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Abstract
Traditional query optimizers are designed to be fast and stateless: each query is quickly optimized using approximate statistics,
sent off to the execution engine, and promptly forgotten. Recent work on learned query optimization have shown that it is
possible for a query optimizer to “learn from its mistakes,” correcting erroneous query plans the next time a plan is produced.
But what if query optimizers could avoid mistakes entirely? This paper presents the idea of learned query superoptimization. A
new generation of query superoptimizers could autonomously experiment to discover optimal plans using exploration-driven
algorithms, iterative Bayesian optimization, and program synthesis. While such superoptimizers will take significantly longer
to optimize a given query, superoptimizers have the potential to massively accelerate a large number of important repetitive
queries being executed on data systems today.

1. Introduction
Traditional cost-based query optimizers [1] are designed
to be fast. When a new query arrives, the optimizer
performs some computations using statistical cardinal-
ity estimates, and produces a query plan. In this sense,
traditional query optimizers can be viewed as cheap (com-
pared to query execution) stateless functions. Each new
query is a blank slate, representing a “fire and forget”
system.

Past work on learned query optimization [2, 3, 4, 5, 6]
have addressed the “forget” component of “fire and forget”
optimizers. Since every optimizer processes queries with
similar qualities (all querying the same database), one can
say there is cross entropy (shared information) between
each query. By learning a model of query performance
that takes advantage of this cross entropy, learned query
optimizers “learn from their mistakes.” Since learned
query optimizers are starting to see early commercial
adoption [7, 8], we can conclude that the database com-
munity has made some progress on the “forget” element
of traditional optimizers.

But what about the “fire” element? Query optimizers
are built so that optimization time is low compared to
query execution time, so the cost of query optimization
can be seen as amortized over the query’s execution. The
simplifying assumption at work here is that since each
incoming query could be unlike anything seen before,
the time spent optimizing any specific query might not
be useful for optimizing other queries. When we view
each query as arbitrary, this assumption seems valid.

But in many real applications, query workloads are
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highly repetitive. The same query template – and often
the exact same query – might be executed many times.
In fact, for many analytic dashboarding systems, the
majority of cluster resources might go to executing a set of
highly-repetitive queries (e.g., the hourly sales dashboard
executes nearly-identical queries every hour).

Given the shape of these analytics workloads, does it
make sense to view each query optimization as a cheap
stateless function that only relies on optimizer statis-
tics? This issue has been partially addressed by past
work on parameterized or parametric query optimiza-
tion (PQO) [9, 10, 11] and query plan caching [12, 13],
which has mostly focused on further reducing optimiza-
tion times (as opposed to query latency) by avoiding
repetitive work, although there are some exceptions [14].

Here, I propose learned query superoptimization.
Following the “anytime” model proposed in [15], this
paper considers: what if instead of bounding the query
optimizer to a few hundred milliseconds, we instead used
hours or even days of computation to optimize a query?
For queries that execute thousands or even millions of
times a year (as may be the case in large dashboard appli-
cations), the additional optimization time could possibly
“pay for itself.”

The thought of using significant resources on query
optimization may be viscerally unappealing to many in
the database community. To assuage these feelings, note
that “superoptimization” is a common concept in pro-
gram compilation: since some programs are executed so
often, spending a significant amount of time optimizing a
program may be worthwhile even if the program’s execu-
tion time only improves marginally. If we are willing to
spend extra time compiling our DBMSes to eke-out every
last drop of performance, why not give DBMS users the
same option for their queries?

This paper presents two orthogonal directions for fu-
ture research on learned query superoptimization.

Exhaustive plan search (Section 3) It is well known
that cardinality estimates are often poor, and often the
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Table 1
The number of query templates executed on a commercial
workload, grouped by their lifespan. The P50 (median) number
of executions per template is rounded to the nearest thousand.
Query templates used for at least half a year to a full year (the
last row) represents 31% of the cluster’s total compute time.

Duration # tmpl. % time P50 # execs

< 1 week 52 3% < 1000
1 - 4 weeks 181 5% < 1000
4 - 12 weeks 1092 6% 40900
12 - 24 weeks 540 19% 8700
24 - 52 weeks 10983 31% 108600

Total 12848 64% ≈ 100000

cause of poor query plans [16]. While inaccurate, cardi-
nality estimates are fast to compute – but what if we took
a different approach, and designed a query optimizer that
intrusively looked at data and executed queries to get
around inaccurate cost estimates?

Program synthesis (Section 4) While DBMSes seek to
provide a fast implementation of the relational model to
users, the abstractions of the relational model often seep
into DBMS design. Bespoke systems (e.g., Millwheel [17],
Bigtable [18]) fully discard the generality of the relational
model, which allows them to use custom implementa-
tions that often outperform anything a general DBMS
could offer. Expanding on [19], what if program synthesis
techniques we could automatically generate a bespoke
data system for a user?

To begin, Section 2 will show summary statistics from
a large, highly-repetitive workload that motivates the
idea of query superoptimization. Then, Section 3 and 4
will discuss future directions for learned query superop-
timization work.

2. Repetition in the real world
In modern analytics systems, repetitive parameterized
queries are common. Dashboards, along with weekly
and monthly reports, are regularly implemented using
parameterized queries.

Of course, modern analytics systems also get a good
number of ad-hoc queries. While collaborating with a
large corporation, I analyzed a year of query logs from
an on-premise data warehouse to determine how often
parameterized queries were executed. The results are
summarized in Table 1.

There were nearly 11, 000 query templates that ap-
peared in the logs for six months to a full year, and exe-
cution of those templates occupied 31% of the cluster’s
resources throughout the 12-month period. It is worth
noting that these queries are executed quite often: the

median query template that lived for six months to one
year was executed over a 100, 000 times. With such a
large percentage of cluster resources going to executing
these repetitive queries, it seems reasonable to try and
optimize repetitive queries specifically.

3. Exhaustive plan search
For queries joining 𝑛 relations, optimizers must search
𝑂(3𝑛) [20] plans when considering just join ordering,
access paths (e.g., index vs. full scan), and operator se-
lection (e.g., hash vs. merge). The key design principles
of most traditional optimizers are (1) quickly eliminate
large unpromising parts of the plan space, narrowing
the search space to a manageable size, and (2) use pre-
computed statistics to find an optimal query plan without
significant data processing (i.e., without scanning the
underlying data). Unfortunately, these key design prin-
ciples are also often the root cause of suboptimal query
plans:

A narrow search space Traditional optimizers must
use heuristics to exclude parts of the exponentially-large
search space. Unfortunately, these heuristics can exclude
the optimal plan. For example, the PostgreSQL optimizer
excludes any plan containing cross joins from consider-
ation, but if two dimension tables are sufficiently small,
a cross join could be optimal. The reason traditional op-
timizers exclude cross joins is because plans with cross
joins are almost always suboptimal, and even when a
cross join is optimal, there is normally a near-optimal
plan without a cross join. Nevertheless, while unusual,
such heuristics can exclude optimal query plans without
finding a near-optimal one [2].

Optimizer statistics Traditional query optimizers are at
the mercy of their cost models and cardinality estimators.
While cardinality estimators achieve reasonably good
accuracy for table scans, estimator errors often reach
catastrophic levels after only a few joins [16]. Thus, the
optimizer must plan the final joins of a query plan (which
are often the most significant) with virtually no statistics.
Even learned query optimization [4, 2, 3, 5] follow this
paradigm: learned query optimizers still use heuristics
to prune the plan space (e.g., the anytime search in [2]),
and still only operate with pre-computed statistics: the
only difference is that the pruning heuristic and statistics
are learned.

What if we built a query superoptimizer that ignored
both of these fundamental design principles? The sim-
plest possible superoptimizer escaping this paradigm
might “wrap” a traditional optimizer: execute the top
𝑘 queries produced by the traditional optimizer and pick
the best one, budgeting for the highest 𝑘 possible. Such
an optimizer would verify the quality of 𝑘 query plans on
actual data, albeit in a crude fashion. Another possibility



is using an evolutionary algorithm to search for better
plans, as in [14], to use on-the-fly data sampling for join
planning as in [21], or to use various forms of cardinality
injection [15].

But we can do much better: it may be possible to build
query superoptimizers that interleave machine learning
and query execution. Next, I propose two possible sys-
tems using this paradigm.

3.1. Design 1: repeated reinforcement
learning

Reinforcement learning powered optimizers like Neo [2],
Balsa [3], and Lero [5] work in episodes. Each episode
corresponds to building a complete execution plan for a
given query. Each episode also ends with a reward, the
signal that the learned optimizer uses to adjust future
actions.

Reinforcement learning algorithms must navigate the
exploration-exploitation tradeoff. In short, a learning agent
must choose to either (1) explore, trying something new
and potentially gaining valuable information, or (2) ex-
ploit, try something that is known to work already and
reap a reward. Existing learned query optimizers seek to
perfectly balance exploration and exploitation, maximiz-
ing long term rewards [22].

A learned query superoptimizer could tilt the scale
significantly towards exploration. Doing so would cause
the underlying reinforcement learning algorithm to pro-
duce more diverse and risky plans. The superoptimizer
could then execute each plan, possibly on a sample of
the database, and return the plan that works the best.
This procedure not only produces a higher quality plan,
but this procedure also gathers experience faster, allow-
ing the underling reinforcement learning agent to learn
faster.

An additional benefit to a reinforcement-learning pow-
ered superoptimizer is that many of the features and
safety mechanisms built into current learned systems
could be removed. For example, Bao [23] provides a num-
ber of tools, each using significant resources, to ensure
regressions do not occur. With a superoptimizer, no such
advanced regression-avoiding tooling is needed, since
the empirical quality of the query plan can be observed
before optimization finishes.

Tipping the balance towards exploration is far from an
optimal solution. Since even a superoptimizer must oper-
ate in a limited time budget, choosing exactly which plans
to test is an optimization problem on its own. Simply
selecting the first 𝑘 exploratory plans might be far from
ideal, since all 𝑘 plans might explore the same part of the
search space. Active learning techniques, like those used
in Datafarm [24], might be applicable here. This particu-
lar problem — choosing the ideal 𝑘 explorations before
settling on a final, reward-granting decision — is, to the

best of my knowledge, yet unstudied by the database or
reinforcement learning community.

3.2. Design 2: latent space optimization
A second possibility is inspired by recent work [26] apply-
ing Bayesian techniques to molecular optimization, the
task of searching for molecules with particular proper-
ties. Translating from finding molecules to finding query
plans, the fundamental idea is to encode query plans into
a latent space, use Bayesian optimization techniques to
optimize the plan within the latent space, and then de-
code the point in the latent space back into a query plan.
Figure 1 shows an illustration of this process.

The motivation behind this idea is to translate the
problem of query optimization from a “structural opti-
mization” problem (i.e., a problem where the output must
have a particular structure, like a query plan) into a “con-
tinuous optimization” problem (i.e., a problem in which
the output is continuous). Once we have a continuous
problem, a large number of well-studied continuous op-
timization algorithms can be applied (e.g., [27]).

Encoder & latent space The encoder’s 𝐸 : 𝑄 → R𝑛

goal is to map a query plan 𝑞 ∈ 𝑄 into a 𝑛-dimensional
latent space R𝑛 using a neural network. We want po-
sitions in the latent space to be semantically relevant,
meaning that we want similar points in the latent space
to represent similar query plans and have similar perfor-
mance properties (i.e., latency, IOs). One way to do this
is with an information bottleneck [28]: we train a model
to predict the performance properties of a query, but we
make one of the last layers (possibly the second or third
from the end) intentionally small. This forces the model
to learn a compact representation of the query plans in
the intentionally small layer, but also requires that the
intentionally small layer is organized in such a way that
allows for predicting the performance properties of the
query. Such a model will not achieve high accuracy com-
pared to models without an information bottleneck, but
accuracy is not our goal. We can now chop off the layers
after the information bottleneck, and use the resulting
network as an encoder: the information bottleneck layer
serves as our latent space.

Decoder The decoder’s 𝐷 : R𝑛 → 𝑄 job is to take a
point in the latent space created by the encoder and trans-
form the point back into a query plan. The decoder can be
trained by differentiating through the encoder, freezing
the weights of the encoder during the process. Archi-
tecturally, the decoder can be anything that produces a
sequence, but a reasonable choice may be a transformer
model [29] or an LSTM [30].

Bayesian optimization The core of a latent space query
superoptimizer is Bayesian optimization. The query opti-
mization problem can be cast as a black-box optimization
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Figure 1: An encoder-decoder design for query optimization. A query plan is ran through a neural network (e.g., tree
convolution [25]), which transforms the query into a point in a latent space. The encoder is trained to map queries with similar
performance properties together. A Bayesian optimizer takes a step in the latent space, moving from the purple circle to the
pointed-to circle. The decoder uses generates the new query plan tree, which is executed. The performance of the resulting
query plan is given to the Bayesian optimizer, which can then take another step in the latent space.

problem. Let the query plan 𝑝1 be the plan generated
by a traditional query optimizer, which will be the ini-
tial condition for our optimization. Further, let 𝐿(𝑝) be
the latency of 𝑝, determined by executing the plan. The
Bayesian optimization algorithm then searches for a vec-
tor 𝑣 such that:

argmin
𝑣

𝐿(𝐷(𝐸(𝑝1) + 𝑣))

The point 𝐸(𝑝1) + 𝑣 can then be decoded into a query
plan using the decoder 𝐷.

Bayesian optimization of expensive functions with con-
tinuous inputs is a well-studied problem, with many algo-
rithms available [31]. Reinforcement learning powered
query optimizers had to invent customized algorithms
to deal with the specific challenges of query optimiza-
tion. By tapping into a preexisting field like Bayesian
optimization (which have already had proven success in
drug discovery [27], hardware design [32], and even ur-
ban planning [33]), a learned query superoptimizer may
be in reach in the near future.

4. Program synthesis
The previous proposals for query superoptimizers have
all assumed that the final output of a query optimizer
should be an executable query plan. In this section, we
propose a “rethinking of the query optimization con-
tract” [15] – specifically, we propose a query optimizer
that simultaneously optimizes query execution plans and
the underlying physical layout of the data. To illustrate
this potential, imagine writing a program that answers
queries about the relationships between actors, movies,
and production companies. The system only needs to be
able to answer questions in the form of 𝑄1:

𝑄1: How many movies were produced by
company 𝐶 and starred actor 𝐴?

You could implement this system using a relational
database, containing five relations, as shown in the ER
diagram in Figure 2. Answering the query for any 𝐴
and 𝐶 can now be done with a simple SQL query. The

Actor

Movie

Company produces

stars

Figure 2: ER diagram of actors, movies, and production com-
panies (attributes omitted). The standard realization into a
physical schema would contain five relations.

underlying optimizer will join the five relations together,
possibly even changing the join order based on 𝐴 and
𝐶 . Note that, because both stars and produces are
many-to-many, using fewer than 5 relations would vio-
late second normal form.

Do we think this implementation is optimal? Of course
not. Sure, using a relational database has great engineer-
ing benefits, such as (1) the reuse of existing components,
(2) the ability to extend the system to other queries, and
(3) most organizations already know how to maintain a
DBMS. But, if our data system’s job is to answer 𝑄1 as
fast as possible, then we know that the algorithm exe-
cuted by the relational database will not be optimal.

Instead of four joins, imagine we store two hashmaps:
one mapping each actor to a bitmap, where that bitmap
stores a 1 if the actor appears in that movie, and a second
mapping each company to a bitmap, where that bitmap
stores a 1 if the company produces that movie. Now,
answering 𝑄1 is as simple as two hashmap lookups and
a bitmap count-intersect. With a cuckoo hashmap and
smart prefetching, this could be implemented with only
6 cache misses.

Figure 3 compares the performance of PostgreSQL and
an implementation of the bespoke system implemented
in Rust using the standard library’s hashmap and Roar-
ing [34] bitmaps. The bespoke solution is an order of
magnitude faster than the RDBMS. Further, a traditional
RDBMS has no chance of replicating the execution strat-
egy of the custom solution.1

1One could manually create bitmap indexes and query the count-
intersection of them, but this is essentially just creating the cus-
tomized solution inside of the DBMS, instead of allowing the DBMS
optimizer to find an optimal plan.



Figure 3: Performance of PostgreSQL vs. the bespoke two-
hashmap system for𝑄1. The bespoke system performs signif-
icantly better at both the 50th (median) and 90th percentiles.

The above question may seem trivial: a smart DBA
could likely create a similar effect using clever materi-
alized views [35]. To see how program synthesis could
help in less trivial cases, imagine designing a system to
answer 𝑄2:

𝑄2: How many movies were produced by
𝐶 and starred actor 𝐴 with a rating 𝑅 s.t.
𝑅1 < 𝑅 ≤ 𝑅2.

The rating of a movie can be stored as a computed
attribute of Movie in Figure 2. Assuming a 5-star review
system, a synthesized system similar to the system for
𝑄1 could store a bitmap for each discrete rating (i.e., a
bitmap for 1 star films, 2 star films, 3 star films, etc.), and
then queries could be answered by counting the number
of bits in the appropriate bitmaps.

What the customized hashmap solution gains in speed,
it loses in generality. Adding additional query types
would require a significant re-write. Implementing trans-
action semantics for adding new actors, movies, or com-
panies may be challenging. But, we know that bespoke
data management systems are occasionally created for
important applications (e.g., Google Ads [36], Microsoft’s
SCOPE [37]), often at a high cost. Depending on the
business value of answering 𝑄1 or 𝑄2 quickly, a more
bespoke solution may be worthwhile.

How can we make DBMSes capable of automatically
generating the customized hashmap solution for answer-
ing 𝑄1 or 𝑄2, while simultaneously providing the gen-
erality and ease-of-use of SQL? Even capturing 50% of
the bespoke system’s performance in a generic RDBMS
would be a huge win.

One possible way to make that happen is machine pro-
gramming [38], or getting computers to program them-
selves. Imagine that we can map out the myriad of po-
tential optimizations, from bitmap intersections to aug-
mented binary trees. It is possible that program synthesis
techniques (e.g., [39]), taking only the schema and SQL

query as an input, could be used to construct provably-
correct, custom-tailored data systems like the hashmap
solution described above. Combined with the right learn-
ing technique to guide the search, a synthesis approach
might be able to create data structures and algorithms
that outperform human experts. Similar advancements
have already occurred in graphics processing [40, 41] and
concurrent algorithms [42].

Building a mapping or library of potential optimiza-
tions may seem challenging, but today there are many
examples of such libraries and even techniques to syn-
thesize the library itself. Data Calculator [43] showed
how different data structures can be composed together
in a provably-correct way to build a variety of key-value
stores. Castor [19] makes progress in terms of defining
a formal language that could potentially express more
complex data layouts. GenesisDB [44] and CodexDB [45]
showed how large language models might be able to cre-
ate customized database components. LearnedRewrite [46]
shows how search techniques can be cover a wide space
when rewriting SQL queries.

5. Related work
Query optimization is one of the most well-studied prob-
lems in the database community, with a history spanning
50 years [1]. A change to the fundamental “contract”
of the query optimizer was proposed in [15]. More re-
cently, we have seen applications of machine learning
techniques [47, 48, 49, 50, 51], especially reinforcement
learning [2, 23, 3, 5, 52, 53], to the problem of query
optimization. [19, 43] show how program synthesis tech-
niques can be used to create custom-tailored relational
layouts or key-value stores.

In general, machine programming [38] represents a dis-
tinct field of research, and includes work about garbage
collection [54], static analysis [55], and program regres-
sion detection [56]. Bayesian optimization is a well-
studied area, and [31] provides a survey of this area.
[26] inspired the latent space optimization proposed here.
The idea of autonomous experimentation on top of a
database system has also been previously explored [57,
58]. To the best of my knowledge, the term “superopti-
mization” was coined in [59].

6. Conclusions
This paper has proposed learned query superoptimiza-
tion, an opportunity for the database community to re-
define the task of query optimization for increasingly-
common repetitive analytic workloads. Many of the ideas
mentioned here will be pursued in the coming years. Col-
laborators are welcome!
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