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Abstract

Extracting value and insights from increasingly heterogeneous data sources involves multiple systems combining and
consuming the data. With multi-modal and context-rich data such as strings, text, videos, or images, the problem of
standardizing the data model and format for interchangeable use is further exacerbated by a non-uniform way of processing,
extracting, and preserving content and context from the data. This makes the data movement, reuse, and exchange between
different systems a non-composable, manual process. On the other hand, increasingly powerful and popular machine
learning-driven data representation models map the input data into uniform high-dimensional vector embeddings for further
processing, informed by particular models. However, using models is expensive, and the manual integration effort might
exacerbate unnecessary costs.

Thus, we propose E-Scan, a contextual data exchange plugin for using, exchanging, and caching context-rich data. We
outline the need for a common interface that separates the concerns and allows smooth and cost-effective data exchange. First,
while vector embeddings are context-less, the model information is saved to preserve the context and preprocessing steps.
Next, a lightweight vector engine caches and stores the uniform intermediate data representation in a lazy way to lower the
transformation and data access, exchange, and retrieval cost. Finally, a pull-based interface allows uniform data consumption
between components under a common plugin interface. This way, various context-rich data types are stored, processed, and

exchanged in a standardized way while allowing plugin-based customization for subsequent context interpretation.
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1. Introduction

Technological advances, the proliferation of the Internet,
personal multimedia and sensor devices, and social media
have changed data types and formats. While tabular,
numerical, and generally relational data represent the
backbone of many applications, the main task of data
analytics is to provide and support timely, efficient, and
declarative value extraction. Therefore, supporting novel
and useful ways to process the data is a natural goal of
modern analytics.

Machine learning methods are particularly dominant
in extracting insights from context-rich data, which we
analyze more deeply in a recent study on context-rich an-
alytical engines and their future architectures [1], where
the main takeaway is that different information sources,
such as images, text, traditional relational data, and meta-
data, will interact in a complex and potentially ad-hoc
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Figure 1: Complex system interactions for processing multi-
modal data resemble polystore architectures.

analytical query. First of all, there are different ma-
chine learning frameworks such as Tensorflow [2] and
PyTorch [3], which are specialized and optimized for
machine learning workloads and represent a class of
dataflow processing systems. These systems are useful
for training and inference and will likely be components
of a more complex system that requires coordination.
On the other hand, data might come from specialized
engines or object stores - images, videos, audio, and doc-
uments might be stored in separate engines. Finally, they
might be combined with relational data in a complex hy-
brid ML-relational query plan to combine insights from
the information coming from heterogeneous and multi-
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modal data sources, for example, combining sentiment
analysis, object detection, and performing joins with cor-
responding relational data.

No matter the implementation, as a monolithic sys-
tem with internal communication or multiple standalone
components and modules, the initial data is exchanged
and transformed in a polystore-like fashion [4, 5]. While
relational analytics come with strict schema and opera-
tor transformations for data compatibility, introducing
multi-modality and model-driven transformation, the
data movement and exchange process becomes manual
and imperative, especially when using machine learn-
ing models that can perform many tasks. Therefore, the
data, information, and task flow becomes an arbitrary
process that is finally left to the end-user to optimize, as
illustrated in Figure 1.

Consuming contextual data becomes complex not only
for specifying the resulting schema and data movement
but equally due to comparatively more expensive data
processing when using models. This can result in higher
computational resource requirements, increased latency,
and higher monetary costs, especially in ad-hoc imper-
ative settings where data that is not relevant might be
processed, or data of frequent relevance might be unnec-
essarily processed multiple times, resulting in inefficient
resource utilization.

Machine learning models for multi-modal tasks often
have an expensive model-specific input data embedding
step, followed by corresponding post-processing or oper-
ations performed directly on embeddings, such as sim-
ilarity search. Conversely, this data might need to be
mapped back to the original representation for the out-
put or further analysis, requiring a link to the original
object.

We consider these requirements and:

« describe model-driven processing, their associ-
ated costs, and several use cases in Section 2,

« outline interaction between the original objects
and common intermediate, model-driven vector
data representation in Section 3,

« propose a design for efficient and composable
exchange of contextual data supporting multi-
modal data and embedding-based models Sec-
tion 4.

Our design proposal is named E-scan and aims to mo-
tivate a common extensible interface with new models
and data formats that enables efficient contextual data
exchange, caching, and lightweight processing behind a
common plugin/connector-based interface, with a focus
on vector embeddings.

2. Contextualized Data
Consumption

A significant corpus of work in machine learning, es-
pecially in representation learning, is the key enabler
of multi-modal and context-rich analytics. They trans-
form the human-centric, context-rich data into machine-
centric formats amenable to further automated process-
ing. Tasks such as sentiment analysis, similarity search,
object detection, translation, and data generation become
possible - and we consider these tasks as parts of a more
complex system.

While on their own, they are useful, such models can
be combined with traditional analytics to perform multi-
modal value extraction. For example, performing sen-
timent analysis on the text associated with an image
that might contain certain objects on a retail website
connected to transactions in a traditional RDBMS can
provide new sources of insight or decision-making, utiliz-
ing the data already collected and stored across different
systems.

2.1. Models for Multi-Modal Context-Rich
Data

Before the advent of ML-driven data processing, large-
scale analysis of contextual data often involved human-
in-the-loop through crowdsourcing approaches such as
Amazon Mechanical Turk[6], reCAPTCHA[7], or hiring
domain experts. While useful in the early days of gen-
erating datasets for training the models, human-based
analysis is slow, error-prone, and expensive for ad-hoc
analytics.

Natural language processing has long been the study of
representation learning, resulting in approaches such as
word2Vec [8] or FastText [9] that allow operations such as
context-string-similarity and classification, even for mis-
spellings [10] and out-of-dictionary words. More com-
plex approaches based on Transformer architecture [11]
resulted in popular models such as BERT [12], or GPT-
3 [13] and GPT-4 [14], that allowed more complex tasks
such as translation and text generation. The change of
complexity of the embedding and processing method has
increased the computational (and monetary) cost of pro-
cessing, but equally, the functionality that those models
offer as part of the data processing pipeline and auto-
mated, machine-driven insights.

Furthermore, a rich research area in machine learning
drives embedding models that support other context-rich
data formats, equally transforming the input into subse-
quently processed embeddings, depending on the task
and the architecture. Having specialized models for tasks
allows multi-modal processing by selecting an appropri-
ate method for the task. Models such as Segment Any-



thing Model (SAM) [15], ResNet [16], or Dall-E [17] can
be used for model-driven image processing and genera-
tion. PANNS [18] or Whisper [19] are designed for audio
processing. Finally, models trained on web-scale data ex-
ist as Foundation Models [20], that can be re-trained and
adapted for a specific task and dataset without expensive
re-building from scratch.

Using models, analytics evolve from joins and aggre-
gations into more complex operations such as object de-
tection, sentiment analysis, classification, and similarity
operations. However, a potential issue is that the commu-
nication between the data storage, model specification,
and processing using a particular model and framework
are decoupled, and the interactions become increasingly
complex, in the case as simple as what the model inputs
should be, and what transformations and schema will
the model output for subsequent processing. We will
consider this in our system design.

2.2. The Cost of Model-Driven
Embedding

Model-based analytics introduce complex and expensive
operations for large-scale data processing and challenges
in optimizing the cost and resources. Firstly, such oper-
ations often require computational resources like GPUs
to instantiate the models and achieve desirable latency.
However, some models might not be open-sourced, re-
sulting in monetary costs that are increasingly high if
models are not used frugally. We outline the pricing of
different text embedding models of OpenAlI in Table 1.

Table 1
Different text embedding costs (openai.com/pricing)

Model In ($/1K tok.)  Out ($/1K tok.)
GPT-4 (8K context) 0.03 0.06
GPT-3.5-Turbo (4K) 0.0015 0.002
Davinci 0.03 0.12
Curie 0.003 0.012

If we consider the cost of processing single words only
(a token) and an operation that embeds the words in an
object or column store, performing this operation on a
relatively modest data size of 1M tuples would result in a
cost from $3 to $30 for that operation only in case of single
words. This cost is likely higher for realistic scenarios
over sentences or documents. We cannot discard the
monetary and computational costs, and this cost should
be amortized and invoked only when necessary.

Furthermore, it is unlikely to have 1M unique words,
nor is their frequency equal or of the same interest. Em-
bedding the same words once and then reusing this em-
bedding motivates the need for caching mechanisms that
we introduce in our plugin design.

A similar situation holds for other data formats regard-
ing the cost Table 2, as formats such as images or audio
might have more complex architectures and processing
and, consequentially, pricing. We note that open-source
models can be used, of similar characteristics, on reposi-
tories such as HuggingFace [21] or TensorFlow Hub [22].
Still, the cost of local or cloud resources remains for in-
stantiating and running these models, depending on the
particular cloud provider. Ideally, some processing can be
avoided using caching, but this might not be immediately
possible in the case of images or generative Al based on
given data-driven prompts.

Still, analytical queries are typically selective, and not
all data is of equal interest for analysis, which motivated
prior research in lazy data ingestion using NoDB [23] ar-
chitectures. In our case, this motivates pull-based model
invocation where data is not eagerly embedded and pro-
cessed but only on demand from the consuming/invoking
operator. Allowing this process to happen in an ad-hoc,
imperative setting in complex systems risks higher than
necessary costs and longer latency for processing data,
which would later be discarded or re-processed fully mul-
tiple times.

We present the caching and pull-based plugin design
that aims to reduce the cost and resource requirements
and reduce latency in Section 4.

3. Intermediate Data
Representation

In this work, we focus on models which, at some pro-
cessing phase, transform the context-rich data of var-
ious formats into embeddings. Embeddings are high-
dimensional vectors (tensors) of values, which are on
their own context-free data structures. The separation of
concerns between the context- and processing-providing
models and context-free embeddings allows transparent
caching and processing optimizations, where at least part
of the cost can be amortized.

3.1. Vector Embeddings with E-Scan

Embeddings represent an intermediate data representa-
tion that is contextualized or processed by a correspond-
ing model. They are uniform, no matter the data type,

Table 2

Model inference costs (openai.com/pricing)
Format Model Unit Price ($)
Text Ada v2 1K tokens 0.0001
Image Dall-E (1024x1024) 1 image 0.02
Audio Whisper 1 minute 0.006
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Figure 2: E-Scan: encapsulating model description, original
objects, and their embeddings in a plugin/connector design.

where their dimensionality may vary. This common rep-
resentation motivates having a vector data management
layer that would serve as a caching layer, offering exact
and approximate retrieval and data access methods.

Figure 2 shows a conceptual flow of information:
rather than System A, System B, and the base data stored
in various object stores being exposed as raw sources, we
propose a scan connector/plugin-based mechanism called
E-Scan. This allows a composable and common plugin
for exchanging contextual data. First, the model informa-
tion is preserved to provide context to the embeddings,
along with those transferred and exchanged as vector
data. In case the original data is required, and for caching
purposes, the object ID is also preserved to provide a link
with the original data (black arrow). Then, if System A
and System B need to process or exchange context-rich
information, the plugin contains all the information and
specification of the model, data, and original input in a
uniform way.

3.2. Schema and Metadata

Rather than exchanging data and embeddings directly,
in an ad-hoc manner, and manually keeping information
about the models, we propose storing this provenance
information in the plugin metadata. To our best knowl-
edge, there isn’t a uniform way for such specifications,
but keeping the information about the particular model,
creator, origin, and input and output parameters rep-
resents minimal information required for exchanging
information between different components. Keeping and
transferring only the data of need allows lightweight
transfer by exchanging only the requested data, and ide-
ally not transferring the original data, rather than only
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Figure 3: E-Scan data exchange plugin/connector system.

keeping a reference to the original file containing the
exact source and identifying key.

Input requirements should indicate the expected data
format or a schema and particular characteristics of a type
that can be instantiated, such as image size in pixels. The
output should equally specify what is expected, an output
schema, and the fields and types of the given schema.
This can allow model-operator composability in a more
traditional relational optimization case [1] or provide
a blueprint for generating a code for data exchange or
ingestion between different components.

As embedding might not be the first or the last step of
models, to enable interoperability with such plugins, the
model design needs adaptation to start consuming from
a plugin in an intermediate step rather than requiring
original input data. Thus, green and blue lines represent
the model and data exchange via a common descriptive
connector rather than ad-hoc via dashed arrows.

4. E-Scan Plugin and System
Design

Data access patterns and the cost of complex model-
driven analytics (Section 2) motivated a system design
that is pull-based, lazy, and proactively caching expen-
sive operations. This section presents the system aspects
of contextual data exchange with E-Scan.

Beyond the specification intended for connecting vari-
ous components that can customize the schema, to facili-
tate the data exchange and processing by different com-
ponents, similar to the ideas behind Apache Arrow [24],
insomuch that a lightweight engine and access methods
are also part of the design, as presented in Figure 3.



4.1. Caching and Intermediate Storage

The analysis of caching versus recomputing model-based
data transformations opens up future work in perfor-
mance estimation or the benefits of such caching involv-
ing data movement of input data and model state that
might be larger than working memory, as well as hard-
ware characteristics such as accelerators and intercon-
nects with monetary cost, extending the embedding table
caching approaches [25].

The immediate purpose of caching is to avoid expen-
sive model processing. This access path is represented
by solid blue and green arrows in Figure 3. As embed-
dings are all in a common vector format, data manage-
ment engines specialized for vectors such as Milvus [26]
can be used as the caching support layer. Alternatively,
lightweight storage and retrieval systems based on vector-
based indexes supporting searches on heterogeneous
hardware such as FAISS [27] are good candidates for
the vector caching and storage layer.

Beyond storing and caching embeddings, basic opera-
tions such as similarity or top-K search is often available,
allowing more complex data processing and access pat-
terns. Traditional index structures that link the records
with their primary keys in original object representa-
tions are also necessary to allow fast retrieval, besides
full data scans. The object must also be registered to have
been embedded by a given model, either explicitly in a
data structure or lightweight mechanisms such as bloom
filters.

Only in case of a cache miss should the request be prop-
agated to the system and model for explicit embedding (or
batched as a group request on the system side). We call
this lazy embedding, where this mechanism covers the
case of avoiding the expensive path of execution for pre-
viously visited objects rather than eagerly embedding all
the data. This can happen due to duplicates or re-visiting
the same data in different queries. Furthermore, this
mechanism can be adapted to avoid embedding if a suf-
ficiently similar entry is already present in embeddings.
Still, to approximate similarity in the embedding domain,
a cheaper embedding method is required, either through
a lightweight model or by applying other input similarity
methods that should yield performance improvements,
effectively trading off similarity and approximation for
computational cost as in traditional approximate query
processing.

Finally, as processing might require original objects,
not only embeddings, a corresponding key, and the path/i-
dentifier is saved to retrieve the object from the corre-
sponding object-store component (black arrow, Figure 3) -
as not all use cases and model have a full encoder-decoder
architecture that can be used to produce the requested
output. This process replaces manual data manipulation
and embedding with a generalizable caching mechanism

applicable to systems, components, models, or parts of
models that create embeddings that can be reused. Nat-
urally, the designation of invalidation or which embed-
dings might not be good candidates for caching are part
of the caching policy.

4.2. Lazy Retrieval and Mapping

The design of E-Scan aims to allow better and more ef-
ficient interoperability through a common plugin and
interface, to encapsulate functionality and avoid re-
implementing desirable data exchange characteristics
in complex systems.

In this work, we follow the principles behind
NoDB [23], as much as we do not want to embed all the
data eagerly. Not all the data might be the object of inter-
est, and this process should be pull-based, meaning that
it should happen only upon requesting the embedding.
This saves initial processing time and is progressively
faster with the previously described caching mechanism
in case of cache hits, without any implied prefetching
mechanism, just using the access patterns requested by
the consumer.

The consumer has to specify to the plugin which model,
from which schema, and which data it wishes to trans-
form and provide this information to the connector, for
example, by extending industry-led formats [28, 29]. This
also involves specifying which objects (context-rich data)
should be involved in the query and potentially cached,
which can be an explicit list or a result of another query.
This mechanism and specification are also similar to
adapting to different data types in ViDa [30], where code-
generation can also be used to avoid overheads of func-
tion calls and create custom-built access patterns and
procedures tailored for specific data formats, beyond the
common vector representation. This also allows pulling
the plugin specification inside system components that
support code generation to avoid an explicit component
and communication overhead or designing an embedded,
process-local component corresponding to what DuckDB
is used for in analytical query processing [31].

4.3. Example and Conceptual Use of
E-Scan

The main goal of E-Scan is to allow efficient, easy-to-
use, and composable interoperability of components that
involve embedding and vector data over context-rich,
multi-modal formats. In Figure 4, we provide a short
example of E-Scan in action. Without this component,
the user would be forced to know and implement all the
details of caching, processing, optimization, and system
interaction, as in Figure 1.

In this example, we use the Segment Anything Model
(SAM) [15] as a sample state-of-the-art image processing



tool that segments the objects from the images. We in-
dicate this processing part in green, with corresponding
steps under number 1). For text, we use BERT [12] as
an example of a word-embedding method that allows
semantic similarity matching and classification. Con-
versely, this processing path is represented in blue, and
the corresponding steps are under number 2).

A consumer queries the common interface, starting
from the image and text data and instantiated models
with corresponding metadata. Suppose this is driven
by a query that wants to find all the images with more
than three objects which contain cats or dogs, where
the corresponding image description (text) is of positive
sentiment and contains synonyms of the words *joy” or
“cute”.

Rather than having this as a manual process, the re-
quest comes to the common interface, requesting text
and image data processing. This work does not discuss
cardinality estimation or cost difference, for example, if
first the text embeddings should be executed if cheaper
than image embedding. This would consequentially en-
able a filter pushdown and sideways information passing
of more selective processing over the query for finding
images that contain more than three objects with cats
or dogs, which remains the topic of future work but
would be the task of the plugin or corresponding query
optimizer as in our recent proposed work of holistic op-
timization of context-rich engines [1].

In this case, the plugin dispatches the lazy requests
to the Image Engine that retrieves the images and per-
forms embedding and processing 1.a). Conversely, image
embeddings are created 1.b) and cached along with the
original object ID 1.c). If there are similar images based on
simpler embeddings or other metrics, the caching mech-
anism can deploy a similarity search before dispatching
requests to the model.

With the existing original image object IDs, we can
filter out corresponding text object IDs that qualify and
perform the task similarly dispatched to Text Engine
lazily. Finally, the requested data is exchanged, and the
results of processing and embeddings are exchanged via
the common interface for upstream processing.

Some details remain the topic of future work, such as
the granularity and the benefit of replacing processing
embeddings and intermediate results with data cache.
This is because while embedding data is expensive, other
post-processing operations might also be useful to cache
explicitly. Similarly, this can also motivate modifying
existing model architectures and replacing explicit em-
bedding with an intermediate lightweight caching mech-
anism. Still, the main goal of E-Scan is to provide a
blueprint for a common interface for efficient and com-
posable emerging data processing components.
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5. Related Work

The provenance of new machine-learning-driven meth-
ods creates novel data processing and extraction chal-
lenges and opportunities. In our recent work, we propose
holistic declarative optimization of context-rich analyti-
cal engines meant for hybrid model-relational process-
ing [1].

The challenges of integration of systems and compo-
nents are related to polystores [4, 5]. In this work, we
have tackled the initial blueprint of data exchange primi-
tives and components, still, similar lessons should be ap-
plied for cross-system optimization, especially for more
complex and hybrid analytical query processing that in-
volves multiple heterogeneous systems.

From the abstractions perspective, this work corre-
sponds to the purpose of Apache Arrow for in-memory
formats for flat and hierarchical data [24]. The main idea
is to abstract the implementation details and allow easy
data exchange between the components, delegating the
complexity to the underlying system abstractions han-
dled by the provided metadata and lightweight engine.

Finally, this work relates to NoDB [23] as it does not
process nor ingest data before needed, saving on pre-
processing cost, considering the cost of processing the
entire data which might not be of immediate interest.
Instead, we adopt lazy data loading and use caching and
appropriate exact and approximate data access patterns
to speed up the processing and avoid unnecessary com-
putation, both due to loading and repeated requests to
similar data, therefore proposing a new dimension to
existing work on embedding table caching [25].



6. Conclusion and Future Work

In this work, we presented E-Scan: the initial vision and
proposal for a plugin/connector that intends to simplify
and make efficient communication and data exchange
between model-driven components in analytical query
processing.

We target composability via the common and extensi-
ble plugin-based interface that components can invoke,
registering the necessary schema information and meta-
data specific to the particular data and model shape and
requirements. Thanks to the common and context-free
vector format of embeddings, we propose a reusable and
efficient design of caching layer driven by a lightweight
vector engine and access methods. This brings closer
computationally heavy model processing and trades off
part of it for database-inspired caching techniques.

The main goal is to achieve functionality and perfor-
mance while decoupling the data management details
from the intent of the user via lightweight abstractions.
Still, there are many available models and use cases
that are yet to be tested and remain the topics of future
work. Designing a concrete interface with established
frameworks and models is required to achieve a well-
encompassing set of functionalities and achieve desired
ease of use. Finally, exploring the different granularities
of replacing embedding computation with caching and
standardizing the data exchange protocols is a desired
long-term outcome for supporting the holistic integra-
tion of model-driven analytics with data management
through optimizable, declarative, and composable inter-
faces and components.
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