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Abstract
Data analytics pipelines are growing increasingly diverse, with relevant data being split across multiple systems and processing
modes. In particular, the analysis of data streams, i.e., high-velocity ephemeral data, is attracting growing interest and has
led to the development of specialized stream processing engines. However, evaluating complex queries combining such
ephemeral streams with historic data in a single system remains challenging.

In this paper, we devise a novel stream processing technique that allows users to run ad hoc queries that combine streams
and history tables in a relational database system. The backbone of our approach is a specialized ring-buffered relation,
which allows for high ease of integration for existing database systems. We highlight the applicability of our approach by
integrating it into the Umbra database system and demonstrate its performance against dedicated stream processing engines,
outperforming them consistently for analytical workloads.

1. Introduction
There is an ever-increasing need for just-in-time analy-
ses combining real-time data in the form of streams with
information held in databases, such as user, customer, or
billing data. Several solutions integrating durable data
in stream processing engines (SPEs) have been proposed,
either loading read-only data into the stream processing
engine from local sources such as CSV files or offering
interfaces to external databases [1, 2, 3, 4]. However, the
reverse direction of integrating stream processing into
relational databases has yet to receive much attention.
While modern SPEs are capable tools for many work-
loads, they lack the functionality to manage historic data
internally. We argue that the unmatched capabilities and
performance of relational database systems for managing
and analyzing relational data make them the ideal solu-
tion for processing durable relations and data streams.

In this paper, we devise a technique to integrate streams
into database systems through a specialized streaming
relation. By relying on a ring-buffered specialization of
regular database relations, we can utilize the database
system’s full type and query support and gain access
to a wide range of pre-built functionality and operators,
such as efficient joins and string operations. Our ap-
proach relies on regular SQL to interact with streams,
necessitating no changes to the database grammar. Thus,
streams can be used with all tools commonly used for
database access, such as object-relation mapping (ORM)
libraries available for many programming languages. Fur-
thermore, the SQL-based interface allows users to easily
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with user_impact as (
select uid, avg(score) as score
from posts
group by uid

)
select u.username, u.contact_info,

u.rate, i.score
from users u, user_impact i
where u.id = i.uid
and i.score >= 1000 and

u.region = ’DE’
order by u.rate / i.score
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Figure 1: Exemplifying analytical query combining a stream
and durable relations.

express queries incorporating streams and regular tables.
We demonstrate the applicability of our approach by
implementing it in the state-of-the-art database system
Umbra [5].

We outline the relation-based integration on an exem-
plifying workload, which we use as a running example
throughout this paper: Consider a micro-blogging ser-
vice where users can share and like simple text posts.
For reporting, such a service might be interested in find-
ing influential posters in a given region, e.g., users who
achieved an average of at least 1’000 likes per post in the
last month for promotional campaigns. Figure 1 depicts
the corresponding query on an exemplifying schema.
In many cases, business data, such as the contact info
and payment details for paid bloggers, will be stored
separately from the service data, such as posts. In the
past, it was necessary to either find influential posters in
the service database or materialize posts in the business
database. The first option is undesirable as it involves
analytical queries in a system likely optimized for simple
lookup and update operations. In contrast, the second
option would unnecessarily bloat the analytical database.
On the other hand, our approach allows us to stream the
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Figure 2: Overview of common stream windowing semantics.

last month’s posts into the analytical database without
materializing them, requiring no analytical functionality
from the service database. This paper makes the follow-
ing key contributions:

• We describe the integration of stream processing
in database systems as a specialized ring-buffered
relation.

• We discuss the streaming model achieved by our
integration.

• We evaluate our streaming relation against ded-
icated stream processing engines, focusing on
end-to-end query and insert performance on a
TPC-H-based workload.

The remainder of this paper is structured as follows: In
Section 2, we discuss background and related work in
stream processing. Following, we discuss our approach
to in-database stream processing in Section 3, which we
evaluate in Section 4. Finally, we conclude in Section 5.

2. Background
Over the years, stream processing has evolved into a
diverse area of research, spanning a wide variety of data
stream models optimized for different applications. In
this section, we outline the model underlying our work
and discuss related work in the intersection between
stream processing and relational database systems.

2.1. Stream Model
While data stream models differ in many aspects, we fo-
cus on the two main categories most relevant to our work:
windowing semantics and state management. Window-
ing semantics determines which subset of the stream qual-
ifies for query evaluation at any given moment. Among
the most common windowing semantics are sliding, tum-
bling, session, and unbounded windows, shown in Fig-
ure 2. The first two semantics are further subdivided
into time- and tuple-based metrics. Tumbling and sliding

windows define a fixed window size l, either in terms of
the number of tuples or in a duration t. While tumbling
windows always advance by the full window size, sliding
windows advance by a set length s, which can result in
overlapping windows. Session windows are separated
from one another by periods of inactivity where no tuple
arrives. Finally, unbounded windows consider the entire
stream for a query and are, thus, unsuitable for infinite
streams.

The window semantic closest to regular relation pro-
cessing is the unbounded window. However, this would
mean that queries over infinite streams will never report
a result as database queries only advance to the next step,
i.e., operator, once an input is fully depleted. Therefore,
we instead follow the session window semantics, which
is still close to relation scan semantics, and assume a scan
as depleted when no new stream tuples have arrived for
the specified inactivity duration. Note that sliding and
tumbling windows can still be achieved on top of this
session window using the SQL WINDOW operator.

The second category, state management, determines
where and how systems manage the state of streaming
queries. This state mainly comprises intermediate query
results, such as aggregates, but also includes routing
and meta information, e.g., for worker and checkpoint
management. In their survey, To et al. [6] identify four
different state models for stream processing. Of those,
we most closely follow the operator view of Fernandez
et al. [7] wherein query progress and state are material-
ized within operators. However, due to Umbras pipeline-
based query execution model, query state only occurs
at pipeline breakers, not at all individual operators. Fur-
ther, distributing tuples to workers is handled through
morsel-driven parallelism [8] in our approach. Therefore,
routing decisions for tuples are made by downstream op-
erators pulling new morsels, not actively and push-based
by upstream operators.

2.2. Related Work
Our approach overlaps with two primary research areas
in data analytics: relational database systems and stream
processing. Both have seen vast amounts of research,
and we, therefore, focus our discussion of related work
on their intersection.

Durable data in stream processing engines. Recent
years have seen increased demand for analytics com-
bining both historic and streamed data. Consequently,
stream processing engines such as Apache Flink [2] and
Apache Spark [1] enable the use of historic data in ana-
lytical queries over data streams. However, they do not
support managing historic data internally and instead
rely on external sources. These external sources can be
file formats like Parquet and CSV or database systems
through connectors such as JDBC.



While stream processing engines do not offer capa-
bilities for managing historic data, modern SPEs man-
age state for long-running and complex queries inter-
nally [6, 9, 10]. To prevent conflicts between multiple
queries on a shared state, some SPEs rely on transac-
tion semantics commonly used by database systems [11,
12, 13]. TSpoon [14] extends Apache Flink [2] with a
transaction model, thereby enabling a queryable state
for data stream analytics at configurable isolation lev-
els. In addition, Meehan et al. [15] build upon the OLTP
database system H-Store [16] and utilize H-Store’s trans-
actional processing model for data streams, enabling
the ACID-compliant execution of streaming and transac-
tional database queries in a single system.

In-database stream processing. Combining streams
and relational data in a single system has been proposed
in the context of data warehouse architectures [17, 18].
However, these architectures rely on two separate en-
gines for internal relational query and stream processing.
Some works propose a unified SQL-based query language
to express queries over both streams and durable rela-
tions easily [19, 20].

Past research integrating both stream processing and
durable data in a single engine often rely on materialized
views [21, 22] to realize continuous queries [23, 24, 25]
through continuous views [26]. DBToaster [4, 27] im-
plements higher-order incremental view maintenance
in a standalone engine to enable high insert and query
throughput for views combining both static and dynamic
data. In addition, PipelineDB [28] supports stream pro-
cessing in the full-fledged database system PostgreSQL
using dedicated streaming views.

3. Approach
Having defined the theoretical streaming model of our
ring-buffer-based in-database stream processing ap-
proach, we can describe its design and implementation.
The core difference between our in-database stream pro-
cessing to processing relational data is that streamed
data is not fully and permanently materialized within the
database at the start of a query. For regular queries, the
data that a query is working on is determined by its trans-
action. Each transaction has a single state of the database
that it will evaluate all queries on. To achieve this, all
data must be fully materialized at the start of a query,
and any parallel changes must be handled transparently.
Streams, on the other hand, are not transactional. Stream
entries are ephemeral and are only cached in the database
for a short time. Queries, therefore, cannot rely on the
availability of all stream elements for query evaluation.
Furthermore, queries involving streams have to handle
stream arrivals during a query.
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Figure 3: Overview of the caching layer consisting of a ring
buffer for fixed size tuple parts and two string buffers used in
alternation.

3.1. Interface
We want to rely purely on regular SQL grammar to inter-
act with data streams. However, we must also ensure the
database can infer which relations to treat as a stream and
which to persist. For this, we follow a syntax similar to
that of PipelineDB [28] and create streams as foreign ta-
bles with a reserved server name stream. For our example
stream posts, this will result in the SQL statement:

create foreign table posts (
uid integer,
username varchar,
score integer,
content varchar

) server stream

Following the creation of this foreign table, all opera-
tions can be kept oblivious to the streaming nature of the
relation. Inserts, therefore, can use regular SQL insert
semantics, e.g.,

insert into posts values (
12, ’Chris’, 9153,
’It’s great to process streams
in a database system!’

)

to insert the tuple displayed in Figure 3.

3.2. Caching Layer
Before discussing inserts and queries to data streams, we
must establish how streaming data is stored within the
database. Conceptually, ephemeral streams do not need
to be materialized outside of queries and instead can be
processed fully and directly on arrival. However, it is ben-
eficial to cache chunks of the stream before processing.
For one, a cache can compensate load spikes in the input
stream where inserts occur too frequently for queries
to keep up. Using a cache can help alleviate such short
spikes by accepting tuples to be scanned by queries later
on. Furthermore, a cache allows re-using existing scan
logic and interfaces for durable relations, reducing the
integration overhead and enabling efficient morsel-wise
input processing.



For our approach, we implement a caching layer based
on a ring buffer. Our buffer has two main components,
displayed in Figure 3. The first component, the tuple
buffer, stores fixed-size tuple data. This data includes all
fixed-size columns, such as integer, numeric, and floating-
point values, as well as metadata for variable-sized types,
such as strings. In our example posts stream of Figure 1,
these are the values for the integer columns uid and score
and the metadata for the string columns username and
content. The number of tuples to be held in this buffer can
be configured to fit the expected load. By only storing
metadata for variable-sized data and not the data itself [5],
we ensure that all tuples have the same size, allowing us
to easily re-use slots without checking for overlaps with
still valid data.

The data for variable-sized types are instead stored in
resizable buffers pointed at by the metadata. In the exem-
plifying tuple in Figure 3, one can see the two different
storage formats for strings used by Umbra. Both formats
first store the 4 byte length of the string. Short strings
up to a length of 12 characters, such as this username,
are stored inline in the remaining 12 bytes, requiring
no additional buffer storage. For longer strings, here for
the content, we store a 4 byte prefix and an offset into a
separate storage region. For streams, this region is one of
the string buffers. The prefix helps quickly answer some
comparisons and filter predicates without loading the
full string. Note that Umbra picks the string format for
each individual string value, meaning a longer username
for another tuple might be stored externally.

In contrast to the fixed-size tuple data, we cannot use a
ring buffer for strings. When we would insert a string at
slot 𝑛 in a ring buffer longer than the string of the tuple
previously cached at slot 𝑛, it would at least partially
overwrite the string data of the tuple still held in slot𝑛+1.
This tuple is, however, still accessible through the cache.
To prevent overwriting still valid and accessible tuples,
we alternate between two resizeable string buffers for
different runs through the ring buffer, using one for even
and one for uneven runs. Alternating between buffers
guarantees that string offsets are valid at least until the
tuple is overwritten in the tuple buffer while avoiding
expensive allocations for every individual string.

3.3. Insert Processing
Having outlined the layout of our caching layer, we can
describe the insert process for stream tuples. While tuple-
at-a-time inserts are also possible, we optimize for bulk
inserts from an external streaming broker like Kafka [29]
or SQL insert statements, e.g., reading from CSV files.
The process is outlined in Algorithm 1 conceptually for
a single tuple. In our implementation, we perform such
inserts at morsel-granularity instead, collecting inserted
tuples thread-locally before merging them into the re-

Algorithm 1 Stream caching layer insert processing
1: function processInsert(Tuple t)
2: tid ← writeTid.fetchAdd(1)
3: slot ← tid mod bufferSize
4: odd ← ⌊tid/bufferSize⌋ mod 2
5: stringBuffer ← stringBuffers[odd]
6: if slot = 0 then
7: stringBuffer.clear()

8: for val ∈ tuple do
9: if val.isString() then

10: if stringLength(val) > 12 then
11: buffer.storeExtString(slot,

stringBuffer.store(val))
12: else
13: buffer.storeStringInPlace(slot, val)

14: else
15: buffer.store(slot, val)

16: /* Delay scan visibility until all previous tuples are visible */
17: while validTuples < tid - 1 do
18: wait()

19: validTuples ← tid

lation in bulk for performance reasons. For each insert,
we acquire a tuple identifier for the new tuple (Line 2).
This id determines the ring buffer slot to store the tuple
in. Furthermore, it determines the string buffer to be
used for external strings. Before writing the first slot
of the ring buffer, we additionally mark the correspond-
ing string buffer for cleanup (Line 7). Note that while
there are no longer any direct references into the string
buffer from the ring buffer, we still do not free the mem-
ory region to not interfere with queries still processing
buffer entries that were just overwritten. Instead, the last
scan to finish on this string buffer will free the associated
memory when it is completed. We will discuss string
buffer memory management when discussing queries in
Section 3.4.

Following, we write the tuple data into the ring buffer
slot. For strings, we decide between the two storage
layouts outlined in Section 3.2 based on the string length.
All other values are stored in-place in the ring buffer.
Finally, we mark the tuple as valid to make it visible
for scans (Line 19). To prevent partially-written cache
entries of parallel inserts from being accessible for scans,
we only mark new tuples as visible once all previous
tuples are visible.

3.4. Query Processing
Through our specialized relation, the only operator in
a query plan aware of an input’s streaming nature is
the table scan. All other operators can be kept oblivious
about the nature of their input. While this integration is
minimally invasive, it requires a careful design of the scan
operator. Scans of regular relations rely on table metadata
to determine the range of tuples to scan at query planning
time which further determines the boundaries for the
scan at execution time. For streams, however, we cannot
rely on the scan boundaries to be known as tuples will



Algorithm 2 Stream scan operator morsel picking
1: function selectScanRange
2: morsel ← {}
3: while now()− lastPick.load() < timeout do
4: limit ← validTuples.load()
5: position ← lastScanned.load()
6: loop
7: if limit ≤ position then
8: updateLimit()
9: break

10: lastPick.exchange(now())
11: if pickRange(morsel, limit, position) then
12: returnmorsel
13: return ScanDone

still arrive during the query execution. Even cardinality
estimates for query optimization can be unreliable as
past stream behavior does not necessarily reflect future
behavior. Therefore, we need to adapt query processing
in two areas to handle streams efficiently: query planning
and scan operator design.

3.4.1. Query Planning

For query planning, especially for join ordering, database
systems rely on cardinality estimates for scans and filter
predicates. These estimates are sourced from statistics
maintained by inserts and updates to the relation. We
cannot assume that previous statistics are available and
reliable for streams. However, we still want the opti-
mizer to produce an optimized query plan, especially to
reduce materialized intermediate result sizes in the case
of high-volume data streams. We assume streams are
of the largest cardinality and, therefore, want to only
materialize them if necessary. While the optimized query
plan of Figure 1b only materializes the aggregated scores
per user, an unoptimized plan without statistics might
first join the users and posts relations, potentially materi-
alizing the posts stream in the join hash table. To avoid
this, we hint to the optimizer that streams will always
comprise the most data, thus ordering them to the probe
side of joins.

3.4.2. Scan Operator

In contrast to scan operators for durable relations, our
stream scan operator has to mask two things: unknown
input bounds and ephemerality of tuples. As we, apart
from the scan, entirely rely on existing database opera-
tors for query processing, we also have to adhere to the
execution model of the database system. In our system
Umbra, this is the producer-consumer model [30]. Gen-
erally, database execution models will process a block-
ing operator entirely before starting work on the next.
Streaming models, on the other hand, replace this block-
ing semantics with running or windowed aggregates. To
achieve similar semantics for database systems, we must
determine when we can move query processing to the

write o�set

scan o�set

se
lec

te
d 

ra
ng

e

Scan Bu�er

�uery Memory

pointer

1

3

2

4

4

Scan Relation

Figure 4: Overview of the four phases of the stream scan
operator. Locating the desired range in the ring buffer 1 ,
copying the range to the scan-local buffer 2 , checking for
potential conflicts 3 and reporting the tuples to the down-
stream operator 4 .

next operator. There are two different possibilities to
achieve this: Sending a dedicated end-of-stream tuple or
message signaling that the input is depleted or detect-
ing input depletion from metadata, such as arrival rate.
We focus on the latter, which is most consistent with
our approach of handling streams transparently using an
SQL interface. All tuples arriving after detected depletion
can be handled in a new window for the query or are
considered not part of the stream.

For simplicity, we rely on session window semantics
to achieve this behavior, advancing to the next step of
query processing when no new tuples have arrived for a
predefined timeout. For our integration into Umbra, we
integrate this session window semantic into the morsel
selection [8] where range-based metrics reside for regular
scans. Algorithm 2 outlines the resulting strategy. Before
obtaining a scan range, we check the timeout condition
(Line 3). If no thread detected new arrivals during this
timeout, we continue with the next query processing
task as we consider the stream input depleted. Following,
we fetch the latest range information and check if tuples
are available for processing (Line 7). If not, we return
to the timeout check of line 3. Once tuples are available,
we update the timeout condition (Line 10) and try to
pick a morsel. Note that the unchecked change to the
timeout condition can lead to a slight imprecision for
the timeout, as it might lead to the loss of a more recent
timestamp. However, we deem this acceptable as it allows
us to reduce synchronization overhead.

We still must mask the second property of streams,
their ephemerality. The ephemeral nature of streaming
data does not impact the range selection outlined above,
which is performed entirely on tuple ids. However, once
the scan tries to access the corresponding values in the
tuple buffer, we must ensure that the scan can never en-
counter values overwritten by concurrent inserts. This
is especially important for string values with externally



stored data, such as the content value of Figure 3, where
trying to access an invalid value could lead to a segmen-
tation fault. Figure 4 depicts our scan strategy. First ( 1 ),
we find the selected range in the buffer based on the tuple
ids and prevent the deletion of the corresponding string
region through reference counting. Following ( 2 ), we
copy all fixed-size tuple data in the range into a sepa-
rate buffer residing in the scan operator. After copying
all tuples in the range, we check to see if concurrent
writes have overwritten any tuples that we have scanned
( 3 ). In case of an overlap, we cannot guarantee that
all tuples in the scan buffer are the desired tuples and,
thus, have to abort the scan. If all scanned tuples are still
valid, we report them to the downstream operator of the
pipeline 4 . At this stage, the first downstream operator
materializing the tuples relocates the out-of-place con-
tent for strings into query memory, thereby protecting
them from deletion and preventing segmentation faults
in case of concurrent inserts. After all tuples of the scan
range were processed by the downstream operators of
the scan’s pipeline, we release our reference to the rela-
tion’s string buffer, freeing the corresponding memory
region if we held the last reference.

4. Evaluation
Having outlined our relation-based approach to in-da-
tabase stream processing, we evaluate its performance
against two popular dedicated stream processing engines,
Apache Flink [2] and Apache Spark [1]. We focus our
evaluation on data ingestion rates, scalability, and per-
formance on a mix of simple stream aggregation and
complex analytical queries.

4.1. Setup
We perform all experiments in this section on a server
equipped with 256 GB DDR3 main memory and an Intel
Xeon E5-2660 v2 CPU with 28 physical cores. All data for
the experiments is stored on a Samsung 970evo NVME
SSD. Results reported in this section are based on the
geometric mean of 5 runs taken after 2 warmup runs.
Workload. We base our experiments on the TPC-H
benchmark [31] at scale factor 100. To transform TPC-H
to a stream analytics workload, we consider the largest
relation by far, lineitem, to be a stream. All other relations
are considered durable and materialized at the start of a
query. Consequently, we only include queries with ex-
actly one scan of the lineitem relation in our experiments.
Due to issues with Flink, we had to remove queries 5 and
8 from our benchmark. We do not print the query result
in any of the systems.
Flink. We implement a standalone Flink executable
based on Flink version 1.6.1 and express all relations
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Figure 5: Insert and query throughput in Umbra, Flink and
Spark.

using the batch table API based on CSV data. Further,
we allow Flink’s optimizer to re-order joins by setting
the TABLE_OPTIMIZER_JOIN_REORDER_ENABLED flag.
We submit all queries to Flink using its SQL interface. All
intermediate results that Flink requires for processing
are located in an in-memory file system.
Spark. We implement our TPC-H-based workload in
Spark version 3.3.2. All queries are expressed using
the Spark SQL API on external CSV data frames. Jobs
are submitted to a local standalone spark cluster using
spark-submit.
Umbra. We implement a streaming relation in Umbra
as outlined in the previous section. Further, we create
all relations except for lineitem as durable relations in
Umbra. Lineitem is created as a stream using the inter-
face described in Section 3.1. We subtract the session
window timeout from Umbra’s query runtimes as the
system is idle during this period. Both Flink and Spark
are run in non-windowed configuration and are, thus,
not introducing similar delays.

4.2. Stream Ingestion
As a first experiment, we examine the data ingestion rate
offered by the three systems. For this, we fully insert the
lineitem relation once into each system. As Spark and
Flink rely on pull-based semantics for efficient analytical
queries and do not offer full support for push-based in-
serts, we express inserts to them as SELECT COUNT(*)
FROM lineitem queries. In contrast, we rely on push-
based semantics as this never delays inserting workers
and, therefore, imposes fewer requirements on inserting
systems. For Umbra, we use the bulk insert command
COPY lineitem FROM CSV.

Figure 5a shows the insert performance in millions of
tuples per second along the number of insert threads. All
systems show near-linear scalability until simultaneous
multithreading (SMT) is reached. Overall, Flink offers the
best insert performance, outperforming Umbra by a fac-
tor of 1.8 for 32 threads. This advantage can be attributed



Table 1
Speedup of using a stream minimized to Q6-relevant columns
compared to all columns at 32 worker threads.

Approach Insert TPC-H Q6

Flink 1.52× 1.21×
Spark 2.19× 1.94×
Umbra 2.44× 2.43×

to the slight difference in the semantics of our insert
queries. Our approach has to fully process all columns
to materialize them in the ring buffer. In contrast, Flink
can simply count the number of rows without parsing
them entirely. While we expect this advantage to disap-
pear for more complex queries where multiple columns
must be parsed, it is very beneficial for such simple work-
loads. Furthermore, the lineitem relation comprises far
more columns than are used by the average query. In our
running example of Figure 1, we would, of course, only
stream the necessary columns into the system, which
benefits both Spark and Umbra. Table 1 shows the result-
ing speedup of inserting only the four columns relevant
for TPC-H Q6 over a full lineitem insert. While Flink also
benefits from less data being processed, Umbra and Spark
can more than double their insert throughput. For this
reduced lineitem stream, Umbra almost closes its insert
performance gap with Flink.

4.3. Query Performance
Having analyzed the data ingestion capabilities of all
approaches, we now focus on their analytical capabili-
ties. For this, we run a combined workload of the twelve
TPC-H queries selected for our benchmark, running each
query once. For Umbra, the specified number of threads
is the total number available to the system, which must
be shared between query and insert processing. We con-
currently schedule two queries in Umbra, one inserting
the lineitem stream from CSV and another evaluating the
TPC-H query on the inserted stream. Figure 5b shows
the throughput in queries per hour for all three systems.
Even though Umbra has to split the available workers be-
tween insert and query processing queries, it consistently
outperforms both Flink and Spark, independent of the
number of available worker threads. Furthermore, we see
that the advantage Flink had when ingesting data into
the system does not transfer to query analytics, where
multiple columns have to be parsed. Furthermore, we can
see scale-up issues with Flink as its relative performance
degrades with increasing thread count, being overtaken
by Spark when using more than eight threads. Having
considered the analytical performance of all approaches
for the full lineitem stream, we want to investigate the
influence of processing only the columns required for a
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query. Table 1 shows the speedup in query performance
for TPC-H Q6 for a stream of only the four required
columns. As for inserts, we can see that Umbra and Spark
benefit more from this minimized stream than Flink, with
Umbra achieving the highest speedup. Finally, we want
to investigate the overhead that queries introduce in the
system on top of the work for data ingestion. Figure 6
shows the relative overhead that evaluating our TPC-H-
based benchmark creates for each system. The overhead
of Spark is nearly constant, independent of the number
of threads used. However, Flink’s queries scale worse
than its inserts. The drastically higher overhead for Flink
confirms our assumption of Section 4.2 and indicates that
Flink heavily optimizes for the count(*) query that we
used to emulate inserts. For Umbra, we see next to no
overhead when executing queries in addition to inserts.
This further highlights the advantage of streaming only
required columns into the database, as the speedup we
have seen for inserts in Table 1 fully translates to query
speedup.

5. Conclusion
In this paper, we devised a technique for relation-based
stream processing in relational database systems. Re-
lying on a ring-buffered relation for stream processing
provides high ease of integration for existing database
systems, enabling database systems to handle stream-
enrichment queries combining transient with durable
data. To demonstrate the applicability of this relation, we
integrated it into the code-generating Umbra database
system.

Using the implementation within Umbra, we demon-
strated the performance of our streaming relation in
a number of end-to-end benchmarks against dedicated
stream-processing engines. Our approach consistently
outperforms dedicated stream processing engines on an-
alytical streaming workloads while requiring only mini-
mal changes to the database system’s execution model.
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