CEUR-WS.org/Vol-3462/CDMS9.pdf

Wisent: An In-Memory Serialization Format for Leafy' Trees

Hubert Mohr-Daurat!, Holger Pirk’

"Imperial College London

Abstract

Efficient data exchange is one of the key ingredients for high-performance, composable data management systems. Efficient
data exchange formats exist for “flat” (i.e., relational) data. For nested data, however, users must resort to formats such as
XML, JSON or their binary counterparts such as BSON or CBJSON. These formats provide the flexibility to store metadata as
well as actual data but lead to costly serialization and deserialization. This makes them unfit to represent flat data, forcing
users to combine flat formats (Arrow, Parquet and even CSV) for data with JSON or XML documents for metadata. This
practice, known as “Data Packages”, is error-prone, labor-intensive and increases system complexity.

To address this problem, we propose Wisent, a new exchange format designed to represent nested data while efficiently
encoding the “flat” sections of the tree. We call such trees “leafy”. To this end, Wisent serializes trees bread-first rather than the
conventional depth-first serialization. We found that breadth-first serialization enables lazy decoding during tree navigation
and in-place/conversion data processing of the flat sections using tight loops. We implemented a Wisent deserializer in C++,
which outperforms the state-of-the-art data serialization protocols by several orders of magnitude. Wisent is not just faster to
encode and decode but also much simpler to implement: to demonstrate that aspect, we implemented Wisent decoders in
Swift and Python and found that it can be implemented in roughly 100 lines of code while achieving performance that is

dominated only by the overhead of the respective host language.

{"data": {
"startTime": "2023-06-14 07:16:47 +0100":,
"samples": [
{"heartrate":56}, {"heartrate":69},
{"heartrate":60}, {"heartrate":60},
{"heartrate":71}, {"heartrate":68},
{"heartrate":80}, l:l
11}

Figure 1: A Leafy JSON Document

1. Introduction

Data exchange is a key technique enabling Data Man-
agement System composition. Particularly, when com-
posing systems written in different languages and/or
without control over the development, ABI-level com-
munication is not an option, and efficient inter-process
communication is required for transferring data between
systems. Fundamentally, two kinds of data need to be ex-
changed: flat data, i.e., data in which data items have no
designated hierarchy and nested data, i.e., data in which
data items can have children (sometimes referred to as
“unstructured” data). Many practical applications process
some flat data (tables, streams, binary data, etc.) and
some nested (metadata, query plans, ontologies, etc.). In
fact, the two kinds of data are often describing the same

Joint Workshops at 49th International Conference on Very Large Data

Bases (VLDBW’23) — Second International Workshop on Composable

Data Management Systems (CDMS’23), August 28 - September 1, 2023,

Vancouver, Canada

& h.mohr-daurat19@imperial.ac.uk (H. Mohr-Daurat);

hlgr@ic.ac.uk (H. Pirk)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

===1 CEUR Workshop Proceedings (CEUR-WS.org)

real-world entity. The nested metadata could, e.g., de-
scribe when and where sensor data was acquired, while
the flat data contains the sensor readings. This use case
is prevalent enough to have merited the definition of the
“Data Package Format” [1], a standard for packaging flat
data and (nested) metadata in a directory.

However, implementing such a “separated” format in
an application is difficult, labor-intensive and error-prone.
To start, an application needs to integrate parsers for two
different formats. Further, it needs to ensure that users
provide the data’s flat and nested parts and correctly pair
the two (or more) files (usually based on their location
in the directory structure). The Data Package format
even allows multiple “versions” of the same flat data (e.g.,
different file formats, resolutions or sampling rates). In
that case, an application needs to determine how they
relate and which is the most appropriate to load. If one
of the flat files is missing, the application needs to imple-
ment a fallback mechanism. These complications led to
relatively poor adoption of the format.

The obvious alternative would be to hold all data in
the same file: the flat data could be stored as leaf nodes
in a (document) tree. This would lead to documents like
the one illustrated in Figure 1:

T we use the term “leafy” to say that most nodes
are leafs or nodes that only have a single child
which, itself, is a leaf.

Processing such trees, however, is expensive as parsers
must assume that every node has children even if most
of them are merely leafs and, therefore, without children.

mailto:h.mohr-daurat19@imperial.ac.uk
mailto:hlgr@ic.ac.uk
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Expensive parsers are acceptable when application
performance is bound by interconnect bandwidth: when
loading data through ethernet or from slow disks, e.g.,
a parser need not process more than hundreds of
megabytes per second. However, with fast interconnects
like Infiniband, NVMe or inter-process/inter-container
communication becoming more commonplace, parsing
is a likely bottleneck for many applications.

To address this problem, we propose Wisent, a new
exchange format that allows the CPU-efficient encoding
and, in particular, decoding of leafy trees. Wisent is
designed with five objectives:

« it shall support the representation of nested data

« it shall minimize the storage overhead for leafs

« it shall allow efficient serialization, deserialization
and in-place processing

« it shall support lazy/selective access to parts of
the data without requiring the deserialization of
the entire tree

« it shall be simple enough to not require the use of
a parsing library but allow the implementation of
an efficient parser in fewer than 100 lines of code
in a modern programming language like Python
or Swift

Note that we intentionally do not define space effi-
ciency as an objective. As the use cases for Wisent
are those with high-bandwidth communication channels
(many of which even support random access), space effi-
ciency is secondary. In addition, as lazy access is one of
Wisent’s objectives, space overhead potentially affects
disk space and memory address space but only marginally
affects physical RAM usage.

2. Data Serialization:
State-of-the-Art

Flat Data Serialization

A number of storage formats have been proposed for flat
data serialization. While Apache Arrow [2] only allows
in-process transfer, the project integrates the Feather [3]
serialization columnar format, designed for short-term
inter-process communication (such as network sockets
or shared memory). Apache Parquet [4] and ORC [5] also
use a decomposed storage layout but are designed for
longer-term storage on disk. In contrast, Apache Avro [6]
uses a n-ary storage layout to serialize data to disk.
None of these formats are designed to embed metadata
and other custom nested data. For this use case, they
require to use side-by-side another nested-data-oriented
serialization format. The nested data commonly embeds
filenames or URLs for the related flat data resources.

LeanStore [7] uses a fragmented data layout and is im-
plemented with intricate techniques to avoid the cost of
serialization and deserialization from and to disk. How-
ever, the type of data handled by LeanStore’s serialization
is limited to flat data and b-trees.

Nested Data Serialization

JSON [8] is the most common text-based format for
nested data serialization. The text representation makes
it straightforward to integrate into any programming lan-
guage but comes with a high cost for serialization and de-
serialization runtime performance. Binary-based formats
such as BSON [9], Protocol Buffers [10] and Thrift [11]
are common performance-oriented alternatives. Protocol
Buffers and Thrifts efficiently serialize and deserialize
custom nested data structures but require compiling the
data structures into a target language’s code. All these
serialization formats use a depth-first tree representation,
less adapted to efficient serialization and deserializing
of leafy trees, such as trees embedding flat data. With
Wisent, we propose a bread-first tree representation effi-
cient for this use case.

Substrait [12] is a format specification designed to se-
rialize trees of relational operations, and the reference
serialization protocol is implemented on the top of Proto-
col Buffers. Flat data, such as tables, are referenced and
not embedded in the nested data, as Wisent allows.

3. Design Principles

Three key design principles distinguish Wisent from
state-of-the-art formats like JSON, BSON or XML:
Breadth-first flattening (where existing formats perform
depth-first), decomposition of data and structure (where
existing formats mix the two) and a focus on simplicity
of parsing where existing (binary) formats focus on com-
pactness. Let us discuss those principles in the following.

Breadth-first Flattening. At the heart of every file
format for hierarchical data (JSON, BSON, XML, ...) lies
a transformation we call “flattening”: the transforma-
tion of a hierarchy of “nodes” into an equivalent one-
dimensional array of data items describing both the con-
tent as well as the structure of the tree. To the best of our
knowledge, every serialization format for hierarchical
data prescribes a depth-first flattening of the tree. While
this corresponds to the “natural” way of thinking about
nested data (i.e., as documents), depth-first flattening,
by definition, scatters the children of a node throughout
the (serialized) output buffer. This leads to two related
problems: first, it requires some form of list of “point-
ers/indices/offsets/markers” to represent the children of
a node (in xml, the closing tag plays that role). This leads
to substantial storage overhead for leafy trees. Second,
processing all children of a node requires resolving those

Document
Data Id Title
File 17 “Population”

Content Name

“Population.csv”

Figure 2: An lllustrative Leafy Document Tree

markers. While iterating through the children by looking
for closing tags is particularly egregious, even if the chil-
dren are represented as offsets in an in-memory array,
the random memory accesses required to gather the leaf
values are unnecessarily costly.

Breadth-first flattening, in contrast, places the children
of a node in a single contiguous memory area. This not
only eliminates the need for per-child pointers or markers
in favor of a pair of pointers (one to the first, one to the
last child). It also ensures that all children can be accessed
with optimal locality.

Decomposition of Data and Structure. State-of-the-
art formats for hierarchical data mix the representation
of the structure of the tree (opening/closing tags, sibling
offsets, end-markers, etc.) with the data itself (attribute
values, text nodes, labels, etc.). This leads to a format in
which the location of any data item (inner node or leaf)
depends on the structure and data that appear before
it in the output buffer. It is, for all practical purposes,
unpredictable. This unpredictability is what requires a
json/xml parser to parse the entire subtree of a node only
to access its right sibling.

In contrast, we propose to decompose the structural
elements from the data elements of a tree: data ele-

ments/values are flattened (breadth-first) in a buffer with-
out any indication of their exact position in the tree.
The parent-child relationships are encoded in a sepa-
rate buffer. While such separation leads to worse lo-
cality for positional/navigational access to inner nodes,
it allows access to the children and siblings of a node
without having to parse other parts of the tree. This,
in turn, enables “lazy parsing”, i.e., the navigation to
a specific node without having to parse any nodes
other than those along the path.

Simplicity over Size. The primary objective of most
binary serialization formats is the minimization of the
size of the result. This focus encourages several sophis-
ticated techniques, such as using terminators over size
fields, the dense packing of values and even data com-
pression. Implementing this arsenal of techniques makes
parsers complicated and hard to write, which is why most
users use external libraries for parsing. Such external
libraries often constitute optimization boundaries for the
compiler: to manage the complexity of the optimization
process, the compiler optimizes these libraries internally
but not in the context of the code they are used in. This
leads to substantial runtime overhead.

The design we propose, on the other hand, favors sim-
plicity over output size. It is simple enough to allow the
implementation of a (non-verifying) parser in fewer than
100 lines of code in a modern (i.e., reasonably succinct)
programming language. This allows users to integrate
the parser with the application code rather than using
an external library.

4. The Wisent Data Format

To illustrate the Wisent serialization format, consider the
serialization of the example tree (Figure 2) in Figure 3.
The buffer/file is divided into four sections: an Argu-
ment Vector that holds the breadth-first flattened repre-
sentation of every node in the input tree, a Type Bytefield
encoding the types of the values in the Argument Vec-
tor, a Structure Vector that reflects the structure of the
tree and a String Buffer that holds the content of every
reference types (strings, node names, etc.). Let us, now,
discuss each of these components in more detail.

|-

Y ik I T T 17717

]
1] L
inr | inr | inr | inr [inr [int: | str [inr [inr| fit: fit: name| first | last
A7| ... |45 Document | Data | Id | Title |File | Population

Argument
Vector

Type (Tag)
Vector

Figure 3: The Running Example Serialized using Wisent
(for simplicity only some pointers are shown)

Structure
Vector

String buffer

In Wisent, data is serialized breadth-first: all nodes of
a given level are stored in a consecutive memory region.
The color-coded levels in Figures 2 and 3 illustrate how
all nodes in a level are stored in a contiguous memory
region. Value nodes (ints, floats) are stored directly in
the Argument Vector, aligned to CPU words (we dis-
cuss sub-word alignment later in this section). Reference
types (currently only strings) are represented by an offset
into the String Buffer. Expressions (i.e., inner nodes) are
represented as offsets in the Expression Vector.

For illustrative purposes, argument types are repre-
sented as labels in Figure 3: integers as int, floats as
f1t and inner nodes as inr. In the implementation,
however, types are represented in a Type Vector that
is separate from but aligned with the Argument Vec-
tor (i.e., the value at position ¢ in the type array en-
codes the type of the argument at position ¢ in the Ar-
gument Vector). To simplify alignment, we currently
use entire CPU words to encode types but might re-
duce this to 1-byte words in the future.

The Structure Vector is an array of triples of offsets:
one pointing into the string buffer indicating the label of
the node, one pointing to the first child in the Argument
Vector and one pointing to the last child. As all children
of a node are stored in a consecutive memory region, no
pointers to individual children are required.

The String Buffer is a mere sequence of (null-
terminated) strings.

4.1. Opportunistic Type
Run-Length-Encoding

While Wisent, as described so far, encodes leafy trees is
a succinct and efficient representation, it suffers from a
substantial performance hazard: it represents the type of
every argument individually, i.e., without exploiting the
likelihood of siblings having the same type. The array of
floats in the leaf of Figure 3, e.g., would be accompanied
by a Type Vector of equal size.

While the waste of space is only a minor concern out-
weighed by the advantages of the representation (fast
type resolution and good locality of the values), the
runtime cost of determining every argument type in-
dividually is a major concern. Most importantly, it pre-
vents simple, efficient processing of the arguments (e.g.,
for(int 1i=0; i++) sum+=input[i]).
To address this problem, we propose to opportunisti-
cally Run-Length-Encode the types as follows: if a node
has five or more (adjacent) children of the same type,
the type tag of the first value has its most significant
bit set (a bit that is otherwise unused). Further, the
type tags of the following four values are interpreted
as a single 32-bit integer encoding the length of the
run of identically typed arguments.

i<size;

Opportunistically encoding a run of types like this
does not impact the space efficiency of the format. It does,
however, allow the efficient processing of the argument
values without the need to determine the type of every
argument individually — a major performance gain.

5. Wisent Encoding and Decoding

Like most data exchange formats, Wisent should be easy
and efficient to write and, more importantly, read. We
focus on two distinct scenarios for encoding and one for
decoding: encoding fragmented trees (i.e., in-memory
data structures made up from values and pointers), en-
coding from depth-first trees (i.e., converting existing
JSON documents), and lazily decoding for the purpose of
data analytics.

5.1. Encoding from Fragmented Trees

As in Depth-First Serialization, Breadth-First Serializa-
tion starts from the tree’s root and traverses it towards the
leaves. Rather than descending a single path to each of
the leaves one after the other, however, Breadth-First Seri-
alization traverses all paths simultaneously. This requires
maintaining a list of references to all nodes at a level while
traversing the tree. The size of this “serialization-frontier”
is bounded by the breadth of the tree, i.e., the maximum
number of nodes at any level (not counting leaves). While
this can be large in theory, the leafy trees we focus on
have many leaves but few inner nodes. This makes the
size of the serialization frontier a minor concern.

For the purpose of this paper, we aimed to encode all
four fragments into a single buffer. While this is not a
strict requirement of the format, it simplifies memory
management in a shared-memory scenario and allows
serializing into a file if required. To this end, the Wisent-
encoder makes two passes over the input tree: one to
calculate the number of nodes and inner nodes (which
determine the sizes of the Argument, Type and Expres-
sion Vectors) and one to perform the serialization itself.
As Wisent is optimized for leafy trees, the first traversal
is an insignificant cost factor.

While the number of nodes in the input tree, and
thereby the size of the first three sections, can be de-
termined efficiently, determining the size of the string
buffer is costly: it requires determining the length of ev-
ery string node (i.e., searching for its null-terminator).
While finding the null terminator is inevitable when copy-
ing strings into the buffer, it is expensive and unnecessary
to calculate the length twice (once for allocation and once
when filling the buffer). Instead, we use the Operating
System’s ability to re-allocate, i.e., increase the size of a
previous memory allocation.

5.2. Encoding from Depth-First Trees

Unlike fragmented trees, depth-first flattened trees pro-
vide no direct access to entire tree elements: they are
intended to be parsed by scanning the entire structure
from the root to the leaves. Accessing a node child other
than the first requires scanning the whole structure from
the current to the target position. A naive implementa-
tion for the serialization would require either a full copy
or redundant access to the tree structure. To efficiently
process the tree without this overhead, serialization is
implemented instead with a two-passes approach.

The first pass is not only necessary for calculating
the size to allocate the buffer but also for the starting
position of the nodes at each level. During this parsing,
the number of nodes at each level is calculated. Next, the
per-level node count of the arguments is prefix-summed
to deduce the starting position at each level.

In the second pass, the arguments are again scanned
in depth-first order and scattered into their appropriate
position in the Argument Vector. Equally, the expressions
are stored in breadth-first order in the Expression Vector.

Both passes are computationally efficient because
they are sequential scans of the input tree’s memory
buffer. In terms of memory usage, they require a min-
imal state: the first pass requires constructing a list
whose size is the depth of the tree; The second pass re-
quires two more stacks of the same size (one for the
argument’s next position and one for the expression
child’s current position) and two more values (one to
keep track of the current level and one for the current
position in the Expression Vector).

5.3. Lazy Decoding

Wisent documents are designed to allow lazy decoding,
i.e., minimize the amount of unnecessary data that needs
to be decoded to access a specific node (identified by its
path from the root). Navigating to a specific node starts
at the root, i.e., the first argument in the Argument Vec-
tor (virtually always an inner node). Descending to one
of its children requires dereferencing its value (an offset
into the Structure Vector) to get its first child. Accessing
a child by its position is a simple arithmetic operation
(i-e., adding the position to the index of the first child).
Descending one level, thus, requires only two memory
accesses (plus one to verify the node type as “inner” if
required). If the child is specified by name rather than
position, descending one level requires a loop over the
children. However, as both the children offsets, the struc-
ture triples and the strings designating their names are
located in (respective) contiguous memory regions, the
data accesses within that loop have optimal locality.
Once a node is found, iterating over its children (e.g., to
operate on its leaves) is as simple as running an iterator

from the first to the last offset. If the types are Run-
Length-Encoded (see Section 4.1), there is no need to
check children’s types, making the processing as simple
as iterating over a plain C-array in memory.

6. Evaluation

6.1. Experimental Setup

To assess the benefits of the Wisent serialization format,
we evaluate the performance of various deserializer im-
plementations for Wisent and compare them with JSON
and BSON deserializers. We also compare a C++ serializer
implementation with JSON and BSON serializers.
Wisent Deserializers. We implemented three deseri-
alizer backends; C++, Swift and Python. The C++ deseri-
alizer is naturally implemented with pointers access to
the buffer and casting to the underlined types. Traversing
the expression’s arguments is implemented with stan-
dard iterators, which makes them compatible with any
std functions. The Swift deserializer implementation uses
UnsafePointer<Int8> and manual pointer arithmetic to
extract pointers to sections of buffer, swift-native types
and structs to access elements of sections and (lazily gen-
erated) Sequences to access arguments. The Python dese-
rializer implements the argument traversal using the gen-
erator pattern. Raw Buffer data is extracted to underlined
types with the help of Python modules struct and ctypes.
Wisent Server. To demonstrate inter-process commu-
nication with the Wisent format, a Wisent server applica-
tion implements the serialization of JSON files and CSV
files into the Wisent format and stores the data in shared
memory. The client benchmark application reads the data
from shared memory and performs the deserialization.
Baseline Serialization Formats. We compare the
Wisent serialization format with three other methods:
first, reading data directly from raw JSON and CSV files
(i.e., no serialization); second, embedding both metadata
(from JSON) and columnar data (from CSV) into a single
JSON; third, embedding metadata and columnar data into
JSON and then, serializing the JSON object into the BSON
format, i.e., binary format alternative to JSON.
Baseline Deserializers. Besides the serialization for-
mats, We integrated several baselines for the implemen-
tation of the JSON deserialization: NLohmann JSON ver-
sion v3.11.2 [13], RapidJSON version v1.1.0 [14] and Simd-
Json version v3.2.0 [15]. In addition, we used RapidCSV
version v8.75 for loading data from CSV files.
Hardware. All experiments are performed on a server
with two Intel Xeon Silver 4114 2.20 GHz CPUs, each
with 10 physical cores, a 14 MB LLC cache and 196 GB of
memory. We use Ubuntu 22.04 with Linux kernel 4.15.0-
212-generic and compile all code with Clang version 14
using the compiler flags -02.

1.07e+09

3.36e+07
1.05e+06 - 1

3.28e+04 - B

Runtime (us)

1024 B

32k B

1 L L L L L L L L

4 8 16 32 64 128 256 512 1024
Size of the dataset (MB)
Wisent = NLoh. JSON = RapidJSON =
NLoh. JSON + RapidCSV NLoh. BSON SimdJSON

Figure 4: Runtime Performance from Deserializing and Ag-
gregating Column Data with Various Sizes

=
o 1024

256

-3
x

Memory usage

o

4 I I I n L L L L
4 8 16 32 64 128 256 512 1024

Size of the dataset (MB)
Wisent = NLoh. JSON = RapidJSON =
NLoh. JSON + RapidCSV NLoh. BSON SimdJSON

Figure 5: Memory Usage from Deserializing and Aggregating
Column Data with Various Sizes

Workload. All the experiments are run using the
OPDS Weather dataset [16], modified to reduce the num-
ber of columns from 256 to 100 (to assess the scalabil-
ity with a significant number of rows without being
limited by a large number of columns). This dataset
uses the Data Package format: the main file to load is a
datapackage. json file, which contains metadata and
the path to a CSV file for loading the columnar data. We
also generate a smaller dataset size (by iteratively remov-
ing every other row) and a larger one (by duplicating all
the dataset rows). We, therefore, experimented with a
range of data sizes from 951 KB to 8GB.

6.2. Deserialization Performance

To assess the performance of Wisent deserializer imple-
mentation, in this experiment, we vary the dataset size
from scale 1/256 (i.e., 951 KB) to scale 8 (i.e., 2GB) and run
an aggregation on one column of floating point values.
We measure both the runtime and the memory usage.
Runtime. The result in Figure 4 shows that the Wisent
deserializer outperforms the baselines with two to four
orders of magnitude; the breadth-first approach in Wisent
allowing contiguous data in memory and RLE optimiza-
tion brings significant runtime performance benefits.
SimdJson and RapidJSON have the next best performance
due to ad-hoc optimizations for traversing JSON data.

Runtime

64s

32s

64 ms
32 ms
16m

Wisent = RapidJSON =

1

10
Selectivity (%)

20

40 60 80

Figure 6: Runtime Performance from Deserializing, Filtering
and Aggregating Column Data with Various Selectivity

1 10 20
Wisent = RapidJSON = Seectivity (%)

40 60 80

Figure 7: Memory Usage from Deserializing, Filtering and
Aggregating Column Data with Various Selectivity

Memory Usage. Figure 5 shows that Wisent dese-
rializer takes four to ten times less memory than the
baselines for the smallest datasets. This gap drastically
increases with larger datasets, up to a thousand times
more compact for Wisent. At first glance, the result
might seem surprising since Wisent is not implemented
for compactness. However, Wisent support for lazy de-
coding (and in-place deserialization) explains why the
physical memory usage is negligible even when shared
memory usage is not. In contrast, other implementa-
tions require storing all data in temporary memory for
reading, causing higher memory usage.

6.3. Benefits of Lazy Decoding

To assess the impact of partial data reading on the per-
formance of the Wisent deserializer implementation, in
this experiment, the aggregated column is filtered with
a predicate on another column’s data. We vary the se-
lectivity from 0.4% to 100%. To avoid side effects from
column data fitting the cpu cache, the dataset is fixed to
the largest size at scale 32 (i.e., 8GB). We measure both the
runtime and the memory usage. For this experiment, we
choose as the baseline RapidJSON, which is the fastest im-
plementation supporting the largest dataset (SimdJSON
does not support such large JSON documents).
Runtime. The result in Figure 6 shows that Wisent
benefits from columnar data stored contiguously in the
buffer to improve data access with 20% performance bene-
fit on the lowest selectivity compared with the maximum
selectivity. Due to their different memory access pattern,
other implementations do not gain from low selectivity.

C++ Swift
153 93

Python
135

Line Count

Table 1
Lines of code for implementing Wisent deserialization

Memory Usage. The result in Figure 7 shows that
memory usage with Wisent is lower for lower selectivity
due to lazy decoding. RapidJSON requires all data to be
copied in temporary memory; the memory usage is two
orders of magnitude higher regardless of the selectivity.

6.4. Deserialization Implementation with
High-Level Languages

To assess the ease of implementing a Wisent deserializer
in various languages and benefit from built-in abstrac-
tions, we implemented a deserializer in Swift and Python
in addition to the C++ implementation. We also measured
their performance compared to the C++ implementation.

Ease of implementation. As shown in Table 1, only
93 and 135 lines of code are required to implement a
deserializer, respectively in Swift and Python. This shows
no obstacle in implementing a Wisent deserializer in
high-level languages that are not primarily intended for
low-level data manipulation code.

Reusability of built-ins language abstractions.
The required helpers to implement such a deserializer
are standard and built-in into the three language im-
plementations, as described in Section 6.1. It shows
that, despite the code simplicity, implementing a Wisent
deserializer is straightforward to benefit from the lan-
guage abstractions, making the implementation com-
posable and replaceable.

Runtime Performance. Figure 8 shows the results of
executing the aggregation query on the dataset at scale
1 (i.e., 250 MB). Swift is five times slower, and Python is
1400x slower than the C++ implementation. For Swift,
this is due to miss-opportunities to compile as efficient
code as C++ (e.g., vectorization) and Swift’s current im-
plementation of LazySequence, adding unnecessary vir-
tual function calls. For Python, this is due to the runtime
overhead of interpretation and dynamic typing.

6.5. Serialization Performance

To assess the performance of Wisent serialization, in
this experiment, we run the serialization of the OPSD
Weather dataset at scale 8 (i.e., 2GB). We compare Wisent
with the serialization of CSV data into a JSON file and the
serialization of the JSON file into BSON (which includes
the serialization from CSV to JSON as well). We also
show the overhead of loading the CSV file separately
since this cost is factored into all the implementations.

1024

Runtime (ms)
>

Swift Python

Figure 8: Runtime Performance for Wisent Deserialization
with Alternative Backends

400
350 b
300 b
250 E
200
150
100
50
0

Runtime (s)

csv

Wisent JSON BSON

Figure 9: Serialization Runtime Performance

As shown in Figure 9, Wisent is faster to serialize than
JSON and BSON. The cost for Wisent serialization is
primarily due to the CSV parsing. Without including the
CSV parsing cost, Wisent outperforms JSON and BSON
with a factor of 1.4x and 3.7x, respectively. This result
shows no prohibitive cost to serialize into Wisent format.

7. Conclusion and Future Work

We introduce a novel approach to the serialization of
trees, specifically focusing on the efficient exchange
of “leafy” trees through high-throughput channels like
shared memory, RDMA or non-volatile memory. We
propose to serialize such trees breadth-first rather than
depth-first serialization, which is the de-facto standard.
We demonstrate that, when combined with decomposed
storage of data, structure and variable-sized datatypes,
breadth-first serialization enables lazy decoding during
tree navigation and in-place data processing without the
need for parsing or conversion.

While we outline the key ideas of Wisent in this paper,
we still consider this effort a work in progress. Moving
forward, we plan to address some technical issues with
Wisent, most importantly by supporting the sub-word
alignment of types (which is required to, e.g., efficiently
process single-precision floating point values). Further,
we will study Wisent in a wider context, e.g., a distributed
processing scenario. Finally, we plan to integrate Wisent
into existing systems. As virtually all high-performance
systems store in-memory data in C-arrays, this integra-
tion will be possible without conversion overhead.

References

(1]
(2]
(3]

(4]
(5]

(6]
(7]

Frictionless Standards, Data Package, 2023. URL:
https://specs.frictionlessdata.io/data-package/.
Apache Arrow, 2023. URL: https://arrow.apache.
org.

Apache Arrow, Feather File Format, 2023. URL:
https://arrow.apache.org/docs/python/feather.
html.

Apache Parquet, 2023. URL: https://parquet.apache.
org/.

Apache ORC, 2023. URL: https://orc.apache.org/
specification/ORCv1/.

Apache Avro, 2023. URL: https://avro.apache.org/.
V. Leis, M. Haubenschild, A. Kemper, T. Neumann,
LeanStore: In-Memory Data Management beyond
Main Memory, in: 2018 IEEE 34th International
Conference on Data Engineering (ICDE), IEEE,
Paris, 2018, pp. 185-196. URL: https://ieeexplore.
ieee.org/document/8509247/. doi:10.1109/ICDE.
2018.00026.

JSON, 2023. URL: https://www.json.org/json-en.
html.

MongoDB, BSON Format, 2023. URL: https://www.
mongodb.com/basics/bson.

Google, 2023. URL: https://protobuf.dev/overview/.
M. Slee, A. Agarwal, M. Kwiatkowski, Thrift:
Scalable Cross-Language Services Implementation
(2004).

Substrait, 2023. URL: https://substrait.io.

N. Lohmann, JSON, 2023. URL: https://json.
nlohmann.me.

RapidJSON, 2023. URL: https://rapidjson.org.

G. Langdale, D. Lemire, Parsing Gigabytes of
JSON per Second, The VLDB Journal 28 (2019)
941-960. URL: http://arxiv.org/abs/1902.08318.
doi:10.1007/s00778-019-00578-5.
arxXiv:1902.08318.

S. Pfenninger, I. Staffell, Weather Data, 2019.
URL: https://data.open-power-system-data.
org/weather_data/2019-04-09. doi:10.25832/
WEATHER_DATA/2019-04-009.

https://specs.frictionlessdata.io/data-package/
https://arrow.apache.org
https://arrow.apache.org
https://arrow.apache.org/docs/python/feather.html
https://arrow.apache.org/docs/python/feather.html
https://parquet.apache.org/
https://parquet.apache.org/
https://orc.apache.org/specification/ORCv1/
https://orc.apache.org/specification/ORCv1/
https://avro.apache.org/
https://ieeexplore.ieee.org/document/8509247/
https://ieeexplore.ieee.org/document/8509247/
http://dx.doi.org/10.1109/ICDE.2018.00026
http://dx.doi.org/10.1109/ICDE.2018.00026
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.mongodb.com/basics/bson
https://www.mongodb.com/basics/bson
https://protobuf.dev/overview/
https://substrait.io
https://json.nlohmann.me
https://json.nlohmann.me
https://rapidjson.org
http://arxiv.org/abs/1902.08318
http://dx.doi.org/10.1007/s00778-019-00578-5
http://arxiv.org/abs/1902.08318
https://data.open-power-system-data.org/weather_data/2019-04-09
https://data.open-power-system-data.org/weather_data/2019-04-09
http://dx.doi.org/10.25832/WEATHER_DATA/2019-04-09
http://dx.doi.org/10.25832/WEATHER_DATA/2019-04-09

	1 Introduction
	2 Data Serialization: State-of-the-Art
	3 Design Principles
	4 The Wisent Data Format
	4.1 Opportunistic Type Run-Length-Encoding

	5 Wisent Encoding and Decoding
	5.1 Encoding from Fragmented Trees
	5.2 Encoding from Depth-First Trees
	5.3 Lazy Decoding

	6 Evaluation
	6.1 Experimental Setup
	6.2 Deserialization Performance
	6.3 Benefits of Lazy Decoding
	6.4 Deserialization Implementation with High-Level Languages
	6.5 Serialization Performance

	7 Conclusion and Future Work

