
The Gluten Open-Source Software Project: Modernizing
Java-based Query Engines for the Lakehouse Era

Akash Shankaran1,†, George Gu2,†, Weiting Chen2,†, Binwei Yang3,†, Chidamber Kulkarni4,†,
Mark Rambacher5,†, Nesime Tatbul5,† and David E. Cohen5,∗,†

1Intel, Seattle, Washington, USA
2Intel, Shanghai, China
3Intel, Portland, Oregon, USA
4Intel, Vancouver, Canada
5Intel, Boston, Massachusetts, USA

Abstract
Year-on-year, exponential data growth, and the corresponding growth in machine learning’s appetite to process that data is
transforming the industry’s data management discipline. In response, the data lakehouse architecture has emerged. The
transformative nature of the lakehouse architecture and the need to enable a diverse set of query engines to access data that
resides in a lakehouse is motivating a refactoring of capabilities in these query engines. Industry’s response is the composable
data management system (CDMS). This paper introduces the Gluten open-source software (OSS) project – an embodiment of
the CDMS concept. Gluten is a Java Native Interface (JNI) bridge that enables Java-based query engines to offload/accelerate
processing to native acceleration libraries, such as the Meta-led Velox OSS project.

Keywords
Spark-SQL, Gluten, Velox, Substrait

1. Introduction
This paper introduces the open-source software (OSS)
project, Gluten [1], a Java Native Interface (JNI) based
bridge between query engines written in Java and
database acceleration libraries such as the Velox OSS
project. Query engines that integrate Gluten embody the
composable data management system (CDMS) concept.
Currently, Gluten uses the Substrait.io OSS project [2] to
enable the Spark-SQL query engine to employ the Velox
acceleration library [3]. Work is under way to generalize
the approach so that any query engine that incorporates
Gluten can generate a query plan use Substrait to trans-
form this plan to a canonical form. A transformation is
provided that maps the canonical plan onto the targeted
acceleration library’s plan (e.g. a Velox plan). Execution
of the plan is then offloaded to the library.

Although Gluten is intended to apply to any SQL query

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — Second International Workshop on Composable
Data Management Systems (CDMS’23), August 28 - September 1, 2023,
Vancouver, Canada
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open akash.shankaran@intel.com (A. Shankaran);
george.gu@intel.com (G. Gu); weiting.chen@intel.com (W. Chen);
binwei.yang@intel.com (B. Yang); chidamber.kulkarni@intel.com
(C. Kulkarni); mrambach@gmail.com (M. Rambacher);
nesime.tatbul@intel.com (N. Tatbul); david.e.cohen@intel.com
(D. E. Cohen)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

engine written in Java, initial work focuses on Apache
Spark and that framework’s Spark-SQL Java application
[4]. Our work on Spark-SQL-over-Gluten serves as the
motivating scenario for this paper. This work includes
integration of the Substrait and Velox OSS projects into
Gluten. With Substrait mappings of the Spark-SQL and
Velox plans in place, the integration of Gluten has trans-
formed Spark’s SQL query engine into a CDMS imple-
mentation. This effort is early in its development, but
is already producing competitive results in TPC-H/TPC-
DS-like characterizations. This development effort and
characterization work is covered in the section entitled
“Spark-SQL-over-Gluten.”

Concretely, the contributions of this paper are to pro-
vide background on the motivation for the Data Lake-
house, the technical architecture that has emerged, and
the disruption adoption of this architecture is having on
big data processing. No where is this disruption more
evident than amongst the largest users of Spark-SQL. In-
sights into the Spark-SQL market are discussed along
with how the leaders of Spark project have leveraged the
Data Lakehouse architecture to their advantage. This,
in turn, has served as a catalyst for introducing compos-
ability not just for Spark-SQL but to the broader set of
Java-based query engines. Spark-SQL is used to illustrate
the mechanics of composability, including early experi-
mental results, Finally, the paper provides thoughts on
how this composability can be extended to embrace the
coming wave of heterogeneous processors and memories.

mailto:akash.shankaran@intel.com
mailto:george.gu@intel.com
mailto:weiting.chen@intel.com
mailto:binwei.yang@intel.com
mailto:chidamber.kulkarni@intel.com
mailto:mrambach@gmail.com
mailto:nesime.tatbul@intel.com
mailto:david.e.cohen@intel.com
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


2. Background
Computing demand continues to grow exponentially,
largely driven by “big data” processing on hyperscale
data stores [5]. Increasingly, this data processing is in
support of machine learning (ML), training models and
subsequently serving up these models, to personalize dig-
ital content in an eCommerce setting, for example. This
ML-centric, big data processing increasingly operates
over custom, heterogeneous processors such as GPUs,
TPUs, FPGAs, etc [6]. Taken together, these forces are
motivating dramatic changes in the data management
process of large companies.

2.1. The Emergence of the Data
Lakehouse Architecture

The result of these changes has been the emergence of
the Data Lakehouse architecture, a combination of tra-
ditional data warehouse functionality and more modern
data lakes. A data lake stores raw, unstructured data on
disaggregated storage. In contrast, a data warehouse is a
repository for structured, filtered data that has already
been processed for a specific purpose. In the emerg-
ing Lakehouse approach, an open table format is intro-
duced into the data lake architecture. This enables the
unbundling of the query engine from the data manage-
ment facilities of the warehouse. These data management
capabilities are refactored to operate over this open table
abstraction. Introduction of these capabilities into the
data lake is transformative, resulting in the Lakehouse
[7].

What are the data management capabilities of a Lake-
house deployment? First and foremost is the disaggre-
gation of log-structured storage from the servers over
which processing is carried out [8]. This disaggrega-
tion allows for the independent scaling of the storage
and compute resources. Second is the ingestion of vir-
tually any type of data into the Lakehouse using a sup-
ported serialization format, for example the Apache Par-
quet [9]. Notably, the tables of a Lakehouse are mutable
[10], [11], [12], [13], [14]; allowing for transactional up-
dates, schema modifications, etc. From within the Lake-
house, this data is then projected into analytic services
such as SQL query engines, search systems, stream pro-
cessors, query editors, notebooks, and machine learning
(ML) models through direct access, real-time, and batch
workflows.

2.2. The Impact of the Lakehouse
Architecture on Spark-as-a-Service
Deployments

The Apache Spark open-source software (OSS) project
started as a research project at the University of Califor-

nia - Berkeley AMPLab in 2009, and was open sourced
in early 2010. In 2013, Matei Zaharia and several oth-
ers from AMPLab founded Databricks whose charter is
to provide a Cloud-only, Software-as-a-Service (SaaS)
platform for working with Spark. Today, the Databricks
service is globally available, running over Infrastructure-
as-a-Service (IaaS) platforms operated by Alibaba Cloud,
Amazon, Google, and Microsoft Azure [15].

In parallel, these same hyperscale companies oper-
ate their own Spark-SQL-as-a-Service offerings. Each of
these offerings operate over their respective global infras-
tructure while Databricks is platform agnostic. This gives
rise to a competitive environment across all participants.

2.3. The Databricks Lakehouse Changes
the Competitive Landscape

The Apache Spark OSS project has historically been an
engine of innovation that benefited the community as a
whole. All of the Spark-SQL-as-a-Service offerings were
based on this upstream Spark-SQL codebase. With the
advent of the Lakehouse, Databricks has thrown down
the gauntlet at its competition in this market segment.

Their Deltalake [12] initiative has been instrumental
in bringing the Lakehouse architecture to market. As
part of this initiative, Databricks introduced a propri-
etary Photon database acceleration library; giving them
performance and efficiency advantages and changing the
dynamics of the Spark community. In response to this
competitive threat, others in this segment are motivated
to find an alternative to the Databricks Photon library
[16].

2.4. Private Offerings of
Spark-SQL-as-a-Service

In addition to the Spark-SQL-as-a-Service market, some
of the largest Cloud companies operate private Spark-
SQL-as-a-Service offerings for internal constituents.
These companies include ByteDance, eBay, JD.Com,
LinkedIn, Maituan, Netflix, Pinterest, Stripe, etc.

The scale of these offerings has reached a point where
they are motivated to find ways to realize economies-of-
scale. The performance and efficiency gains afforded by
the use of the Photon library is compelling. However, its
proprietary nature is counter to their objectives. This is
motivating interest across this segment in an open-source
alternative to the Photon library.

2.5. Meta Deprecates Spark-SQL
Finally, Meta has been a driving force in the Spark com-
munity for many years [17], [18]. Recently, however,
they have begun deprecating the use of Spark-SQL with
PrestoDB’s SQL taking its place. Meta is standardizing



on PrestoDB’s SQL via the use of the Velox database
acceleration native code library OSS project and that li-
brary’s CoreSQL dialect [19]. PrestoDB-on-Spark refac-
tors PrestoDB’s functionality as a client library, similar
to Google’s F1 Query client library [20], [21].

3. Spark-SQL on Gluten

3.1. Offloading Spark Processing to a
Native Database Accelerator

For analytical and machine learning workloads, the de-
sign of modern query engines is dominated by on-disk
(e.g. Apache Parquet) and in-memory (e.g. Apache Ar-
row), columnar serialization formats [22], [9], [23].
While these workloads are memory/memory bandwidth
bound, Spark workloads have become CPU-bound. Three
companies realized the opportunity to transform Spark
into a vectorized SQL engine and break through to its
row-based data processing and JVM limitations. Today,
Databricks, Intel, and NVIDIA each develop and main-
tain JNI-based database acceleration implementations
that enable Spark-SQL to offload/accelerate Java code to
a C++ library. These are the Photon, the Gluten, and
the Spark-Rapids implementations respectively. Of these,
only Gluten is an OSS project.

In the same timeframe that Databricks and NVIDIA
were developing their solutions, Intel’s Spark team was
working on the Gazelle project, a predecessor to Gluten
[24]. The Gazelle project focused on enabling Spark to
exploit single instruction, multiple data (SIMD), specif-
ically Intel’s Advanced Vector Extensions (Intel AVX)
technology. A key deficiency of Gazelle was its limited
community participation. This meant that the develop-
ment burden fell to Intel.

In the meantime, several vectorized SQL engines
emerged with more active open-source communities.
Among these, the Meta-led Velox project is a rising star,
providing a vectorized database acceleration library [3].
While these vectorized engines are popular, prior to
Gluten there was no support for an open-source software
option in Apache Spark. Intel has adopted the Velox na-
tive OSS library to replace its own Gazelle library. Adop-
tion of Velox has opened Gluten up to the larger, more
vibrant Velox community of developers. The integration
of the Gluten JNI bridge with Spark-SQL retains much
of the Spark-SQL Executor’s Java-based implementation.
In contrast, Meta’s PrestoDB-on-Spark implementation
replaces Spark-SQL with a new Presto native C++ im-
plementation that incorporates the Velox library. This
new C++ SQL engine is then integrated with the Spark
execution framework.

3.2. Gluten Implementation
As shown in Figure 1, Spark-SQL-on-Gluten replaces
Gazelle with the Velox database acceleration library. The
approach is similar to the one taken by Databricks in their
Photon native library. The clear difference is software li-
censing. The Photon library is proprietary and only avail-
able with the Databricks Spark-as-a-Service platform.
Gluten, on the other hand, is an Apache OSS licensed
project. Gluten depends on OSS licensed projects such as
the Apache Arrow, Substrate, and Velox projects. What
follows is a brief sketch of the Spark-SQL-on-Gluten im-
plementation.

3.2.1. Plan Conversion

Gluten uses Substrait to build a query plan tree. It con-
verts Spark’s physical plan to a Substrait plan for the
targeted backend, and then shares the Substrait plan over
JNI to trigger the execution pipeline in the Velox native
library.

3.2.2. Fallback Processing

Gluten leverages the existing Spark JVM engine to check
that an operator is supported by the native library. If
not, Gluten falls back to the existing Spark-JVM-based
operator. This fallback mechanism comes at the cost
of column-to-row and row-to-column data conversions
between the memory layouts of the two environments.

3.2.3. Memory Management

Gluten leverages Spark’s existing memory management
system. It calls the Spark memory registration API for ev-
ery native memory allocation/deallocation action. Spark
manages the memory for each task thread. If the thread
needs more memory than is available, it can call the
spill interface for operators that support this capability.
Spark’s memory management system protects against
memory leaks and out-of-memory issues.

3.2.4. Columnar Shuffle

Gluten reuses its predecessor Gazelle’s Apache Arrow-
based Columnar Shuffle Manager as the default shuffle
manager. A third-party library is responsible for handling
the data transformation from native to Arrow. Alterna-
tively, developers are free to implement their own shuffle
manager.

3.2.5. Metrics

Gluten supports Spark’s Metrics functionality. The de-
fault Spark metrics are served for Java row-based data



Figure 1: The Gluten Software Stack

processing. Gluten includes additional metrics to pro-
vide developers a means of debugging the targeted native
database acceleration library.

3.2.6. Shim Layer

To fully integrate with Spark, Gluten includes a shim
layer whose role is to support multiple versions of Spark.
Gluten supports Spark versions 3.2 and 3.3, with newer
version support being added..

4. Comparative Performance
Characterization

This section provides a comparative characterization of
“Spark-SQL without Gluten” and “Spark-Gluten-Velox,”
executing on the latest Intel processor. Efforts to opti-
mize Java-based query engines rely on JVM/JDK pack-
ages, whose capabilities differ from version to version.
For example, JDK 17 includes a SIMD-based Vector API
capability that enables efficient query engine vectoriza-
tion. Widely used earlier versions such as JDK11 or JDK8
are missing this Vector API capability. Use of Gluten
removes this JVM/JDK version dependency when opti-
mizing Java-based query engines. These results demon-
strate the performance benefits of offloading Spark-SQL
processing to Gluten.

Two benchmarks (TPC-H-like and TPC-DS-like) are
used to evaluate the performance of Gluten compared to

Name Hardware Platform

CPU Model Intel® Xeon® Platinum 8480+
Micro-architecture Sapphire Rapids

CPUs 224
Memory 1024GB

NIC
1x Ethernet Controller I225-LM

1x Ethernet interface

Disks
2x 1.5T INTEL SSDPE2KE016T8
1x 447.1G INTEL SSDSC2BB48
1x 447.1G INTEL SSDSC2KB48
7x 3.5T INTEL SSDPF2KX038TZ

Table 1
Hardware Configuration

Name Software Platform

Operating System Ubuntu 22.04.1 LTS
Linux Kernel 5.16.0-051600rc5-generic
JDK version 1.8

GCC version(Gluten only) 11
Spark version 3.3.1
Hadoop version 3.2

Table 2
Software Configuration

Vanilla Spark which derives from TPC-H and TPC-DS
benchmark with minor changes to accommodate Gluten
and Velox implementations. The results show a signifi-
cant improvement by using Gluten and Velox. In Figure 2,
the result shows that Gluten outperforms Spark-SQL by
2.71X in the TPC-H-like characterization and by 2.29X
in the TPC-DS-like characterization. As references, the
Hardware and Software Configurations are listed in Table
1 and Table 2 respectively.

Figure 2: Comparative Characterization

The improvement can also be observed from CPU pro-
cessor micro-architecture perspective. Figure 3 illustrates
Gluten instruction path length reduces by 3.7X in the
TPC-H-like query and by 2.5X in TPC-DS-like query
against Spark-SQL. Gluten + Velox can also unleash the
power of Intel AVX technology using SIMD instructions



within a vectorized SQL engine to break through the
original row-based data processing and JVM limitations.

Figure 3: Instruction Path Length Comparison

Thanks to columnar based shuffle in Gluten, additional
benefits observed are the size reduction of shuffle write
and taking advantage of smaller packets in the network
during spark shuffle phase. In both benchmarks, around
15-25 percent shuffle size gets reduced (Figure 4), which
helps enhance the network utilization and improves per-
formance in spark shuffle. Besides size reduction, colum-
nar based shuffle can also take the advantages from the
compression codec. Users can choose a suitable codec
based on individual columnar data type to get higher
compression ratio with better performance.

Figure 4: Shuffle Comparison

5. Roadmap and Future Work
We conclude the paper by sharing three key elements
of the Gluten roadmap: (i) formalizing the use of the
Substrait.io project, (ii) generalizing Gluten for use across
several query engines, and (iii) enabling these Gluten-
based query engines to target heterogeneous hardware.

5.1. Formalizing the Use of the
Substrait.io Project

One method of vertical integration is to replace the top
portion of the query engine framework [25]. This in-
cludes all of the frontend components: the user-facing
interfaces, the query plan/optimizer, the distributed ex-
ecution framework, etc. An adapter is introduced that
allows these components to be replaced by a proxy. The
new framework takes a query as input, produces a canon-
ical plan, and thenmaps that plan onto the plan of various

query engines. Each query engine provides an adapter
that implements the transformation of the canonical plan
to the query engine’s plan. The query engine remains
unchanged. Gluten is orthogonal to this approach as it
operates on the plan produced by the top portion of the
query engine framework. Composability at Gluten’s level
requires taking the optimized plan from the optimizer
and mapping it on to heterogeneous hardware.

Analytical query engines targeted by Gluten have an
internal schema that represents the planner/optimizer’s
relational algebra. The operators, functions, data struc-
tures, and data types represent the internal implementa-
tion of the engine. Vertical composability requires that
this representation be externalized so that a plan instance
produced by the optimizer can be transformed to canoni-
cal form. Gluten enlists the Substrait.io project to provide
this function. Substrait defines a ”Cross-Language Serial-
ization for Relational Algebra,” providing the methods to
transform to/from its algebra.

Currently, Substrait mappings exist from the PrestoDB
and Spark-SQL query engines. Ideally, a public, open-
source repository of these mappings would be available
in conjunction with the Substrait project. Currently, how-
ever, these mappings are internal to the PrestoDB and
Gluten projects. Given such a repository, Substrait could
define an application binary interface (ABI) analogous
to the one provided by the Apache Arrow project. This
ABI can then be supported by various native acceler-
ation libraries. For example, support for the Substrait
mappings provided by PrestoDB and Gluten is embed-
ded in the Velox library. A Substrait ABI would allow
formal support for Substrait in Velox. The mappings and
their transformations could then be provided as external,
shared libraries.

5.2. Gluten as a JNI Bridge to Database
Acceleration Libraries for Any Java
Query Engine

The Gluten JNI implementation is designed to support
multiple database acceleration libraries. Currently, Kyli-
gence provides a ClickHouse library while Intel employs
the Velox library [26], [27]. The Kyligence implementa-
tion does not currently take advantage of the Substrait
transformations. Support for Substrait is included in the
Velox project. However, the lack of a Substrait ABI means
the to/from Substrait transformations for PrestoDB and
Spark-SQL are internal to Velox. Support for a Substrait
ABI will allow for a mapping to provide a query-engine-
specific Substrait schema, a shared library, and a means
of registering the schema with Velox as part of the Velox
initialization.

In Gluten’s case, the framework is being refactored
as a general Java-Native-Interface (JNI) implementation



that uses the Substrait algebra to map a Java-based query
engine such as PrestoDB or Spark-SQL on to a native
database acceleration library.Gluten supports the Kyli-
gence and Spark-SQL query engines. Work is now un-
derway to enable the Trino project to integrate Gluten
and integration with Apache Flink is in the Gluten back-
log [28], [29]. Trino and Flink will provide Subtstrait
schemas and it is hoped that Kyligence will add support
for Substrait to their roadmap.

5.3. Enabling Gluten to Target
Heterogeneous Processors

The Gluten abstraction also affords the opportunity to tar-
get heterogeneous processors via the native accelerator
library. For example, the Velox library is being extended
to target heterogeneous hardware accelerators which
may be based on General Purpose CPU, FPGA or GPU.
The diverse heterogeneous accelerators could become
out-of-box components for CDMS systems to achieve sig-
nificant advantages on design flexibility, system elasticity,
performance and power efficiency (Figure 1).

Currently, Velox provides a vectorization engine that
targets general purpose CPUs: x86, IA, and ARM [30].
In contrast, the PyTorch framework provides the Torch-
Dynamo and TorchInductor sub-project that together
enable deployments to target heterogeneous processors
such as an inductor OpenMP backend for general pur-
pose CPUs and an inductor Triton backend for GPUs,
including NVIDIA, AMD, etc [31], [32], [33]. The pro-
posed extension to Velox will introduce an ABI that is
analogous to TorchDynamo/TorchInductor. The idea is
to provide baseline support with OpenMP and Triton.
The Pytorch community has investigations underway
to extend this to support IA-based on-die accelerators,
FPGAs, and Habana [34]. We envision Velox pursuing a
similar path as PyTorch’s TorchDynamo/TorchInductor
approach.

6. Conclusion
This paper provided background on the motivation for
the Data Lakehouse and the disruption adoption of the
Lakehouse architecture is causing. No where is this dis-
ruption more apparent than amongst the largest users of
Spark-SQL. This market includes Databricks, founded by
the creators of the Spark project and arguably the leaders
of the Data Lakehouse movement. Their introduction
of the proprietary Photon database acceleration library
has been a catalyst for interest in the Spark-Gluten open
source software (OSS) project and its use of the Substrait
and Velox OSS projects. The methods used by Gluten
to enable Spark-SQL to take advantage of these projects
embodies vertical composability. Early experimental re-

sults demonstrate the promise of this approach. We be-
lieve Gluten can be generalized for use by any Java-based
query engine. Further, we believe the use of Substrait
and Velox allow for vertical composability to be extended
to encompass the underlying heterogeneous hardware
that is coming online. To that end, the paper provides
insights into the Gluten roadmap along with plans to
work with the Subtrait and Velox community to realize
the Composable Data Management System vision.

Acknowledgments
Thanks to Masha Basmanova, Orri Erling, Deepak Ma-
jeti, Pedro Pedreira, and the rest of the Velox commu-
nity. Thanks also to Paul Amonson, Lukasz Grab, Milosz
Linkiewicz, Kelly Mckeighan, Cezary Sawicki, and the
rest of the Intel folks working on the Gluten and Velox
projects. Special thanks to Jim Younan, who passed away
unexpectedly at the end of last year.

References
[1] Gluten, https://github.com/oap-project/gluten,

2023. Accessed: 2023-06-28.
[2] Substrait, https://substrait.io/, 2023. Accessed: 2023-

06-28.
[3] Velox, https://github.com/facebookincubator/velox,

2023. Accessed: 2023-06-28.
[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,

J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, M. Zaharia, Spark SQL: Relational Data
Processing in Spark, in: Proceedings of the ACM
SIGMOD International Conference onManagement
of Data, 2015, pp. 1383–1394.

[5] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobb-
hahn, P. Villalobos, Compute Trends Across Three
Eras of Machine Learning, CoRR abs/2202.05924
(2022).

[6] A. Gonzalez, A. Kolli, S. M. Khan, S. Liu, V. Dadu,
S. Karandikar, J. Chang, K. Asanovic, P. Ran-
ganathan, Profiling Hyperscale Big Data Process-
ing, in: Proceedings of the 50th Annual Inter-
national Symposium on Computer Architecture
(ISCA), 2023, pp. 47:1–47:16.

[7] M. Zaharia, A. Ghodsi, R. Xin, M. Armbrust, Lake-
house: A New Generation of Open Platforms that
Unify Data Warehousing and Advanced Analytics,
in: Proceedings of the 11th Conference on Innova-
tive Data Systems Research (CIDR), 2021.

[8] Z. Luo, L. Niu, V. Korukanti, Y. Sun, M. Basman-
ova, Y. He, B. Wang, D. Agrawal, H. Luo, C. Tang,
A. Singh, Y. Li, P. Du, G. Baliga, M. Fu, From
Batch Processing to Real Time Analytics: Run-
ning Presto® at Scale, in: Proceedings of the 38th

https://github.com/oap-project/gluten
https://substrait.io/
https://github.com/facebookincubator/velox


IEEE International Conference onData Engineering
(ICDE), 2022, pp. 1598–1609.

[9] Apache Parquet, https://parquet.apache.org/, 2023.
Accessed: 2023-07-05.

[10] Apache Hudi, https://hudi.apache.org/, 2023. Ac-
cessed: 2023-07-05.

[11] Apache Iceberg, https://iceberg.apache.org/, 2023.
Accessed: 2023-07-05.

[12] M. Armbrust, T. Das, S. Paranjpye, R. Xin, S. Zhu,
A. Ghodsi, B. Yavuz, M. Murthy, J. Torres, L. Sun,
P. A. Boncz, M. Mokhtar, H. V. Hovell, A. Ionescu,
A. Luszczak, M. Switakowski, T. Ueshin, X. Li,
M. Szafranski, P. Senster, M. Zaharia, Delta Lake:
High-Performance ACID Table Storage over Cloud
Object Stores, Proceedings of the VLDB Endow-
ment 13 (2020) 3411–3424.

[13] J. Camacho-Rodríguez, A. Agrawal, A. Gruen-
heid, A. Gosalia, C. Petculescu, J. Aguilar-Saborit,
A. Floratou, C. Curino, R. Ramakrishnan, LST-
Bench: Benchmarking Log-Structured Tables in the
Cloud, CoRR abs/2305.01120 (2023).

[14] P. Jain, P. Kraft, C. Power, T. Das, I. Stoica, M. Za-
haria, Analyzing and Comparing Lakehouse Stor-
age Systems, in: Proceedings of the 13th Confer-
ence on Innovative Data Systems Research (CIDR),
2023.

[15] C. Power, H. Patel, A. Jindal, J. Leeka, B. Jenkins,
M. Rys, E. Triou, D. Zhu, L. Katahanas, C. B. Tala-
pady, J. Rowe, F. Zhang, R. Draves, I. Santa, A. Ku-
mar, The Cosmos Big Data Platform at Microsoft:
Over a Decade of Progress and a Decade to Look
Forward, Proceedings of the VLDB Endowment 14
(2021) 3148–3161.

[16] A. Behm, S. Palkar, U. Agarwal, T. Armstrong,
D. Cashman, A. Dave, T. Greenstein, S. Hovsepian,
R. Johnson, A. S. Krishnan, P. Leventis, A. Luszczak,
P. Menon, M. Mokhtar, G. Pang, S. Paranjpye,
G. Rahn, B. Samwel, T. van Bussel, H. V. Hovell,
M. Xue, R. Xin, M. Zaharia, Photon: A Fast Query
Engine for Lakehouse Systems, in: Proceedings
of the ACM SIGMOD International Conference on
Management of Data, 2022, pp. 2326–2339.

[17] B. Chattopadhyay, P. Pedreira, S. Agarwal, Y. J. Sun,
S. Vakharia, P. Li, W. Liu, S. Narayanan, Shared
Foundations: Modernizing Meta’s Data Lakehouse,
in: Proceedings of the 13th Conference on Innova-
tive Data Systems Research (CIDR), 2023.

[18] M. Valdez-Vivas, V. Sharma, N. Stanisha, S. Li, L. Mi,
W. Jiang, A. Kalinin, J. Metzler, Clockwork: ADelay-
Based Global Scheduling Framework for More Con-
sistent Landing Times in the Data Warehouse, in:
Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2021,
pp. 3627–3637.

[19] P. Pedreira, O. Erling, M. Basmanova, K. Wilfong,

L. S. Sakka, K. Pai, W. He, B. Chattopadhyay, Velox:
Meta’s Unified Execution Engine, Proceedings of
the VLDB Endowment 15 (2022) 3372–3384.

[20] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shiv-
akumar, M. Tolton, T. Vassilakis, H. Ahmadi, D. De-
lorey, S. Min, M. Pasumansky, J. Shute, Dremel: A
Decade of Interactive SQL Analysis at Web Scale,
Proceedings of the VLDB Endowment 13 (2020)
3461–3472.

[21] B. Samwel, J. Cieslewicz, B. Handy, J. Govig,
P. Venetis, C. Yang, K. Peters, J. Shute, D. Tenedorio,
H. Apte, F. Weigel, D. Wilhite, J. Yang, J. Xu, J. Li,
Z. Yuan, C. Chasseur, Q. Zeng, I. Rae, A. Biyani,
A. Harn, Y. Xia, A. Gubichev, A. El-Helw, O. Er-
ling, Z. Yan, M. Yang, Y. Wei, T. Do, C. Zheng,
G. Graefe, S. Sardashti, A. M. Aly, D. Agrawal,
A. Gupta, S. Venkataraman, F1 Query: Declara-
tive Querying at Scale, Proceedings of the VLDB
Endowment 11 (2018) 1835–1848.

[22] Apache Arrow, https://arrow.apache.org/, 2023. Ac-
cessed: 2023-07-05.

[23] X. Zeng, Y. Hui, J. Shen, A. Pavlo, W. McKinney,
H. Zhang, An Empirical Evaluation of Columnar
Storage Formats, CoRR abs/2304.05028 (2023).

[24] Gazelle Plug-in, https://github.com/oap-project/
gazelle_plugin, 2023. Accessed: 2023-07-05.

[25] H. Gavriilidis, L. Behme, S. Papadopoulos, S. Bortoli,
J. Quiané-Ruiz, V. Markl, Towards a Modular Data
Management System Framework, in: S. R. Valluri,
M. Zaït (Eds.), Proceedings of the 1st International
Workshop on Composable Data Management Sys-
tems (CDMS), 2022.

[26] Clickhouse, https://clickhouse.com/, 2023. Ac-
cessed: 2023-07-05.

[27] Kyligence, https://kyligence.io/, 2023. Accessed:
2023-07-05.

[28] Apache Flink, https://flink.apache.org/, 2023. Ac-
cessed: 2023-07-05.

[29] Trino, https://trino.io/, 2023. Accessed: 2023-07-05.
[30] T. Kersten, V. Leis, A. Kemper, T. Neumann,

A. Pavlo, P. A. Boncz, Everything You Always
Wanted to Know About Compiled and Vectorized
Queries But Were Afraid to Ask, Proceedings of
the VLDB Endowment 11 (2018) 2209–2222.

[31] OpenMP, https://www.openmp.org/, 2023. Ac-
cessed: 2023-07-05.

[32] PyTorch/Torch/Dynamo, https://github.com/
pytorch/pytorch/tree/main/torch/_dynamo, 2023.
Accessed: 2023-07-05.

[33] PyTorch/Torch/Inductor, https://github.com/
pytorch/pytorch/tree/main/torch/_inductor, 2023.
Accessed: 2023-07-05.

[34] Habana Labs, https://habana.ai/, 2023. Accessed:
2023-07-05.

https://parquet.apache.org/
https://hudi.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/
https://github.com/oap-project/gazelle_plugin
https://github.com/oap-project/gazelle_plugin
https://clickhouse.com/
https://kyligence.io/
https://flink.apache.org/
https://trino.io/
https://www.openmp.org/
https://github.com/pytorch/pytorch/tree/main/torch/_dynamo
https://github.com/pytorch/pytorch/tree/main/torch/_dynamo
https://github.com/pytorch/pytorch/tree/main/torch/_inductor
https://github.com/pytorch/pytorch/tree/main/torch/_inductor
https://habana.ai/

	1 Introduction
	2 Background
	2.1 The Emergence of the Data Lakehouse Architecture
	2.2 The Impact of the Lakehouse Architecture on Spark-as-a-Service Deployments
	2.3 The Databricks Lakehouse Changes the Competitive Landscape
	2.4 Private Offerings of Spark-SQL-as-a-Service
	2.5 Meta Deprecates Spark-SQL

	3 Spark-SQL on Gluten
	3.1 Offloading Spark Processing to a Native Database Accelerator
	3.2 Gluten Implementation
	3.2.1 Plan Conversion
	3.2.2 Fallback Processing
	3.2.3 Memory Management
	3.2.4 Columnar Shuffle
	3.2.5 Metrics
	3.2.6 Shim Layer


	4 Comparative Performance Characterization
	5 Roadmap and Future Work
	5.1 Formalizing the Use of the Substrait.io Project
	5.2 Gluten as a JNI Bridge to Database Acceleration Libraries for Any Java Query Engine
	5.3 Enabling Gluten to Target Heterogeneous Processors

	6 Conclusion

