortunately, the naïve approach is computationally
expensive. A better method would be to find a suitable
and efficient metric that can help us identify potentially
correlated column pairs. Therefore, we have evaluated a
number of metrics that measure the correlation of cate-
gorical features: e.g., Cramer’s V [7], Tschuprow’s T [8],
Pearson’s Contingency Coefficient [9], and Approximate
Functional Dependency Error [10]. Additionally, we also
designed our own metric called Total Reduced Popcnt
based on the contingency table. It directly measures
how much the total population count (i.e., the number
of “1” bits), also known as Hamming weight, of the diff-
encoded bitmaps can be reduced compared to material-
ization. This metric is defined as

𝜂𝐴,𝐵=
∑︁

𝑎∈𝑈𝐴

max{0, max
𝑏∈𝑈𝐵

(2|𝜎𝐴=𝑎∧𝐵=𝑏𝑅|−|𝜎𝐵=𝑏𝑅|)}

where 𝐴 and 𝐵 are two columns in relation 𝑅, and 𝑈𝐴

or 𝑈𝐵 denotes the set of unique values in column 𝐴 or
𝐵. This metric can be easily calculated based on the
contingency table of column 𝐴 and 𝐵, and is highly
positively related to the saved space. This approach only
requires traversing the dataset once and then utilizing
contingency tables for subsequent calculations.

We have conducted several experiments to evaluate
the effectiveness of these metrics in our scenario. We
define the effectiveness of a metric as follows: given a
parameter 𝑘, for each column 𝑋 in relation 𝑅, we select
the top 𝑘 columns with the highest correlation metric
value as candidate reference columns. We calculate the
ratio between the total potential space savings obtained
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Figure 1: The effectiveness of correlation metrics

by using these candidate reference columns and the to-
tal potential space savings obtained by using the actual
optimal 𝑘 candidate reference columns. Thus, we define
the effectiveness of metric 𝑚 as

𝐸𝑋
𝑅,𝑚,𝑘 =

∑︀𝑘
𝑖=1 𝑠(𝑋,𝑌 𝑚

𝑋,𝑖)∑︀𝑘
𝑖=1 𝑠(𝑋,𝑌 *

𝑋,𝑖)

where 𝑌 𝑚
𝑋,𝑖 represents the 𝑖-th best candidate reference

column selected by metric 𝑚 for column 𝑋 , 𝑌 *
𝑋,𝑖 rep-

resents the 𝑖-th optimal candidate reference column for
column 𝑋 , and 𝑠(𝑋,𝑌 ) denotes the amount of saved
space for 𝑋 when using 𝑌 as a reference column.

Furthermore, the overall effectiveness of metric 𝑚
across the entire relation 𝑅 is defined as the weighted
average of the effectiveness on each column. Here we
use the size obtained using Roaring encoding as weights
for columns, giving higher weight to larger columns.

The results of the experiments that evaluate the effec-
tiveness of all metrics are shown in Figure 1. The key
observation is that for all evaluated datasets, the Total
Reduced Popcnt metric consistently performs well and as
such is a good proxy for potential savings.

Compressing a Bitmap Index. The previous sec-
tion focused on measuring the correlation between two
columns, but in real-world scenarios, there are often mul-
tiple categorical columns involved. What we ultimately
need is a Directed Acyclic Graph (DAG) 𝐺* that repre-
sents the dependency relationships between the columns.
Specifically, each node in this DAG represents a column,
with at most one outgoing edge pointing to another node
to reference its bitmaps to exploit correlations and save
space. Nodes without outgoing edges will be directly
materialized. For performance reasons, we currently do
not consider chained dependencies.
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Figure 2: An example of an annotated complete digraph and
its optimal dependency graph

To determine the optimal solution, we annotate the
actual sizes of the materialized column for each node in
a complete digraph 𝐺, with the size of the diff-encoded
bitmaps of column 𝐴 when referencing column 𝐵 as
cost for each directed edge (𝐴,𝐵), as shown in Figure 2.
Finally, we can employ dynamic programming to obtain
the optimal dependency graph 𝐺*.

However, the aforementioned approach is excessively
expensive. Fortunately, we have identified an appropriate
correlation metric, namely Total Reduced Popcnt, which
strongly correlates with saved space. What we annotate
here is the Total Popcnt, the sum of the population counts
of bitmaps of each column, which we can calculate easily.

Once we obtain an annotated complete digraph 𝐺, we
can employ a greedy algorithm to obtain a near-optimal
solution. This involves greedily selecting the best edge,
which has the highest difference between the node cost
and edge cost without violating the mentioned properties.
We add this edge to 𝐺* and continue the process as long
as it results in a reduction in space consumption.

Finally, we compute and store the original bitmaps and
XOR bitmaps based on the dependency graph. Since we
use Total Reduced Popcnt, its intermediate results allow
us to select, for each bitmap, the closest bitmap in its
referenced column w.r.t. Hamming distance. This is also
one of the advantages of employing our metric.

For performance considerations, we store a XOR
bitmap only if it saves 𝑝 of the space compared to the
original bitmap. We choose 80% as the default value for
the threshold 𝑝. By adjusting the parameter 𝑝, users can
strike a balance between performance and space. To save
more space, a smaller value of 𝑝 can be chosen, such
as 50%. On the other hand, if performance is of greater
concern, a larger value of 𝑝, such as 90%, can be selected.
We experiment with different thresholds in Section 3.

In summary, compressing the bitmap index works as
follows:

1. Initialize a contingency table for each pair of
columns.

2. Scan the data once while updating the frequencies
in the contingency tables.

3. Calculate the Total Reduced Popcnt for each pair
of columns based on their contingency tables.

Table 2
Datasets

Name # Rows # Columns Average unique rate

DMV 12,300,116 19 0.047%
Taxi 12,741,035 15 0.012%
Diabetes 101,766 46 0.061%

4. Run the greedy algorithm to obtain an approxi-
mate optimal dependency graph 𝐺*.

5. Compute the original bitmaps for preserved
nodes and diff-encoded bitmaps for preserved
edges in 𝐺*, and persist them using Roaring.

Lookups. To retrieve the bitmap for a specific value in
a column, if it is stored as an XOR bitmap, we read both
the XOR bitmap itself and the referenced bitmap, and
perform an XOR operation on them. If the value is stored
as the original bitmap, we can directly read and return it.

3. Evaluation
We evaluate our method using three real-world datasets
and compare it with Roaring in terms of space consump-
tion and lookup latency.

Experimental Setup. We conduct our experiments on a
machine with 256 GiB of RAM, an Intel(R) Xeon(R) CPU
E5-2660 v2 @ 2.20GHz, and a Toshiba MG03ACA100
1 TiB 7200 RPM Hard Drive. We utilize the official C++
implementation of Roaring1 for serializing, deserializing,
and XORing Roaring bitmaps.

We evaluate our approach using the DMV [11],
Taxi [12], and Diabetes [13] datasets, as shown in Table
2. For each dataset, we select categorical columns with
a proportion of unique values not exceeding 10%. For
CorBit, we conduct experiments with various threshold
values for parameter 𝑝 ranging from 10% to 95%.

To measure the average lookup latency, for each
lookup, we uniformly select a column from the dataset
and then uniformly select a value from that column. We
then ask CorBit or Roaring to return the corresponding
bitmap and measure the latency.

Size versus Latency. The size and latency of the CorBit
and Roaring compression methods on three real-world
datasets are shown in Figure 3. On the DMV dataset
(Figure 3a), CorBit (𝑝 = 80%) achieves space savings of
9.1% compared to Roaring, with a 12.6% increase in la-
tency. By adjusting the threshold value 𝑝, we can achieve
a maximum space saving of up to 14.6%. However, if per-
formance is more critical, by adjusting 𝑝 to 95% we can
still get a space saving of 6.5% while only experiencing a
2.6% increase in latency.

1CRoaring: https://github.com/RoaringBitmap/CRoaring

https://github.com/RoaringBitmap/CRoaring
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Figure 3: Size and lookup latency of different CorBit configurations compared to Roaring.

Table 3
Size per column under Roaring and CorBit (𝑝 = 80%) (top 5 columns)

Column Cardinality Size in Roaring Reference column Size in CorBit Saving rate Total Reduced Popcnt

Scofflaw Indicator 2 1.52 MiB Revocation Indicator 0.18 MiB 88.2% 12,207,722
Zip 11752 26.00 MiB City 11.64 MiB 55.2% 8,115,043
County 63 20.67 MiB City 18.20 MiB 11.9% 3,527,291
Record Type 4 1.97 MiB Fuel Type 1.91 MiB 3.1% 10,936,841
Color 225 9.90 MiB Body Type 9.75 MiB 1.5% 519,148

On the Taxi dataset (Figure 3b), CorBit (𝑝 = 80%)
achieved a space savings of 2.4% relative to Roaring, with
similar query latency. Similarly, on the Diabetes dataset
(Figure 3c), CorBit (𝑝 = 80%) has comparable perfor-
mance to Roaring with space savings of 7.4%.

Size per Column. Table 3 shows the top 5 columns with
the highest space savings in the DMV dataset. We observe
that the Scofflaw Indicator references the Revocation
Indicator, and Zip and County reference City. These
relationships are reasonable based on the meanings of
these columns, and CorBit has successfully discovered
the correlations, leading to space savings.

It is worth noting that there is a strong positive corre-
lation between saving rate and Total Reduced Popcnt. In
addition to demonstrating its effectiveness by the metric
shown in Figure 1, it further substantiates its effective-
ness when choosing reference columns.

For Taxi, the Total Amount column has the highest
savings rate, by referencing Tip Amount. For Diabetes,
the columns with the highest space savings are Acetohex-
amide, Glimepiride Pioglitazone, and Metformin Rosigli-
tazone. These columns reference Metformin Pioglitazone,
because most of the time, none of the three drugs are
prescribed with Metformin Pioglitazone. CorBit uses this
observation to save space by exploiting the correlation.

Latency Breakdown. To further analyze latency, we
profiled both CorBit (𝑝 = 80%) and Roaring and iden-
tified the three main components contributing to the
overall latency: disk access, Roaring bitmap deserializa-
tion, and the XOR operations. The breakdown of the time
spent on each component is shown in Table 4.

Our observation is that CorBit (𝑝 = 80%) reads only

1.7% more file content compared to Roaring on average.
Therefore, it does not significantly impact performance in
terms of disk access and bitmap deserialization. However,
CorBit (𝑝 = 80%) requires additional XOR operations
between the XOR bitmaps and the referenced bitmaps,
incurring a latency increase. On average, approximately
7.4 us are spent on XOR operations, accounting for 11.5%
of the total latency.

Table 4
Latency breakdown on DMV

CorBit (𝑝 = 80%) Roaring

Component µs % µs %

Disk access 29.8 46.4% 30.1 52.7%
Roaring deserialization 26.5 41.4% 26.2 46.0%
XOR operation 7.4 11.5%

Sum 64.2 100.0% 57.0 100.0%

4. Conclusions
We have introduced CorBit, a bitmap index compression
scheme that can exploit cross-column correlations. We
have shown that CorBit can achieve significant space sav-
ings on three real-world datasets. We have introduced
a threshold parameter that allows for trading off com-
pression rate for query performance. In future work, we
plan to extend our work to support other compression
schemes, such as run-length, frame-of-reference, and
dictionary encoding.
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