
Building a serverless Data Lakehouse from spare parts⋆

Jacopo Tagliabue1,2,∗, Ciro Greco1 and Luca Bigon1,†

1Bauplan, New York City, United States
2Tandon School of Engineering, NYU, New York City, United States

Abstract
The recently proposed Data Lakehouse architecture is built on open file formats, performance, and first-class support for data
transformation, BI and data science: while the vision stresses the importance of lowering the barrier for data work, existing
implementations often struggle to live up to user expectations. At Bauplan, we decided to build a new serverless platform to
fulfill the Lakehouse vision. Since building from scratch is a challenge unfit for a startup, we started by re-using (sometimes
unconventionally) existing projects, and then investing in improving the areas that would give us the highest marginal gains
for the developer experience. In this work, we review user experience, high-level architecture and tooling decisions, and
conclude by sharing plans for future development.

Keywords
data lakehouse, data pipelines, serverless, reasonable scale, containerized execution

1. Introduction
[2] argues that the popular data warehouse architecture
will soon be replaced by a new architectural pattern,
the Data Lakehouse (DLH). A DLH is built on open file
formats (e.g. Parquet), exceptional performance, and
first-class support for engineering (data transformation),
analytics (BI) and inferential (data science) use cases. The
vision of such architecture is first and foremost about
flexibility, making it possible for organizations to choose
different ways to operationalize data depending on data
volumes, use cases, and technological and security con-
straints.

This is particularly valuable for large organizations
where data democratization is crucial to achieve agility
[3]: enabling easier access to and understanding of data
is the prerequisite for organizations to best leverage their
data. The heterogeneity of use cases is reflected in the
complexity of the underlying infrastructure (Fig. 2), with
some pieces coming from databases (query engines, ta-
bles, data catalogs etc.), some from distributed systems
(pipeline, orchestration, runtime management and opti-
mization etc.).

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — Second International Workshop on Composable
Data Management Systems (CDMS’23), August 28 - September 1, 2023,
Vancouver, Canada
⋆
With our title we pay our tribute to the paper by the Firebolt team
[1]. While our goals, timeline and methodology are different, our
work shares the underlying philosophy.
∗Corresponding author.
Envelope-Open jacopo.tagliabue@nyu.edu (J. Tagliabue);
ciro.greco@bauplanlabs.com (C. Greco);
luca.bigon@bauplanlabs.com (L. Bigon)
Orcid 0000-0001-8634-6122 (J. Tagliabue); 0009-0007-0359-4130
(C. Greco); 0009-0001-0028-7983 (L. Bigon)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

There are two primary approaches to realize the DLH
vision. The first is improving the usability and flexibility
of existing Big Data technologies: e.g., one could start
by adding automated cluster configurations to Apache
Spark. Although everyone will stand behind easier devel-
opment in Spark, this approach falls short of delivering
a developer experience truly aligned with the vision of
the DLH, as we will discuss further below.

A different approach would consist in building a sys-
tem from scratch based on foundational principles, while
maintaining storage as a separate component; e.g., one
could imagine dispensing with the Java Virtual Machine
(JVM) altogether, under the assumption that the advan-
tages of using it are not significant enough, if no legacy
is involved. This approach is unfortunately impractical
to the point of being unattainable: re-building a catalog,
a query engine and multi-language runtimes at the same
time is an unreasonable amount of work for a resource-
constrained startup.

In this paper we describe how we designed Bauplan,
a serverless platform implementing the DLH vision by
putting the development experience first. We built the
first version of Bauplan by following a third approach,
i.e. re-purposing (sometimes unconventionally) existing
tools when possible, and investing most resources into
differentiating features. We challenge the proponents of
the first approach, arguing that the data landscape has
undergone significant changes since the Big Data era and
a new foundation is needed. Similarly, we object that a
complete rewrite is unnecessary. Instead, we argue that
a well-informed industry perspective can effectively nar-
row down the problem scope and lay a new foundation
beyond traditional Big Data frameworks.

mailto:jacopo.tagliabue@nyu.edu
mailto:ciro.greco@bauplanlabs.com
mailto:luca.bigon@bauplanlabs.com
https://orcid.org/0000-0001-8634-6122
https://orcid.org/0009-0007-0359-4130
https://orcid.org/0009-0001-0028-7983
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

2. A Practitioner Perspective
Aside from security and compliance, the biggest argu-
ment in favor of the DLH is flexibility: different teams
can use different tools to process data for different use
cases. Practically, this implies that any DLH needs to
support two different use cases:

• Query and Wrangle (QW), referring to the
scenario where users need to explore data and
ask specific questions (e.g. counting how many
marketing emails were opened in the previous
month). Querying predominantly involves SQL,
while Wrangling is often performed in Python.

• Transform and Deploy (TD), referring to the
scenario where users need to construct code-
driven, reproducible data pipelines (DAGs) that
generate new artifacts for downstream utiliza-
tion. For instance, building a dashboard exposing
the performances of marketing emails across dif-
ferent user demographics. Due to the distinct
strengths and weaknesses of SQL and Python,
the combination of both is often optimal.

Importantly, depending on the phase in which develop-
ers find themselves in the development cycle, their way to
interact with the data can be either Synchronous or Asyn-
chronous. While QW is de facto always synchronous, TD
tend to be more nuanced and need to support both.

• Synchronous is when a user issues a command
(a SQL query, or a DAG run) and awaits for the
results to come back. In this scenario, simplicity
and fast feedback loop are the key goals [4];

• Asynchronous is when a command is issued (of-
ten by another system, such as an orchestrator)
and the user is involved in monitoring the out-
come at a later time. In this scenario, reliability,
resilience and infrastructure ergonomics are the
key goals.

Table 1
Use cases and interaction modalities in the data life cycle:
development vs production.

Use case Env Mode

Querying + Wrangling Dev Synch
Querying + Wrangling Prod Synch
Transforming + Deploying Dev Synch + Asynch
Transforming + Deploying Prod Asynch

The interplay between use cases and modalities is sum-
marized in Table 1. A DLH needs to provide a coherent
developer experience across the different phases of their
development cycle (Dev vs. Prod) while supporting the

possibility of interacting with data (QW vs. TD) in both
synchronous and asynchronous ways.

To achieve this, we designed Bauplan with the follow-
ing general design principles in mind:

• Serverless experience: to fully leverage the
separation of storage and compute, developers
should deal with as little infrastructure as possible.
We propose to decouple data logic from execu-
tion to enable a “serverless” experience based on
a declarative approach; furthermore, since data
pipelines are functional in nature (output of par-
ent nodes is input for children), a function-as-a-
service deployment is prima facie a natural fit.1

• Software development patterns: it is often the
case that the only developers who can bring data
applications to production are those who possess
a special data engineering skill set. Empowering
developers with more general coding skills to do
impactful work on data is a fundamental piece of
the DLH vision. Systems should allow users to
use only familiar tools like SQL, standard Python,
the CLI and Git.

• Reproducibility and versioning: because the
primary factor for building data products involves
reproducible and versioned code pipelines, we
embrace the idea that code provides a (mostly
declarative) way to build data. Likewise, data is
treated as code, adopting a life cycle including
branching, committing, and merging.

• Full Auditability: cloud clusters with long
startup time and complex configurations encour-
age developers to resort to local development to
expedite the feedback loop. However, this pattern
exacerbates the challenges of software develop-
ment (e.g. dependency management) while in-
troducing potential security issues. We advocate
for a cloud-first approach, ensuring that all work
and access are centralized, auditable, and aligned
with security and governance policies.

3. Departing from Spark
Before delving into the specifics of our design for
Bauplan, we wish to explain the rationale behind depart-
ing from Spark, which is widely regarded as the industry
standard for analytics at scale and holds a significant
position in numerous DLH implementations.

Given our discussion about the ideal DLH developer
experience, we believe Spark falls short for several struc-
tural reasons. For instance, slow startup and execution
makes Spark sub-optimal for synchronous operations,

1Note that we purposely use the term with some flexibility (Section
4.5).

such QW. At the same time, the system has a notoriously
steep learning curve [5, 6], both from an API and a de-
bugging perspective: when thinking about TD, it is often
hard to reason about it [7, 8]. If the DLH vision is truly
about enabling a broader set of practitioners to perform
data transformations, these systems are not necessarily
the best design choice.

3.1. The Reasonable Scale hypothesis
There is an additional point that further strengthens our
argument in favor of fast and efficient implementations.
The definition of Big Data changed from the time Spark
was first introduced: popular datasets from the Big Data
era [9] (and even recent deep learning challenges [10, 11])
can now be processed comfortably in one machine.

Most of what we considered internet scale at the time
would be considered a “reasonable scale” today. The term
“Reasonable Scale” (RS) has gained popularity within the
ML community to describe development practices that
stand in contrast to those required by the scale of Big
Tech companies. Because the vast majority of companies
typically deal with datasets ranging from a few thousands
rows to tens of GB, the RS has been used to forcefully
argue against large scale distributed systems [12], pro-
moting a pragmatic approach not dissimilar from the
seminal COST paper [13].

At Bauplan, we investigated the RS hypothesis for data
transformation workloads. To accomplish this, we devel-
oped scripts that analyzed query patterns and generated
reports on query time distributions for SQL workloads
in one month. Query time correlates with byte scans
and table size, hinting at a power-law distribution where
most workloads handle small data volumes. Figure 1 (left)
displays distributions for three sample companies, span-
ning startups to public firms2. As clear from the log-log
plot, the power-law-like behavior holds for all companies,
with a good chunk of the queries being run in the 100-101
seconds range. From one design partner, we were able to
also obtain direct estimates about bytes scanned when
querying, and associated cloud costs: knowing that the
80th percentile in the bytes distribution corresponds to
approximately 750MB, Fig. 1 (right) further strengthens
the applicability of the RS hypothesis to data workloads.

Finally, the cost of RAM and high-performance disk
space keeps decreasing: in the last 10 years, the cost
of 1 TB of memory decreased from 5,000 USD to 2,000
USD.3 Taken together, these considerations validate RS
workloads as an initial viable market for Bauplan, and

2To fully anonymize the dataset, we used the powerlaw package [14]
for distribution fitting: final data are then generated by sampling
from the distribution.

3https://ourworldindata.org/grapher/
historical-cost-of-computer-memory-and-storage?time=2010.
.latest&facet=metric.

Figure 1: Left : a log-log plot for the CCDF (complemen-
tary cumulative distribution function) of SQL query times
(seconds), from a month in the query history log of three
companies (solid lines are the empirical distributions, dotted
lines are the fitted versions). Right : cumulative cost (y-axis)
of running queries up until a given percentile (x-axis): queries
up until the 80th percentile (red dotted line) for bytes scanned
are responsible for 80% of all credit usage.

cast doubt on the necessity of assuming extensive parallel
computing is needed for most DLH use cases.

4. Core Components
We survey the core components of Bauplan architecture
and discuss the rationale behind our choices. The general
design is illustrated in Fig. 2: at the top, we have the user
layer - including just the code and a CLI; at the bottom,
we have the cloud layer, including storage for raw data
and derived assets, code intelligence to transform user
code into a logical plan and infrastructure to run the
actual computations.

4.1. A sample data pipeline
Throughout the paper, we use a prototypical data pipeline
as a working example. In Fig 3 we introduce a small, but
functioning data pipeline with two SQL nodes for data
artifacts and one Python expectation test, checking the
quality of one artifact – we also report the full SQL and
Python code in the Appendix.

Without loss of generality, we are simulating a Trans-
forming use case over the NYC taxi dataset4: in particular,
we transform raw data from an Iceberg table (Section 4.2)
named taxi_table, into a final table named pickups,
which contains pre-computed popular pickup locations
ready to power a dashboard. There are three main no-
tions at play in this DAG:

• the data lake: while not obvious from the code
itself, there is an object storage layer containing
the raw data we are starting from: from the devel-
oper perspective, users would only interact with
logical constructs, such as taxi_table; from an
implementation standpoint, handling persistent

4https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?time=2010..latest&facet=metric
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?time=2010..latest&facet=metric
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?time=2010..latest&facet=metric

Figure 2: A Bauplan lakehouse and its main components.
User’s primary interaction mode is code and CLI, while the
underlying platform abstracts away pipeline planning, execu-
tion and materialization.

object transparently is a huge component of the
DLH (Sections 4.2 and 4.3 below).

• declarative data assets: we subscribe to the one-
query, one-artifact pattern popularized by dbt-
style transformations5: users define artifacts one
by one as SQL queries, and the platform builds up
the DAG based on parsing and naming conven-
tion (Section 4.4). Importantly, no imperative-
style DAG construction is needed: insofar as
users implicitly link together parent and children
nodes through their code, functions “are all you
need”6;

• data expectations: it is best practice to test the ta-
bles produced by a DAG for statistical anomalies.
This provides the foundation of the transform-
audit-write pattern for data development (Section
4.3): just as in software we can debug, test and
even run different versions of an application in
parallel against production, automated testing
and versioning becomes the foundation of the
same approach for data pipelines.7

5https://github.com/dbt-labs/dbt-core
6See also the Appendix for the full code example.
7Following the software analogy further, expectations are akin to
integration tests, where a new component is embedded in an ex-
isting system, and checks are made to ensure the desired output is
achieved. A related but different concept is unit tests, which instead
work on manually fabricated input-output pairs, to test edge cases
or important scenarios irrespective of the system actually seeing
this input. Given our abstractions, Bauplan can easily accommodate
both types of tests, especially considering that Python primitives
for creating unit tests for tables are better than SQL.

4.2. Table Format
While a data lake is ultimately made of files, we wish
to provide table-like abstractions to our users: by de-
coupling the actual storage of the data (the file s3://my-
bucket/taxifile.parquet) from their logical function (the
list of taxi trips in NYC), we can reuse the same code
across data versions: every command that points to
taxi_table can be executed over different versions of
the table with just a configuration change (Section 4.3).
After considering Delta Lake, Hudi8, and Iceberg9 as pos-
sible formats to give table-like semantics to the object
storage, we chose Icebergmainly for three reasons: larger
community support, full support for time-travel and ver-
sioning semantics, limited but increasing compatibility
with Python10.

At the time of writing, major formats have full read /
write support only for JVM engines (e.g. Spark, Presto,
Dremio). Considering our working hypothesis about the
Reasonable Scale and Bauplan focus on a serverless expe-
rience, two major tasks had to be completed to overcome
these constraints. First, when running a query over an
Iceberg table, our code intelligence module needs to first
parse SQL into a table scan to obtain a dataframe-like
object (Section 4.4.2); second, when materializing a data
asset from the DAG back to the data catalog, a Spark
session is created to handle the Iceberg INSERT: follow-
ing our no infrastructure principle, we created custom
containers (Section 4.5) optimized for starting a Spark
command with 300 milliseconds latency – as a result, the
materialization step looks no slower than running any
other Python function (as opposed to waiting for a Spark
cluster to launch).

4.3. Data catalog and versioning
Software development best practices and tooling allow
developers to work on code (new feature, bug fixing,
debugging etc.) in a consistent and sand-boxed way: pro-
duction code can be cloned, run, modified by developers,
but running development code won’t leak into a pro-
duction environment. Bauplan provides the same best
practices for data pipelines, enforcing a transform-audit-
write pattern for all transformations. In particular, we
picked Nessie 11 to provide a git-like semantics: Nessie
versions an entire catalog at a time, so it is ideal for trans-
formation use cases when multiple artifacts are affected
at each run. Fig.4 depicts the basic versioning mechanism
in the platform:

1. the user checkouts through Git a new branch in
his project (feat_1), to develop a new pipeline;

8https://hudi.apache.org/
9https://github.com/apache/iceberg
10https://py.iceberg.apache.org/
11https://projectnessie.org/

https://github.com/dbt-labs/dbt-core
https://hudi.apache.org/
https://github.com/apache/iceberg
https://py.iceberg.apache.org/
https://projectnessie.org/

Figure 3: A worked out example of a data pipeline in Bauplan, at three layers of abstraction: top, the developer layer, i.e. a
modular, multi-language coding pattern in which DAG dependencies are expressed implicitly as part of code dependencies;
middle the logical plan, i.e. a series of functional operations with explicit dependencies between steps and connection to
outside artifacts (e.g. Iceberg tables); bottom, the physical plan, i.e. a series of commands (and compatible engines) to satisfy
the logical plan in an efficient way - for example, by leveraging data locality, the code in Step 2 can be run without any data
movement right after Step 1.

2. in the context of a bauplan run command,
Bauplan detects the Git context and creates a
Nessie branch with the same name, feat_1, start-
ing from the current production data in the lake
main branch (grey node); now both the code
(through Git) and the data artifacts (through
Nessie) are production-like and sandboxed;

3. Bauplan executes the DAG into an ephemeral
branch (run_12): by executing each run “atomi-
cally” we can avoid persisting dirty DAGs – only
when all steps and tests are executed successfully,
we are allowed to merge the data into the current
branch, making the artifacts 1 and 3 visible to
any user with branch access (the obvious analogy
here is the concept of transaction in databases);

4. when the merge on feat_1 is committed, the
ephemeral branch run_12 is deleted.

Once again, we remark that we chose to base the de-
veloper experience only on Git and the CLI. While we
expect users to be familiar with Git, all the data version-
ing is handled behind the scene transparently. The user
is not expected to master Nessie or any of the technolo-
gies involved. Instead, they are provided with a sand-
box environment for data development with a familiar
software-like semantics.

4.4. Code intelligence
There is a natural tension in modularity between code
and compute: modular code is easier to test, re-use, rea-

Figure 4: Git semantics for code and data. When developing
a pipeline, users work on Git branches with associated Nessie
branches: every run takes place in an ephemeral branch fol-
lowing the transform-audit-write pattern.

son about, on the other side, monolith compute is easier
to spin up, manage, orchestrate. The no infrastructure
principle provides guidance on how to navigate the trade-
offs: on the code side, we subscribe to full modularity (e.g.
dbt-style transformations), so that each node in the DAG
corresponds to one file that is runnable and testable in
isolation; on the compute-side, we let the system opting
for modularity or monolith depending on the circum-
stances. In other words, the user is exposed directly only
to the top layer in Fig. 3: it is the job of the code intel-
ligence module (Fig. 2) to take as input the queries and

functions defining a pipeline, together with parameters
from the CLI, and produce as output first a logical plan of
operations, and finally a physical plan to run the desired
transformations.

4.4.1. From code to the logical plan

After the pipeline code is ingested (e.g. Section A), the
full project is snapshotted in an object storage and fin-
gerprinted in a Postgres database, not dissimilarly from
what happens for runs in Metaflow [15]: by assigning
an id and immutable artifacts to each run, we guarantee
reproducibility for auditing and debugging purposes –
following the code is data principle, the same code on the
same data version will produce identical results. After
versioning, SQL and Python files are parsed: first, logi-
cal dependencies are extracted from implicit references
– in our example, pickups is build out of another ta-
ble (SELECT .. FROM trips), so we need to materialize
nodes in the right order; second, environment details for
Python functions are extracted – in our purely functional
implementation, a decorator such as @requirements can
be used to pin down the needed packages: because of
our serverless setup (Section 4.5), the OS, container, and
environment layers are handled by the system, leaving
packages as the only degree of freedom left to control to
ensure full reproducibility.

Finally, in our example Python is used only to run an
expectation. There is no reasons why Python could not
be used to also declare new tables starting from existing
ones. In essence, transformations are functional mappers
from set of tuples (rows in the “parent table”) to set of
tuples (rows in the “child table”): as long as two languages
can speak a common dialect over those tuples, they can
operate together.

4.4.2. The execution plan

The output of the parsing step is a logical plan (Fig. 3),
so that the system knows which artifacts depends on
existing Iceberg tables, which tests need to pass to con-
sider the pipeline healthy, and what needs to be written
back into the catalog as a result of running the DAG. The
first Bauplan version for executing such a plan was the
simplest possible idea, i.e. just mapping the plan to an
isomorphic execution, in which each node is executed
by one (serverless and stateless) function. However, this
naive implementation doesn’t optimize around an impor-
tant feature of data workloads: at RS, computing artifacts
is pretty fast, and the bottleneck is often moving data
around. To make a concrete example, consider again
our sample pipeline: there, the Python expectation is a
Pandas function taking a DataFrame as input (the data
artifact we are testing), and returning a boolean. Instead
of running an Iceberg command first, a SQL query and

then a Python function as three separate executions, we
pushed down WHERE filters to obtain a smaller in-memory
table, then run in-place the SQL logic and the Python ex-
pectation. This optimization results in 5x faster feedback
loop even with small datasets, and avoid unnecessary
spillover to object storage: notably, the user is not re-
quired to know any of the underlying implementation
details.

4.5. Serverless runtimes
When the execution plan is finalized, the computation
needs to happen in a fast, reliable, scalable way. Follow-
ing the functional definitions of pipelines, a serverless
runtime is the natural choice in terms of abstraction:
the user specifies what needs to happen, the Bauplan
platform runs the code in an optimized environment
where OS, container, and runtime are under its control
[16]. In recent years, serverless has become an overloaded
term, used to vaguely denote a cluster of features not
necessarily related [17, 18] and not necessarily important
for (or even, at odds with) data pipelines: scale-to-zero,
price-per-second, “infinite” and instantaneous concur-
rency, stateless execution model [19]. We identified few
essential properties for our serverless platform:

• multi-language support with flexible dependen-
cies (Fig. 2): considering SQL code can be run in
a Python interpreter connected to object storage
(see duckdb below), the requirement can be sat-
isfied by a Python runtime allowing an arbitrary
combination of interpreter version and dependen-
cies12;

• runtime hardware allocation: the same transfor-
mation logic should run with 10GB or 20GB of
memory depending on the underlying artifacts;

• data locality: given that data pipelines are first
and foremost aboutmoving data, we need tomain-
tain function isolation at the runtime level but
allow for shared resources at the artifacts level
- moving data is slow and expensive, and object
storage should be treated as a last resort [20];

• pausing functions: since a fresh Spark context
takes a while to be created, it is typically re-used
in a stateful manner. However, since “freezing” a
container after initialization would make startup
time negligible, we could run stateless commands
over ephemeral containers.

We evaluated AWS Lambda13, OpenWhisk14 and
OpenLambda15 as off-the-shelf frameworks, but none
12Note how the function-first approach provides a level of control
– i.e. specifying packages per function – that is impossible in
conventional Spark applications.

13https://aws.amazon.com/lambda/
14https://openwhisk.apache.org/
15https://github.com/open-lambda/open-lambda

https://aws.amazon.com/lambda/
https://openwhisk.apache.org/
https://github.com/open-lambda/open-lambda

of them fully satisfied the desiderata above: as typi-
cal use cases for serverless are micro-services and glue
code in cloud infrastructure, it is not surprising that
existing tools would be sub-optimal for our scenarios.
Steps in data DAGs have almost opposite requirements
when compared to typical functions-as-a-service: startup
time is somewhat important, but since the bottleneck is
data reading and processing, we play in the 200-1000
ms regime, not 0-200 ms; on the other hand, resources
required to compute aggregations require more fine-
grained tuning. For these reasons, we invested, as a differ-
entiating feature, in building an orchestration and mem-
ory management layer to support workloads in which
horizontal scalability is less important than vertical elas-
ticity and efficient data processing.

To support SQL, we leverage duckdb [21] as our
query engine, given its performance, flexibility and full-
compatibility with our formats16; to support Python, we
built custom containerized runtimes and a container man-
ager: furthermore, we were able to exploit the power-law
in package utilization [22] to limit overall download times
with an efficient local, disk-based cache.17 Our solution
allows for fast startup time (300ms), complete runtime
isolation at the function level, and customizable sharing
policies within the functions in a single DAG execution:
as our target deployment model is initially “Bring Your
Own Cloud”, the usual security concerns of multi-tenant
virtualization do not apply [23].

Finally, we wish to stress that containerization is an
active area of research, with exciting possibilities offered
by new frameworks such as WASM [24]: through an
ongoing collaboration with the research group behind
SOCK [22], we are actively iterating on this component.

4.6. Interacting with the platform
Similar to other popular data tools, interactions between
Bauplan users and the platform happen through the CLI,
as pipelines get written in the IDE of choice. With the in-
tention of satisfying first the semantics implied by the sce-
narios in Table 1, the CLI experience is centered around
two main commands, query and run:

• bauplan query -q "SELECT * FROM trips":
synchronous, point-wise interactions with
pre-built artifacts are handled through query. As
discussed, time-travel is a first-class abstraction,
so the same command takes an additional
argument to specify the intended branch (if not
current): -b feat_1.

16An example of running serverless queries has been open-sourced
at https://github.com/BauplanLabs/quack-reduce.

17We plan to release a Lambda-based generic runtime for Python
functions that leverages object storage for caching.

• bauplan run: asynchronous, DAG-long inter-
actions are handled through run; starting from
the pipeline code in the IDE, issuing run starts
the intelligence and execution processes depicted
in Fig. 3. As DAGs are modular and snapshot-
ted at each execution, additional arguments al-
low to replay an arbitrary DAG for debugging
and inspection: for example, -run-id 12 -m
pickups+ will re-execute in a sandboxed way the
same code over the same data as the run with
𝑖𝑑 = 12, starting from the pickups artifacts and
running all its children.

With the goal of truly lowering the bar for data work,
the CLI-first approach is easy to learn and easy to ex-
tend: in fact, the semantics of run mirrors tools that are
popular in our user base (dbt and Metaflow). Moreover,
CLI commands are easy for machines to execute as well:
since querying and visualizing data in the terminal is not
ideal with large datasets, it is trivial to wrap commands
in an application layer users are comfortable with, e.g. a
dashboard or a Python notebook.

5. Conclusion and Future work
We started our journey designing Bauplan by consider-
ing – and dismissing – two ways to build towards the
DLH vision: re-purposing existing Big Data tools, or
building a new platform from scratch. Mirroring the
Firebolt experience [1], we found that re-using existing
open source components as initial “Lego bricks” can be a
powerful third way to getting closer to the goal, without
necessarily breaking the bank. While the “lean startup”
playbook [25] of rapid market-driven pivots is not read-
ily applicable to data platforms, re-using components
allowed the team to converge quicker to a working end-
to-end system, test its strength and weaknesses with
early adopters, and place more informed bets on which
features are responsible for the greater marginal value.

There are obviously many other interesting areas that
remain to be addressed, e.g. securing data through seam-
less, yet secure authentication, parallelizing SQL execu-
tion, using logs and machine learning to further optimize
the experience behind the scenes. Moreover, truly mani-
festing the DLH vision in the product is a long journey:
starting from open source tools was the right choice, but
as the platform progresses it is likely we will wander far
more into the unknowns to better meet market demands.
As Rome was indeed not linted, tested, built nor deployed
in a day, we look forward to sharing with the community
the next steps of our adventure in future publications.

https://github.com/BauplanLabs/quack-reduce

Acknowledgments
We are immensely grateful to the open source and data
community, and we plan to continue our contributions
to open source and open science in this new venture as
well. In particular, we wish to thank the PyIceberg, Open
Lambda and Nessie teams, with whom we have been col-
laborating in the past fewmonths while starting Bauplan.
Finally, we wish to thank Tyler Caraza-Harter and Ryan
Vilim for precious feedback on a previous version of this
work.

References
[1] M. Pasumansky, B. Wagner, Assembling a query

engine from spare parts, in: S. R. Valluri, M. Zaït
(Eds.), 1st International Workshop on Composable
Data Management Systems, CDMS@VLDB 2022,
Sydney, Australia, September 9, 2022, 2022. URL:
https://cdmsworkshop.github.io/2022/Proceedings/
ShortPapers/Paper1_MoshaPasumansky.pdf.

[2] M. A. Zaharia, A. Ghodsi, R. Xin, M. Armbrust,
Lakehouse: A new generation of open platforms
that unify data warehousing and advanced analyt-
ics, in: Conference on Innovative Data Systems
Research, 2021.

[3] Z. Dehghani, Data Mesh, O’Reilly Media, Inc.,
2022. URL: https://www.oreilly.com/library/view/
data-mesh/9781492092384/.

[4] S. Shankar, R. Garcia, J. M. Hellerstein, A. G.
Parameswaran, Operationalizing machine learn-
ing: An interview study, 2022. URL: https:
//arxiv.org/abs/2209.09125. doi:10.48550/ARXIV.
2209.09125.

[5] M. Zaharia, B. Chambers, Spark: the definitive
guide. Big Data Processing Made Simple, O’Reilly
Media, Inc., 2018. URL: https://www.oreilly.com/
library/view/spark-the-definitive/9781491912201/.

[6] T. D. Damji Jules, Brooke Wenig, D. Lee, Learning
Spark: Lightning-Fast Data Analytics, O’Reilly Me-
dia, Inc., 2020.

[7] Z. Wang, Understanding the challenges and as-
sisting developers with developing spark applica-
tions, 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering: Companion Pro-
ceedings (ICSE-Companion) (2021) 132–134.

[8] S. Tang, B. He, C. Yu, Y. Li, K. Li, A survey on spark
ecosystem: Big data processing infrastructure, ma-
chine learning, and applications, IEEE Transac-
tions on Knowledge and Data Engineering 34 (2022)
71–91. doi:10.1109/TKDE.2020.2975652.

[9] E. Junqué de Fortuny, D. Martens, F. Provost, Predic-
tive modeling with big data: Is bigger really better?,
Big Data 1 (2013) 215–226. URL: https://doi.org/10.

1089/big.2013.0037. doi:10.1089/big.2013.0037.
arXiv:https://doi.org/10.1089/big.2013.0037,
pMID: 27447254.

[10] J. Tagliabue, C. Greco, J.-F. Roy, F. Bianchi, G. Cas-
sani, B. Yu, P. J. Chia, Sigir 2021 e-commerce work-
shop data challenge, in: SIGIR eCom 2021, 2021.

[11] J. Tagliabue, F. Bianchi, T. Schnabel, G. Attanasio,
C. Greco, G. d. S. P. Moreira, P. J. Chia, Evalrs:
a rounded evaluation of recommender systems,
2022. URL: https://arxiv.org/abs/2207.05772. doi:10.
48550/ARXIV.2207.05772.

[12] J. Tagliabue, You do not need a bigger boat: Rec-
ommendations at reasonable scale in a (mostly)
serverless and open stack, RecSys ’21, Association
for Computing Machinery, New York, NY, USA,
???? URL: https://doi.org/10.1145/3460231.3474604.
doi:10.1145/3460231.3474604.

[13] F. McSherry, M. Isard, D. G. Murray, Scalability!
but at what cost?, in: USENIX Workshop on Hot
Topics in Operating Systems, 2015.

[14] J. Alstott, E. T. Bullmore, D. Plenz, powerlaw: A
python package for analysis of heavy-tailed distri-
butions, PLoS ONE 9 (2013).

[15] J. Tagliabue, H. Bowne-Anderson, V. Tuulos,
S. Goyal, R. Cledat, D. Berg, Reasonable scale ma-
chine learning with open-source metaflow, ArXiv
abs/2303.11761 (2023).

[16] S. Hendrickson, S. Sturdevant, T. Harter,
V. Venkataramani, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, Serverless computation with
openlambda, in: Proceedings of the 8th USENIX
Conference on Hot Topics in Cloud Computing,
HotCloud’16, USENIX Association, USA, 2016, p.
33–39.

[17] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, M. Guo, The
serverless computing survey: A technical primer
for design architecture, ACM Comput. Surv. 54
(2022). URL: https://doi.org/10.1145/3508360. doi:10.
1145/3508360.

[18] J. Schleier-Smith, V. Sreekanti, A. Khandelwal,
J. Carreira, N. J. Yadwadkar, R. A. Popa, J. E. Gon-
zalez, I. Stoica, D. A. Patterson, What server-
less computing is and should become: The next
phase of cloud computing, Commun. ACM 64
(2021) 76–84. URL: https://doi.org/10.1145/3406011.
doi:10.1145/3406011.

[19] A. Jangda, D. Pinckney, Y. Brun, A. Guha, Formal
foundations of serverless computing, Proc. ACM
Program. Lang. 3 (2019). URL: https://doi.org/10.
1145/3360575. doi:10.1145/3360575.

[20] A. Mahgoub, K. Shankar, S. Mitra, A. Klimovic,
S. Chaterji, S. Bagchi, SONIC: Application-aware
data passing for chained serverless applications,
in: 2021 USENIX Annual Technical Conference
(USENIX ATC 21), USENIX Association, 2021, pp.

https://cdmsworkshop.github.io/2022/Proceedings/ShortPapers/Paper1_MoshaPasumansky.pdf
https://cdmsworkshop.github.io/2022/Proceedings/ShortPapers/Paper1_MoshaPasumansky.pdf
https://www.oreilly.com/library/view/data-mesh/9781492092384/
https://www.oreilly.com/library/view/data-mesh/9781492092384/
https://arxiv.org/abs/2209.09125
https://arxiv.org/abs/2209.09125
http://dx.doi.org/10.48550/ARXIV.2209.09125
http://dx.doi.org/10.48550/ARXIV.2209.09125
https://www.oreilly.com/library/view/spark-the-definitive/9781491912201/
https://www.oreilly.com/library/view/spark-the-definitive/9781491912201/
http://dx.doi.org/10.1109/TKDE.2020.2975652
https://doi.org/10.1089/big.2013.0037
https://doi.org/10.1089/big.2013.0037
http://dx.doi.org/10.1089/big.2013.0037
http://arxiv.org/abs/https://doi.org/10.1089/big.2013.0037
https://arxiv.org/abs/2207.05772
http://dx.doi.org/10.48550/ARXIV.2207.05772
http://dx.doi.org/10.48550/ARXIV.2207.05772
https://doi.org/10.1145/3460231.3474604
http://dx.doi.org/10.1145/3460231.3474604
https://doi.org/10.1145/3508360
http://dx.doi.org/10.1145/3508360
http://dx.doi.org/10.1145/3508360
https://doi.org/10.1145/3406011
http://dx.doi.org/10.1145/3406011
https://doi.org/10.1145/3360575
https://doi.org/10.1145/3360575
http://dx.doi.org/10.1145/3360575

285–301. URL: https://www.usenix.org/conference/
atc21/presentation/mahgoub.

[21] M. Raasveldt, H. Mühleisen, Duckdb: An em-
beddable analytical database, in: Proceedings
of the 2019 International Conference on Manage-
ment of Data, SIGMOD ’19, Association for Com-
puting Machinery, New York, NY, USA, 2019, p.
1981–1984. URL: https://doi.org/10.1145/3299869.
3320212. doi:10.1145/3299869.3320212.

[22] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter,
A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, Sock:
Rapid task provisioning with serverless-optimized
containers, in: Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Confer-
ence, USENIX ATC ’18, USENIX Association, USA,
2018, p. 57–69.

[23] A. Agache, M. Brooker, A. Iordache, A. Liguori,
R. Neugebauer, P. Piwonka, D.-M. Popa, Firecracker:
Lightweight virtualization for serverless applica-
tions, in: 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20),
USENIX Association, Santa Clara, CA, 2020, pp.
419–434. URL: https://www.usenix.org/conference/
nsdi20/presentation/agache.

[24] A. Rossberg, WebAssembly Core Specifica-
tion, W3C (2019). URL: https://www.w3.org/TR/
wasm-core-1/.

[25] E. Ries, The lean startup : how constant
innovation creates radically successful busi-
nesses, Portfolio Penguin, London; New
York, 2011. URL: http://www.amazon.de/
The-Lean-Startup-Innovation-Successful/
dp/0670921602/ref=sr_1_2?ie=UTF8&qid=
1396199893&sr=8-2&keywords=eric+ries.

A. Sample data pipeline
We report the full code for the running example of
this paper (Section 4.1), as schematically depicted in
Fig. 3. Please note that steps are transformed into a
DAG thanks to a simple naming convention: children
tables refer to parents (Step 3 below referring to Step 1
table), while Python testing functions comply with the
table_expectation syntax.
Step 1 (trips): read raw data (as stored under an Ice-

berg table taxi_table) for a target time window, and
extract important columns into a new trips table.

SELECT
p i c k up_ l o c a t i o n _ i d ,
p a s s enge r_ coun t as count ,
d r o p o f f _ l o c a t i o n _ i d

FROM
t a x i _ t a b l e

WHERE
p i ckup_a t >= ’ 2019 −04 −01 ’

Step 2 (trips_expectation): we take Step 1 output – a
table named trips –, convert it to a DataFrame and run
a statistical check using Python. Similar to declarative
data science frameworks such as Metaflow [15], Python
decorators are used to express directly in code constraints
on the target runtime.

@requirements ({ ’ pandas ’ : ’ 2 . 0 . 0 ’ })
def t r i p s _ e x p e c t a t i o n (c tx , t r i p s) :

m = t r i p s [’ count ’] . mean ()
return m > 10

Step 3 (pickups): we take Step 1 output – a table
named trips –, and produce a new table pickups by
aggregating and sorting trip data.

SELECT
p i c k up_ l o c a t i o n _ i d ,
d r o p o f f _ l o c a t i o n _ i d ,
COUNT (∗) AS coun t s

FROM
t r i p s

GROUP BY
p i c k up_ l o c a t i o n _ i d ,
d r o p o f f _ l o c a t i o n _ i d

ORDER BY
coun t s DESC

https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212
http://dx.doi.org/10.1145/3299869.3320212
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
http://www.amazon.de/The-Lean-Startup-Innovation-Successful/dp/0670921602/ref=sr_1_2?ie=UTF8&qid=1396199893&sr=8-2&keywords=eric+ries
http://www.amazon.de/The-Lean-Startup-Innovation-Successful/dp/0670921602/ref=sr_1_2?ie=UTF8&qid=1396199893&sr=8-2&keywords=eric+ries
http://www.amazon.de/The-Lean-Startup-Innovation-Successful/dp/0670921602/ref=sr_1_2?ie=UTF8&qid=1396199893&sr=8-2&keywords=eric+ries
http://www.amazon.de/The-Lean-Startup-Innovation-Successful/dp/0670921602/ref=sr_1_2?ie=UTF8&qid=1396199893&sr=8-2&keywords=eric+ries

	1 Introduction
	2 A Practitioner Perspective
	3 Departing from Spark
	3.1 The Reasonable Scale hypothesis

	4 Core Components
	4.1 A sample data pipeline
	4.2 Table Format
	4.3 Data catalog and versioning
	4.4 Code intelligence
	4.4.1 From code to the logical plan
	4.4.2 The execution plan

	4.5 Serverless runtimes
	4.6 Interacting with the platform

	5 Conclusion and Future work
	A Sample data pipeline

