
Towards Adaptive Fault-Tolerant Sharded Databases
(Extended Abstracts)

Bhavana Mehta1, Neelesh C A1, Prashanth S Iyer1, Mohammad Javad Amiri1, Boon Thau Loo1

and Ryan Marcus1

1University of Pennsylvania, 3330 Walnut Street Philadelphia, PA, USA - 19104

Abstract
Data fragmentation and replication schemes play an important role in making parallel and transactional databases scalable
and reliable. Existing data schemes generally assume a trusted environment where a node may fail, but no node will act
adversarially. Here, we present our vision for RLShard, a reinforcement learning-powered fragmentation and replication
scheme for transactional databases in Byzantine environments capable of adapting to dynamic workloads. We first describe the
implications of Byzantine environments on data fragmentation schemes. Then, we explore two different system architectures
for RLShard: a centralized architecture that relies on a trusted administrative domain and a fully decentralized architecture
that uses collaborative reinforcement learning. Based on our first-cut design, we outline open research challenges towards
our vision of adaptive fault-tolerant sharded databases.

1. Introduction
Distributed systems rely on fault-tolerant protocols to
provide robustness and high availability [1, 2, 3, 4, 5, 6, 7].
While trusted cloud systems (e.g., Google’s Spanner [3],
Amazon’s Dynamo [4], Facebook’s Tao [5]) rely on crash
fault-tolerant (CFT) protocols, e.g., Paxos [8], to establish
consensus, trust-free systems (e.g., blockchains [9, 10,
11, 12, 13, 14, 15], lock servers [16], certificate authority
systems [17]) must use Byzantine fault-tolerant (BFT)
protocols to cope with untrustworthy infrastructure.

Both CFT and BFT consensus protocols incur higher
latency when more nodes are involved. Thus, trusted
(e.g., [3, 18, 19]) and trust-free (e.g., [20, 21, 22]) systems
fragment their data into shards, and each shard is repli-
cated on multiple nodes with the goal of minimizing the
number of cross-node transactions.

Approaches like SWORD [23] and Schism [24] find
optimal data fragmentations via hypergraph partitioning
with edges as transactions and tuples as vertices. A cut
of the hypergraph into 𝑛 pieces that breaks as few edges
as possible while keeping each piece small enough to fit
on a single node represents an optimal solution.

Unfortunately, what was optimal yesterday may not
be optimal today: as workloads drift and new data is
added, previously-optimal fragmentation schemes can
become arbitrarily poor. Several studies [25, 26] thus

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — Workshop on Applied AI for Database Systems
and Applications (AIDB’23), August 28 - September 1, 2023, Vancouver,
Canada
$ bhavanam@seas.upenn.edu (B. Mehta); neelca@seas.upenn.edu
(N. C. A); prashiyr@seas.upenn.edu (P. S. Iyer);
mjamiri@seas.upenn.edu (M. J. Amiri); boonloo@seas.upenn.edu
(B. T. Loo); rcmarcus@seas.upenn.edu (R. Marcus)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

solve the problem in an adaptive way, moving data be-
tween fragments, and moving fragments between nodes,
in an online fashion, many are designed for analytical
OLAP [27, 28] workloads and might not effectively adapt
to transactional OLTP applications that frequently ex-
perience unpredictable demand shifts [26]. To the best
of our knowledge, none of these adaptive approaches
consider Byzantine environments [29, 30, 31]. Byzantine
environments bring a number of specific complications
to the data fragmentation problem:
BFT vs. CFT Scalability. While all fragmentation
schemes designed for transactional DBMSes hope to min-
imize the number of cross-shard transactions, the cost
of a cross-shard transaction is significantly higher in
an adversarial context. A round of Paxos [8] consensus
amongst 𝑛 nodes requires 𝑂(𝑛) messages, but a round
of (for example) PBFT [32] requires 𝑂(𝑛2) messages. As
a result, special care must be taken to avoid the quadratic
cost of excessive cross-node transactions.
Special constraints on replication. A traditional dis-
tributed transactional database may choose to replicate
data fragments in order to prevent data loss: to survive 𝑓
nodes failing, data must be replicated 2𝑓 + 1 times. In a
Byzantine environment, data must be replicated a mini-
mum of 3𝑓+1 times in order to tolerate adversarial nodes.
Additionally, a non-Byzantine system may label certain
replicas as “primary” or “secondary”, allowing transac-
tions to only write changes to the “primary” replica. Such
a strategy is not possible in a Byzantine environment: all
nodes must participate in every transaction to ensure no
adversarial node lies to the client.
Non-trustworthy data. Traditional fragmented
databases can accurately observe nodes required for each
transaction. In a Byzantine environment, adversarial
nodes could lie about a cross-node transaction to induce

mailto:bhavanam@seas.upenn.edu
mailto:neelca@seas.upenn.edu
mailto:prashiyr@seas.upenn.edu
mailto:mjamiri@seas.upenn.edu
mailto:boonloo@seas.upenn.edu
mailto:rcmarcus@seas.upenn.edu
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

a particular fragmentation scheme. For example, an ad-
versarial node could report that a set of tuples are never
accessed together, causing a naive fragmentation scheme
to separate those tuples onto multiple nodes, potentially
causing a denial-of-service attack.

This paper presents our initial design of RLShard, a
scalable distributed database system capable of tolerating
Byzantine faults and adapting to dynamic workloads. We
aim to develop a machine learning-based mechanism for
optimizing shard assignments to nodes, based on work-
load characteristics, to maximize system performance.

We explore two system architectures to achieve this
goal. The first is a centralized architecture with a trusted
learner, assuming that the learning agent and the trans-
action router are within a trusted Administrative Do-
main (AD) [33, 34, 35], immune to attacks. It uses a cen-
tralized learner for shard allocation decisions, ensuring
Byzantine fault tolerance. The second is fully decentral-
ized, with no trusted components, and using collabo-
rative reinforcement learning (CRL). This architecture
aims to overcome reliance on a central entity by enabling
node collaboration. Through reinforcement learning (RL),
nodes collectively determine shard allocation to optimize
performance, triggering resharding when needed, and
enhancing resilience and adaptability without external
intervention.

Our contributions comprise RLShard’s design, explo-
ration of two architectures for sharding assignments, and
development of adaptive and fault-tolerant mechanisms
to optimize performance. By addressing the limitations of
existing solutions, RLShard aims to provide an effective
sharding assignment strategy for distributed databases,
capable of withstanding Byzantine attacks and dynami-
cally adjusting to changing workloads.

2. RLShard
RLShard is designed for an asynchronous network con-
sisting of a set of servers. We assume that the cluster’s
total storage capacity is at least 3𝑓+1 times the database
size for Byzantine fault tolerance, and while any server
can experience adversarial faults, at most 𝑓 might fail
concurrently. All client requests are equally important;
i.e., if a client is adversarial, we still need to accurately
answer their valid queries.

Section 2.1 describes the grouped data layout used
by RLShard which can tolerate Byzantine failures and
mitigates the performance impact of adversarial clients.
Section 2.2 describes RLShard’s hypergraph-based model
for finding fragmentation strategies.

2.1. Data layout & fault tolerance
Traditional distributed database systems may replicate
different fragments on different nodes, allowing each
node to hold a unique combination of data. Thus, one
could design a replication strategy with 𝑘 = 4 replicas

5 10 15 20 25 30
nodes

200

400

600

800

1000

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd

Grouped P50
Grouped P90
Flat P50
Flat P90

Figure 1: Worst-case throughput (50th and 90th percentile)
of a hypothetical 𝑓=1 cluster with varying node counts.
“Grouped” puts nodes into groups of 4, using 2PC between
and PBFT within groups. “Flat” uses PBFT between all nodes.

of each tuple such that no query ever needs to synchro-
nize with more than 𝑛

4
“primary” nodes. In a Byzantine

context, a client accessing a particular tuple must com-
municate directly with all active nodes containing that
tuple. In the worst case, an adversarial client might need
consensus from the emtire cluster, referred to as “Flat”
layout. To alleviate this worst-case scenario, we sacrifice
some flexibility in the replication strategy. In RLShard,
we create groups of 3𝑓 + 1 nodes that each contain the
exact same set of data. Now, if a client must commit a
transaction that touches every node, the client can use a
two-phase commit strategy: first, a prepare message is
sent to each group of 3𝑓+1 nodes. If all groups can com-
mit, the client issues a commit message to each group.
Within each group, a BFT algorithm is used to ensure an
adversarial node cannot interfere with the transaction.
We refer to this layout as “Grouped”.

This approach might compromise consistency if a node
group fails between sending a prepare message and the
final commit. But the scalability benefits are significant
– Figure 1 shows the worst-case (all nodes involved in
a transaction) throughput for the “Grouped“ and “Flat”
layouts. While the “Grouped” layout shows higher vari-
ance than the “Flat” layout, the “Grouped” layout has
significantly better throughput for larger cluster sizes.

In RLShard, an agent uses RL for adaptive partitioning
and directs client transactions via a router. The experi-
mental setup for Figure 1 used a simulated distributed
system on Linode’s 16-vCPU Dedicated instance with
an AMD EPYC 7713 64-Core Processor and 32 GB RAM,
implemented using Python over TCP.

2.2. Data Layout and Partitioning
To partition data, we leverage hypergraph partitioning
techniques [23, 24, 36] where data are represented as
a hypergraph. Nodes within the hypergraph represent
individual data fragments, and hyperedges represent re-
lationships or dependencies between different data ele-
ments. The hypergraph partitioning algorithm considers
data locality, cost, and balance to optimize partitioning,
aiming to maximize parallelism and scalability by re-

Figure 2: Centralized Learning Architecture

ducing cross-shard transactions. At runtime, as system
parameters change (e.g. change in network conditions
or percentage of cross-shard transactions), RLShard will
reshard data in the presence of performance degradation
– a task that will be performed via RL.

2.3. Byzantine Fault Tolerance
RLShard handles both internal and cross-shard transac-
tions. An internal transaction accesses records within
the same data shard, replicated on nodes of same cluster.
Nodes within the same cluster need to run a consensus
protocol to agree on the order of internal transactions.
Unlike prior work on adaptive data sharding, RLShard
aims to tolerate Byzantine failures, i.e. the sharding al-
gorithm must be resilient against malicious attacks by
faulty nodes. Byzantine protocols use 3𝑓 +1 nodes, with
𝑓 as the max malicious nodes; RLShard adopts PBFT but
is agnostic to the BFT consensus protocol. A cross-shard
transaction, on the other hand, accesses records across
multiple data shards, using the Two-Phase Commit (2PC)
protocol [37] across clusters and PBFT within.

3. Centralized Architecture
In this section, we present an initial centralized architec-
ture design for RLShard, consisting of a centralized router
and learning agent, as shown in Figure 2. We assume
that the centralized components operate within a trusted
environment, ensuring protection against attacks [18].

RLShard has three components: (i) A transaction
router directing client requests and consulting the shard
catalog, (ii) A learning agent deciding when to reshard,
and (iii) Clusters storing shards with fault tolerance. Data
in clusters is replicated 3𝑓 + 1 times (where 𝑓 denotes
maximum faulty nodes), with consensus protocols for
synchronization.

3.1. Learning Problem and Formulation
We choose RL for sharding assignments instead of heuris-
tics like SWORD[23] and Schism[24] because heuristics
often fail to capture the dynamic nature of distributed
database systems. RL, on the other hand, can handle the
dynamic nature of cross-shard transactions and varying

costs associated with edge weights in different scenarios
[38, 39]. RL offers inherent adaptability and learning ca-
pabilities, allowing the agent to autonomously learn and
adapt its behavior based on system performance and feed-
back. This facilitates informed decisions about when to
initiate resharding, considering workload patterns, data
distribution, and cluster size. The learning problem can
be formulated as:
State: 𝑆𝑡 denotes current and new optimal partitioning,
considering fragments to be moved, data volume, and
hypergraph cut quality differences.
Action: Action 𝐴𝑡 is a binary decision, dictating the ini-
tiation of resharding by moving the identified fragments.
It considers the proposed fragment movements and other
shard proposals in the state. An acceptance decision
will prompt the specified fragment movements, while a
rejection will retain the present partitioning scheme.
Reward: The reward function 𝑅𝑡 gauges resharding as-
sesses resharding advantages in terms of system through-
put and latency improvements. It accounts for the cost of
resharding, balancing the overhead and potential gains
against the expenses of moving data fragments between
shards. Though a direct comparison of overhead, re-
sharding cost, and performance gains is not feasible, we
presume a linear weighting function 𝛼𝑛 that maps all of
these parameters together, learning from runtime data:

𝑅𝑡(𝑆𝑡, 𝐴𝑡) = 𝛼1 ·𝐺𝑡 − 𝛼2 · 𝐶𝑡 − 𝛼3 ·𝑂𝑡

where:

• 𝐺𝑡 is potential gains from throughput and latency.
• 𝐶𝑡 denotes the resharding-related costs, calculated by

the data volume (in megabytes) required to be moved.
• 𝑂𝑡 signifies the overhead incurred from resharding,

computed by the number of shards involved.
• 𝛼𝑛 is a linear weighting factor learned from experi-

mentation, employed to combine these parameters. It
is adaptable to different trade-offs in the system.

Using this reward function, the learning agent is incen-
tivized to reshard when anticipated benefits surpass costs,
effectively balancing immediate costs against long-term
performance gains. The agent aims to learn an optimal
policy 𝜋(𝑎|𝑠), which determines the action to be taken
given a particular state. Through ongoing interaction
with the environment and reward-driven feedback, the
agent iteratively refines its policy to maximize cumula-
tive expected rewards over time.

The centralized architecture, however, has two draw-
backs. First, there is a single point of failure. If the learn-
ing system or the transaction router experienced failures
or becomes compromised (in the absence of trusted hard-
ware), it can significantly impact the performance and
reliability of the entire system. Second, the centralized
nature may introduce scalability limitations as the system
grows in terms of workload and network size.

Figure 3: Decentralized Architecture

4. Decentralized Architecture
We propose a decentralized learning architecture using
collaborative reinforcement learning (CRL) to address
the limitations inherent in the centralized architecture.
This design eliminates trusted components, distributing
decision-making across clusters.

Traditional RL algorithms tend to optimize for individ-
ual rewards, leading to convergence at trivial equilibrium
points[40, 41]. In contrast, our decentralized approach
promotes cooperation amongst shards to maximize the
system’s collective reward. Through CRL, agents adjust
their strategies to efficiently distribute fragments among
shards, optimizing database performance [42].

In our decentralized configuration (Figure 3), the client
sends requests to each cluster. Clusters with the relevant
fragments respond, eliminating the need for a central-
ized router. Each cluster features its own learning agent,
which collaborates through CRL. These agents exchange
insights and refine decisions based on local feedback,
ensuring efficient fragment distribution.

4.1. Learning Problem and Formulation
The goal is collective training for optimal fragment as-
signments. To formulate this, we define local components
for each learner:
State: Represents fragments within the agent’s local
shard and others.
Action: Agents propose fragment exchanges to other
shards and decide on the acceptance or rejection of pro-
posals received from other shards. The collaborative
decision-making process involves identifying beneficial
exchanges for the entire system.
Reward: The reward is analogous to the centralized
architecture but the decentralized approach presents two
complications: firstly, in a decentralized setting, each
node must act independently to lower the global function,
unlike the centralized case where a global solution can be
computed. Secondly, the agents know the throughput of
the queries on their node but lack knowledge of others’
throughput resulting in differences in mechanisms and
input outputs, unlike the centralized architecture.

Learning agents across shards iteratively interact for

rewards, updating policies to maximize cumulative ex-
pected rewards based on cluster observations. Through
CRL, agents collaborate for efficient shard fragment dis-
tribution. The ultimate objective is optimizing system
throughput, minimizing latency, and enhancing overall
database performance by learning the optimal fragment
movement strategies.

4.2. Open Research Challenges
To centralize or to distribute? Our first-cut solution
requires clients to either deploy a transaction router or
broadcast requests to all shards. The former may not be
feasible for large datasets (not to mention cloud providers
are unlikely to expose data placement to clients), while
a broadcast-based approach may add significant over-
head in the presence of a large number of shards. One
possibility is a hybrid approach, where the transaction
router remains centralized, while the learning and mon-
itoring are decentralized (i.e., each shard runs its own
learning agent). Such a hybrid approach may achieve a
good balance between security and performance.
Cooperative RL with local rewards: Traditional co-
operative RL presumes a universal reward. For example,
three robots might collaborate in order to win a game
against humans, and each robot has access to objective
information about the score of the game. In our setting,
each shard has access to a “local” reward signal, the num-
ber of cross-shard transactions that one particular shard
was involved with. Adapting these algorithms to a sys-
tem’s context will require careful research to maintain
the theoretical benefits of prior work.
Exploration and exploitation in an adversarial en-
vironment. A major downside to using RL for systems
is the need for exploration: the algorithm must test un-
known policies that have the potential to be good or
bad. Balancing exploration and exploitation in an adver-
sarial environment is even more difficult than in non-
adversarial domains, since a smart attacker may try to
induce exploration into particularly bad parts of the pol-
icy space. We plan to explore techniques to mitigate these
attacks, as well as come up with techniques that allow us
to balance exploration and exploitation.

5. Conclusion
We present our initial design of RLShard, an adaptive,
Byzantine fault-tolerant sharded database, proposing
both centralized and decentralized architectural solutions.
While the centralized architecture relies on a trusted ad-
ministrative domain to learn optimal sharding, in the
decentralized architecture, different clusters communi-
cate with each other to learn the best sharding layout
through collaborative reinforcement learning. We laid
out our research plan, open research challenges that we
aim to tackle.

References
[1] K. P. Birman, T. A. Joseph, T. Raeuchle, A. El Ab-

badi, Implementing fault-tolerant distributed ob-
jects, Trans. on Software Engineering (1985) 502–
508.

[2] L. E. Moser, P. M. Melliar-Smith, P. Narasimhan,
L. A. Tewksbury, V. Kalogeraki, The eternal sys-
tem: An architecture for enterprise applications, in:
Int. Enterprise Distributed Object Computing Conf.
(EDOC), IEEE, 1999, pp. 214–222.

[3] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, Spanner: Google’s globally dis-
tributed database, Transactions on Computer Sys-
tems (TOCS) 31 (2013) 8.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, W. Vogels, Dynamo: amazon’s highly
available key-value store, in: Operating Systems
Review (OSR), volume 41, ACM SIGOPS, 2007, pp.
205–220.

[5] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo, S. Kulka-
rni, H. Li, Tao: Facebook’s distributed data store for
the social graph, in: Annual Technical Conf. (ATC),
USENIX Association, 2013, pp. 49–60.

[6] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,
A. Rasin, S. Zdonik, E. P. Jones, S. Madden, M. Stone-
braker, Y. Zhang, H-store: a high-performance,
distributed main memory transaction processing
system, Proc. of the VLDB Endowment 1 (2008)
1496–1499.

[7] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khor-
lin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, V. Yush-
prakh, Megastore: Providing scalable, highly avail-
able storage for interactive services, in: Conf. on
Innovative Data Systems Research (CIDR), 2011.

[8] L. Lamport, Paxos made simple, ACM Sigact News
32 (2001) 18–25.

[9] M. J. Amiri, B. T. Loo, D. Agrawal, A. El Abbadi,
Qanaat: A scalable multi-enterprise permissioned
blockchain system with confidentiality guarantees,
Proc. of the VLDB Endowment 15 (2022) 2839–2852.

[10] M. Baudet, A. Ching, A. Chursin, G. Danezis,
F. Garillot, Z. Li, D. Malkhi, O. Naor, D. Perelman,
A. Sonnino, State machine replication in the libra
blockchain, The Libra Assn., Tech. Rep (2019).

[11] J. Kwon, Tendermint: Consensus without mining
(2014).

[12] M. J. Amiri, Z. Lai, L. Patel, B. T. Loo, E. Lo, W. Zhou,
Saguaro: An edge computing-enabled hierarchical
permissioned blockchain, in: Int. Conf. on Data
Engineering (ICDE), IEEE, 2023, pp. 259–272.

[13] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,

K. Christidis, A. De Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, Hyperledger fabric:
a distributed operating system for permissioned
blockchains, in: European Conf. on Computer Sys-
tems (EuroSys), ACM, 2018, pp. 30:1–30:15.

[14] J. Qi, X. Chen, Y. Jiang, J. Jiang, T. Shen, S. Zhao,
S. Wang, G. Zhang, L. Chen, M. H. Au, et al.,
Bidl: A high-throughput, low-latency permissioned
blockchain framework for datacenter networks,
in: Symposium on Operating Systems Principles
(SOSP), ACM SIGOPS, 2021, pp. 18–34.

[15] Y. Buchnik, R. Friedman, Fireledger: a high through-
put blockchain consensus protocol, Proceedings of
the VLDB Endowment 13 (2020) 1525–1539.

[16] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin,
M. Marchetti, Making byzantine fault tolerant sys-
tems tolerate byzantine faults., in: Symposium on
Networked Systems Design and Implementation
(NSDI), volume 9, USENIX Association, 2009, pp.
153–168.

[17] L. Zhou, F. B. Schneider, R. Van Renesse, Coca:
A secure distributed online certification authority,
ACM Transactions on Computer Systems (TOCS)
20 (2002) 329–368.

[18] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J.
Elmore, A. Aboulnaga, A. Pavlo, M. Stonebraker,
E-store: Fine-grained elastic partitioning for dis-
tributed transaction processing systems, Proc. of
the VLDB Endowment 8 (2014) 245–256.

[19] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, D. J. Abadi, Calvin: fast distributed transac-
tions for partitioned database systems, in: SIGMOD
Int. Conf. on Management of Data, ACM, 2012, pp.
1–12.

[20] F. Nawab, M. Sadoghi, Blockplane: A global-scale
byzantizing middleware, in: 2019 IEEE 35th Int.
Conf. on Data Engineering (ICDE), IEEE, 2019, pp.
124–135.

[21] M. J. Amiri, D. Agrawal, A. El Abbadi, SharPer:
Sharding permissioned blockchains over network
clusters, in: SIGMOD Int. Conf. on Management of
Data, ACM, 2021, pp. 76–88.

[22] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang,
Q. Lin, B. C. Ooi, Towards scaling blockchain sys-
tems via sharding, in: SIGMOD Int. Conf. on Man-
agement of Data, ACM, 2019, pp. 123–140.

[23] A. Quamar, K. A. Kumar, A. Deshpande, Sword:
scalable workload-aware data placement for trans-
actional workloads, in: Proceedings of the 16th in-
ternational conference on extending database tech-
nology, 2013, pp. 430–441.

[24] C. Curino, E. Jones, Y. Zhang, S. Madden, Schism: a
workload-driven approach to database replication
and partitioning, Proc. of the VLDB Endowment 3
(2010) 48–57.

[25] R. Marcus, O. Papaemmanouil, S. Semenova, S. Gar-
ber, NashDB: An End-to-End Economic Method for
Elastic Database Fragmentation, Replication, and
Provisioning, in: Proceedings of the 37th ACM
Special Interest Group in Data Management, SIG-
MOD ’18, Houston, TX, 2018. doi:https://doi.
org/10.1145/3183713.3196935.

[26] R. Taft, E. Mansour, M. Serafini, J. Duggan,
A. J. Elmore, A. Aboulnaga, A. Pavlo, M. Stone-
braker, E-Store: Fine-grained Elastic Partitioning
for Distributed Transaction Processing Systems,
PVLDB 8 (2014) 245–256. URL: http://dx.doi.org/10.
14778/2735508.2735514. doi:10.14778/2735508.
2735514.

[27] B. Hilprecht, C. Binnig, U. Röhm, Learning a parti-
tioning advisor for cloud databases, in: Proceedings
of the 2020 ACM SIGMOD International Confer-
ence on Management of Data, 2020, pp. 143–157.

[28] P. Parchas, Y. Naamad, P. Van Bouwel, C. Faloutsos,
M. Petropoulos, Fast and effective distribution-key
recommendation for amazon redshift, Proceedings
of the VLDB Endowment 13 (2020) 2411–2423.

[29] X. Zhou, G. Li, J. Feng, L. Liu, W. Guo, Grep: A
graph learning based database partitioning system,
Proceedings of the ACM on Management of Data 1
(2023) 1–24.

[30] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych,
P. Broniek, J. Kusmierek, P. Nowak, B. Strack, P. Wi-
tusowski, S. Hand, et al., Autopilot: workload au-
toscaling at google, in: Proceedings of the Fifteenth
European Conference on Computer Systems, 2020,
pp. 1–16.

[31] D. Golovin, G. Bartok, E. Chen, E. Donahue,
T.-K. Huang, E. Kokiopoulou, R. Qin, N. Sarda,
J. Sybrandt, V. Tjeng, Smartchoices: Augment-
ing software with learned implementations, arXiv
preprint arXiv:2304.13033 (2023).

[32] M. Castro, B. Liskov, Practical Byzantine fault tol-
erance, in: Proceedings of the third symposium
on Operating systems design and implementation,
OSDI ’99, USENIX Association, USA, 1999, pp. 173–
186.

[33] T. Distler, Byzantine fault-tolerant state-machine
replication from a systems perspective, ACM Com-

puting Surveys (CSUR) 54 (2021) 1–38.
[34] J. Li, D. Maziéres, Beyond one-third faulty replicas

in byzantine fault tolerant systems., in: Symposium
on Networked Systems Design and Implementation
(NSDI), USENIX Association, 2007.

[35] M. Vukolić, The byzantine empire in the intercloud,
ACM Sigact News 41 (2010) 105–111.

[36] I. Kabiljo, B. Karrer, M. Pundir, S. Pupyrev,
A. Shalita, A. Presta, Y. Akhremtsev, Social hash
partitioner: a scalable distributed hypergraph parti-
tioner, arXiv preprint arXiv:1707.06665 (2017).

[37] J. Gray, A transaction model, in: Autonmata, Lan-
guages and Programming: Seventh Colloquium No-
ordwijkerhout, the Netherlands July 14–18, 1980 7,
Springer, 1980, pp. 282–298.

[38] Z. Yang, R. Yang, F. R. Yu, M. Li, Y. Zhang, Y. Teng,
Sharded blockchain for collaborative computing in
the internet of things: Combined of dynamic clus-
tering and deep reinforcement learning approach,
IEEE Internet of Things Journal 9 (2022) 16494–
16509.

[39] H. Huang, X. Peng, J. Zhan, S. Zhang, Y. Lin,
Z. Zheng, S. Guo, Brokerchain: A cross-shard
blockchain protocol for account/balance-based
state sharding, in: IEEE INFOCOM 2022-IEEE Con-
ference on Computer Communications, IEEE, 2022,
pp. 1968–1977.

[40] J. K. Gupta, M. Egorov, M. Kochenderfer, Coopera-
tive multi-agent control using deep reinforcement
learning, in: Autonomous Agents and Multiagent
Systems: AAMAS 2017 Workshops, Best Papers,
São Paulo, Brazil, May 8-12, 2017, Revised Selected
Papers 16, Springer, 2017, pp. 66–83.

[41] J. Dowling, V. Cahill, Self-managed decentralised
systems using k-components and collaborative re-
inforcement learning, in: Proceedings of the 1st
ACM SIGSOFT Workshop on Self-managed Sys-
tems, 2004, pp. 39–43.

[42] L. Matignon, G. J. Laurent, N. Le Fort-Piat, Hys-
teretic q-learning: an algorithm for decentralized
reinforcement learning in cooperative multi-agent
teams, in: 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, 2007, pp.
64–69.

http://dx.doi.org/https://doi.org/10.1145/3183713.3196935
http://dx.doi.org/https://doi.org/10.1145/3183713.3196935
http://dx.doi.org/10.14778/2735508.2735514
http://dx.doi.org/10.14778/2735508.2735514
http://dx.doi.org/10.14778/2735508.2735514
http://dx.doi.org/10.14778/2735508.2735514

	1 Introduction
	2 RLShard
	2.1 Data layout & fault tolerance
	2.2 Data Layout and Partitioning
	2.3 Byzantine Fault Tolerance

	3 Centralized Architecture
	3.1 Learning Problem and Formulation

	4 Decentralized Architecture
	4.1 Learning Problem and Formulation
	4.2 Open Research Challenges

	5 Conclusion

