CEUR-WS.org/Vol-3462/CloudDB1 .pdf

QuEST: Fast, Expressive, and Cheap Analytics for
Distributed Traces Using Cloud Storage

Jessica Berg!, Muhammad Haseeb’, Haiming Chen’, Yaojia Ju!, Anirudh Sivaraman’,

Ravi Netravali® and Srinivas Narayana’
'New York University

2Princeton University

SRutgers University

Abstract

Distributed tracing is the practice of tracking a user’s request through a microservice application from entrance to exit. The
data emitted by this practice is so large that it is often difficult to store and analyze. We propose a new system to store tracing
data on top of low-cost cloud object storage, a service provided by major cloud providers. We describe indexing structures
that achieve fast query times and considerable query expressiveness by adapting the design of indices to both cloud storage

and the unique distributed tracing domain.

Keywords
Cloud Storage, Distributed Tracing

1. Introduction

Distributed tracing has emerged as an important debug-
ging aid in the context of Web applications that are struc-
tured as a collection of loosely coupled microservices. In
distributed tracing, a user request arriving at the fron-
tend of a Web application is tagged with a unique request
ID. This request ID is then propagated in RPCs issued by
the frontend to internal microservices and recursively
to RPCs issued by these internal microservices. A trace
is a call graph of such RPCs for a given request. Each
call within a trace (i.e., an edge in the graph) is called
a span. Spans usually contain labels about the call in
question, such as the execution time of a call. As Web
applications increase in complexity and the user traffic to
such applications increases, data management of traces
becomes an increasingly important problem.

This paper presents a trace data management system,
QuEST which enables cheap, expressive, and efficient
data analytics. QUEST incorporates three key ideas. First,
we use cloud object stores to cheaply store tracing data
and tailor our database design to its limitations, such
as high access latency and limited object size (§4). Sec-
ond, we provide a rich query language to query tracing
data. The language contains constructs for graph pattern
matching that allow a user to retrieve traces that con-

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — Workshop on Cloud Databases (CloudDB’23),
August 28 - September 1, 2023, Vancouver, Canada
& jb7399@nyu.edu (J. Berg); mh6218@nyu.edu (M. Haseeb);
hc2810@nyu.edu (H. Chen); yc6436@nyu.edu (Y. Ju);
anirudh@cs.nyu.edu (A. Sivaraman); ravian@cs.princeton.edu
(R. Netravali); sn624@cs.rutgers.edu (S. Narayana)

@77 © 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).
[==== CEUR Workshop Proceedings (CEUR-WS.org)

tain specific subgraphs within them. Third, we develop
efficient index structures that are tailored both to our
language constructs as well as the challenges of cloud
object stores.

To develop indices, QUEST divides a trace into its struc-
ture and attributes. The structure is the set of nodes
and edges that constitute a graph, whereas attributes
are labels on the nodes, such as HTTP response code
or response latency. QUEST implements indices on the
structure of a trace and on diverse types of attribute data.
QUuEST creates a Structural Index which uses hashes of
trace structures to enable quick structure lookups. The at-
tributes are categorized by the following characteristics:
the cardinality of an attribute and whether it is searched
by a point or range query. QuEST creates tailored in-
dices for all combinations of those characteristics (Figure
3). The Sequence Bloom Tree Index is designed for high
cardinality point queries. The Range Index is designed
for high cardinality range queries. The Folder Index is
designed for both point and range queries on low cardi-
nality data. By customizing indices to the type of data,
QuEST achieves fast query response times.

We evaluate QUEST and compare it with Tempo [1]
and Jaeger with ElasticSearch [2] on real trace data from
Alibaba’s production microservices [3]. Tempo is a recent
system that also uses cloud object stores to store traces,
but lacks QUEST’s rich query language. Jaeger with Elas-
ticSearch supports richer queries, but uses costlier local
or persistent disks attached to VM instances for trace
storage. We find that QUEST’s performance in terms
of latency is comparable to Jaeger with ElasticSearch
and significantly better than Tempo (10.51-31.07 x, Fig-
ure 13), while only incurring a modest additional storage
cost compared with Tempo. On the same data, QUEST

mailto:jb7399@nyu.edu
mailto:mh6218@nyu.edu
mailto:hc2810@nyu.edu
mailto:yc6436@nyu.edu
mailto:anirudh@cs.nyu.edu
mailto:ravian@cs.princeton.edu
mailto:sn624@cs.rutgers.edu
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

costs only $6.36 per month more than Tempo, and costs
$635.33 less per month than Jaeger with Elasticsearch.
Code for QuEST is available at https://github.com/dyn-
tracing/trace_storage.

2. Background and Related Work

2.1. Graph Databases

In the wider database space, graph-based systems such
as Kuzu have emerged [4]. Kuzu does not work on dis-
tributed tracing data in particular, but instead focus on
storing many graphs in different contexts. It is a disk-
based database that is able to accelerate graph-based
queries through novel mechanisms for high dimension-
ality joins. QuEST’s insight is that in the distributed
tracing context, by far the most common high dimension-
ality join is that which allows an entire trace’s data to be
associated. By creating a graph structure index, QUEST
targets optimizations for trace-based queries and elim-
inating the necessity for generalized multidimensional
joins.

2.2. Observability

In the observability space, data management systems
encompass metrics, logs, and traces. Metrics and logs are
characterized by fixed lengths and an append-only nature.
They provide aggregated quantitative measurements and
textual records. In contrast, traces exhibit unbounded
lengths and are constructed from temporally similar yet
overlapping cross references, which can arrive in any
order. Thus common techniques such as only appending
to data, or compression based on standardization, do not
easily transfer to the distributed tracing setting.

2.3. Trace Data Pipeline

There are usually three conceptual pipeline stages for a
tracing system: collection, storage, and analysis. Collec-
tion is the practice of extracting tracing data from the
microservice application. This is usually done through
a library that retrieves the relevant information when
a microservice executes, batches that data, and sends it
to a container called the collector. The collector will
reformat the data and send it on to storage.

2.4. Trace Storage

Once it gets to storage, the system must decide where and
how to store it. There are four main models for storage.

Traditional Databases: Some tracing systems uti-
lize traditional databases. For example, many users of
Jaeger will send their data directly from the collector to
a database like Cassandra or Elasticsearch [2]. These

databases are often run on a cluster of VMs.The other
three models deal with cloud storage in some way. The
impetus for including cloud storage is primarily that
cloud storage is cheap and scales to large data sets. Dis-
tributed tracing produces quantities of data that are so
large that these cost and scalability improvements are
important.

Tiering: In this model, the main analysis happens as
in a traditional database, on a cluster of VMs, but cloud
storage is used as a secondary, backup store [5]. Some
prominent systems such as Edgar, Netflix’s distributed
tracing system, and TimescaleDB, a database tailored for
time series data, take this approach [6, 7].

Cloud Storage with VMs: One can also use cloud
storage in parallel with more traditional VMs; this utilizes
both stores simultaneously, and speeds up queries in
systems such as Honeycomb [8].

Only Cloud Storage: Some systems use only cloud
storage. QuESTHfits into this category. Tempo is the only
other example we are aware of in this category that is
made for tracing; all data in Tempo is stored in cloud
storage. There are a wide range of challenges related
to building on top of cloud storage (further expounded
in Section 4). It is difficult to build expressive systems
on top of cloud storage, so distributed tracing-specific
databases tend to use both cloud and other storages, and
in doing so may lose out on some of the cloud storage
advantages. Other systems such as DeltaLake [9] have
made models for all-purpose, generalized databases on
top of cloud storage, but do not specialize for distributed
tracing. Tempo currently only supports trace ID lookup,
and no other analysis. In addition to using only cloud
storage to store tracing data, QUEST also introduces an
expressive query language on top of cloud storage.

2.5. Inputs to Trace Analysis

It is not enough only to store data; it also must be able to
be queried and analyzed.

Pre-Filtering: Some systems, like Lightstep’s mi-
crosatellites (containers that filter data close to the
source) [10], and NewRelic’s infinite tracing (a system
for sampling data after it has been collected) [11], focus
on selecting for interesting traces to persist to storage;
this technique lowers the quantity of data that is ulti-
mately persisted while retaining those traces that are
likely indicative of problems. There are also explanation
engines that try to use Al and other search techniques
to automatically detect interesting anomalies in tracing
data; these include Dynatrace’s Davis engine, Lightstep,
and Honeycomb’s bubbleup mechanism [12, 13, 14].

User Query-Based Systems: More traditional
systems like Jaeger with Elasticsearch, Tempo, and
TimescaleDB primarily utilize user-defined queries as
input. QuEST is at its heart a runtime that distills user-

defined queries to code that answers them, and remains
flexible enough that it can express general, wide-ranging
queries that are similar to results of an automatic ana-
lyzer.

3. Challenges of Tracing

Distributed tracing is a field that has recently had many
in domain-specific storage and analysis tools. Many sys-
tems, such as TimescaleDB, Lightstep, Honeycomb, and
Tempo, increasingly are not general-purpose databases,
and instead are tailored to the tracing domain [7, 15, 16, 1].
Here we detail what challenges necessitate the push for
specialization to the domain of tracing.

Quick lookup of traces is important. When cre-
ating a trace, many tracing systems generate identifiers
for both traces and spans. These identifiers are universal,
and often show up not just in tracing data, but in logs
and other monitoring sources so that users may cross-
reference data. Thus, to analyze a trace as a whole, as
well as enable quick lookup for specific incidents, it is
essential to quickly look up both spans and traces by
their IDs.

Data is inherently graph-based. Unlike logs or met-
rics, traces are inherently graph-based. A trace is a di-
rected graph of events that are linked only by causality,
not by time or type. We can’t simply port the metrics
and logs work to this context. That work tends to oper-
ate under the assumption, in metrics, that one receives
periodic updates of the same type, and in logs, that there
is little need to cross-reference them. We cannot make
those same assumptions.

It is important to be able to query by time. All raw
tracing data has time associated with it, and time is often
one of the most important attributes in a query. Users
want to know when attributes of their system changed, or
what the status of a system is as of an hour ago. It is also
important to narrow queries by time when looking for a
particular incident which was identified outside of the
tracing system. Logs and people’s real world experiences
often have some time-based component to them. There-
fore, any tracing system must be able to incorporate and
emphasize time in its queries.

The data in the system scales at a different rate
than the interesting data. Most systems, most of the
time, work well. Thus, the vast majority of tracing data
is simply the system working as intended. For debugging
and analyzing unintended behavior, however, all this data
is very repetitive and mostly useless. Most data is unin-
teresting. Any tracing system must balance the need to
persist large amounts of data (we may want to reanalyze
it later, it may be useful for characterizing normal behav-
ior) with the need to pinpoint unusual behavior fast. It is
essential that when creating queries about this unusual

or interesting behavior, the queries’ time correlates to
the quantity of data they return, not the quantity of data
in the system as a whole.

4. Challenges of Cloud Storage

We now discuss challenges relating to cloud storage.
These challenges are weighted differently than in tradi-
tional file systems, and are the motivation for exploring
different points in the design space.

We start with some definitions. Buckets are the basic
containers that hold objects in cloud storage. Objects
are the basic form of data that is stored in cloud storage.
Multiple objects can be grouped in a bucket.

Although both buckets and objects have names, the
namespace is flat, and does not behave like a traditional
file system. One interacts with cloud storage primarily
through reading and writing objects through RPCs to the
cloud service.

Limited Object Size: Cloud storage performance
peaks at a limited object size. Cloud storage systems
such as Google Cloud storage (GCS) have advertised and
recommended to users that users target a 1MB size for
their objects [17]. There is a latency cost associated with
accessing objects, so it is best not to have too small ob-
jects. At the same time, past 1IMB, GCS’s performance
diminishes. So we must try to maintain this object size.

Writing costs money: Cloud storage charges per
I/O operation, as well as for data storage. Additionally,
writes cost more than reads [18]. Thus, we may not be
able to afford to write every time we receive new data.
It is in our best interests, for this reason, and for the
limited object concern above, to batch our data so that
each object contains multiple logical pieces of data. We
also may want to limit indices; each index costs money to
write often proportional to the data size, and distributed
tracing deals with large data.

Updates don’t exist: Updates, such as overwriting
old data, do not exist as a first-order concept in GCS.
Rather, when one wants to update an object, one must
delete and rewrite the entire object, even if only a byte
was changed [19]. Thus, it is expensive to change a data
structure after it is written, so the data must be written
in a way that optimizes query performance the first time
the data is entered into the system; rewrites are bad.

High Retrieval Latency: There is a minimum latency
associated with any cloud storage operation on the order
of tens of milliseconds [17]. We have to employ data
structures and access patterns that are highly parallel to
improve the user experience.

5. Key Design Principles

5.1. Traces as graphs

We design our system around traces as graphs to allow
queries to utilize powerful and intuitive representations
of the dependencies and relationships between various
components and services within the application. By fo-
cusing on graphs, we address the importance of elevating
trace IDs’ importance in our system; if traces are first-
class citizens, they must be easily identifiable.

5.2. Time as a first-class citizen

With regard to our tracing challenges, we align our sys-
tem design with time, which is appropriate to the subject
area, as discussed by section 3. Not only that, but by
using time as a first-class citizen, we address many of
the other challenges that cloud storage poses. To elevate
time, we focus on creating indices and storage layouts
that preserve time-based ordering.

Through using time as an arbitrary divider of data, we
can limit the size of any one object in cloud storage; if
each object contains a specific time range’s data, we limit
the quantity of data therein, and address the object size
limit discussed in section 3. We will talk more concretely
about how this works in the Indices section.

We can significantly reduce the data we’re looking
at both based on time and based on the value of the
attribute. When we allow our indices and data structures
to be easily divisible by time, we prevent rewriting a
single byte; we don’t rewrite if we only write for new
data. Because time is monotonically increasing, we never
have to go back and rewrite data. In addition, because
doing so limits writes in general, we limit the cost of
new writes, as discussed by section 3. The answer to
a given query can usually be expressed as a union of
queries across different time periods. For example, to
find the traces with latency less than 100 ms from time 1
to 3, we can also union the results of query 1, which finds
traces with latency less than 100 ms from times 1 to 2 and
query 2, which finds traces with latency less than 100 ms
from 2 to 3. We make query execution highly parallel by
querying over disjoint data sets. This allows us to hide
the somewhat high latency to access cloud storage.

In order to prevent rewriting a single byte, we index
implicitly on time. In order to limit writing because
writing costs money, we index implicitly on time. In
order to deal with the minimum latency cost, we create
time as a parallelization unit so QUEST can read salient
data in parallel. These techniques allow QuEST to address
all the challenges in Section 4.

Trace ID: 37719:
/Rootservu:e
NULL:6f3:service-A €« |
6f3:ab7:service-B User
B
6£3:9ky:service-C
ab7:qt8:service-D A /Y(D\OD
Trace ID: GYH98: c
-

5
Caller SpanlD : Callee SpanlID: Callee service name

Figure 1: An object in Structural Bucket and the correspond-
ing trace.

6. System Architecture

6.1. The QUEST query language

Data Model: QuEST models distributed tracing data as
a set of graphs where nodes which represent calls to a
service, may have attributes. Attributes are key value
pairs, and may represent things like the time at which a
request arrived at a microservice, or an HTTP response
code. Each node may have an unbounded number of
attributes; in practice, it is up to the developers of the
application how many attributes they want to store.

Syntax: The query language is based on a subset of
openCypher [20] where one can specify the structure of
a subgraph one is interested in, and any attributes on
that subgraph.

In particular, a query is made up of a MATCH, an op-
tional WHERE, and RETURN clause. The MATCH clause
specifies the structure on which to perform subgraph
isomorphism. The WHERE clause specifies attributes
that the graph must have. Finally, the RETURN clause
determines what attribute should be returned from the
query.

Semantics: The query
MATCH (a) -> (b)

WHERE a.start-time >= 50 AND
b.name == productService
RETURN a.name

would match on graphs that contained at least two nodes,
one called by the other, where the first node’s start time
was after 50, and the second was called productService.
Then, it would return the name of the service that called
productService in all matching traces.

6.2. Ingest

In QuEST, the application is configured to send data to
OpenTelemetry collectors. As a reminder, a collector is a

container that collects spans and forwards them to stor-
age. Often, applications do not send directly to storage,
because if storage is overloaded, one does not want the
critical path of the application to be affected. So the col-
lector acts as a forwarding service, and often performs
duties like reformatting or preliminary computation on
the data.

In QUuEST, the collector consists of one front end, and
multiple autoscaling back ends. The front end load bal-
ances across the back ends according to trace ID, and
the back end does trace-level computation, and then for-
wards data to storage.

The advantages of such a setup relate to scaling, both
in terms of traces per second and in terms increasing
the number of applications used. First, the back end
collectors can scale with the load from the application.
This allows for granular billing; you only pay for what
you use. Second, in the event that an organization has
multiple microservice applications, all of whom want
to use distributed tracing, one is able to isolate their
services. Setting up separate collectors does not come
with significant replication costs because the back end
collectors, who do most of the computational work (the
front end is simply a load balancer) autoscale according
to load. So making separate front end and back end
setups for different applications comes with no significant
replication costs.

6.3. Data Layout

In QuEST, we incorporate some of the most important
indices into the structure of the stored data. That is,
rather than store raw data, and index over that data, we
organize the data to maximize locality at both a span
and trace level. We also design the system to achieve
good query performance under the constraints of cloud
storage, which are shared by both the ingest path and
the query system. We characterized the cloud storage
challenges in Section 4. These challenges guide how data
should be laid out in the storage so that searching through
the database does not amount to high query latencies.
Now, we describe the design of our database. Prior to
that let’s review the following definitions that apply to
cloud storage:

Bucket: Buckets are the basic containers that hold
data stored in Cloud Storage.

Object: Objects are the basic form of data that is stored
in Cloud Storage. Multiple objects can in a bucket.

There are three types of buckets in our architecture:

1. Structural Bucket
2. Microservice Buckets
3. Index Buckets

There are three Structural buckets (each plays a differ-
ent role as explained in Section 7.1), several Microser-

T
v

Hash Bucket

Structural Bucket Microservice To Hash

Microservice — List of
structural hashes

Structural Hash — Trace
structure of the hash

Structural Hash — Trace IDs

Index X Index Y

c

Index for
attribute Y’

Index for

Spans of Spans of Spans of attribute X

Figure 2: Database Architecture

vices buckets (one for each microservice), and several
Index buckets (one for each indexed attribute). We first
review the Structural and Microservices buckets. Figure
2 shows the basic architecture of our database system.
The objects in all these buckets are batched according to
the time as exhibited by the bold object names in Figure
2. The structural bucket contains trace IDs and the struc-
tures of corresponding traces. The structure list bucket
contains a list of all hashes of trace structures and their
corresponding structures. The hashes of trace structures
play an important role in this index, and will be referred
to as structural hashes. The structures by microservice
bucket provides a mapping from microservice to trace
structure. In the microservices buckets, the spans are
stored i.e., the bucket Microservice A will contain all
the spans corresponding to the microservice named "A”.
Spans have their own unique IDs, just like traces have
Trace IDs, and these IDs are also present in the objects
of Microservices buckets.

Figure 1 shows the anatomy of an object in the struc-
tural bucket. A single object can have information about
several traces (Trace IDs 37719 and GYH98 are visible
in the figure), that have been ingested into the system
at a similar time. Each trace has several spans that are
all linked together by the caller-callee relationship. The
example trace in the figure 1 has trace ID 37719 and a
root span with span ID 6f3 that originated at service-A.
Then the span 6f3 called service-B and created a new
span with ID ab7. In parallel, the span 6f3 also called
service-C and generated span 9ky. At the end, the span
ab7 called service-D forming a new span with span ID
qt8. This bucket categorizes traces based on time and
structure. However, this is not necessarily enough infor-
mation to efficiently sort through data based on struc-
ture. For this, we also have two auxiliary buckets, one
which provides a mapping from microservice to struc-
tural hashes of structures that include that microservice,
and one which simply lists all structural hashes and their
corresponding structures.

The information in the structural object is a serial-
ization of a trace graph. These span IDs present in the
object of a structural bucket link to the corresponding
spans present in the Microservices buckets. To fetch a

complete trace, one would first read the trace structure
from the Structural bucket and then fetch all the spans
of that trace from each of the Microservices buckets cor-
responding to microservices represented in the trace. All
the fetch requests for the spans can occur in parallel. The
object names for all buckets are the timestamps denoting
the duration of the data contained in an object. This
naming scheme can introduce numerous objects with a
similar prefix in their names. Cloud storage performs
badly when creating many objects with a shared prefix
because on the backend of the cloud provider, requests
are load balanced across replicas according to their pre-
fixes. To avoid any decrease in performance, we prepend
the object names with a small random hash and the final
object names are written as <smallHash>-startTime-
endTime. Even if objects are written close together in
time, prefixes become relatively diverse due to the hash.
We have found this to be a good compromise between the
need for disparate prefixes on the ingress side (prefixes
are disparate enough that we have good throughput),
and fast querying on the query side (the object name still
contains metadata to the data within the object).

The third type of bucket, the Index bucket, stores in-
dices. The next section presents the indices in detail. The
important point to mention here is that we have two in-
dices that are built by default: (i) Trace Structures Index
(a Folders Index) and, (ii) Trace IDs index (a Sequence
Bloom Trees Index). We have observed that these are
substantially helpful in answering common queries; as
explained in the next section, they cover most of the
kinds of tracing data attributes users find useful. For
further indices, developers can choose what attributes to
index and QuEST will build them.

7. Indices

The structural index is a special index specifically used
for graph-based queries. With regard to queries based
on attributes of the trace, we use Table 3 to make a tax-
onomy of indices with example queries that they will be
useful for. The terminology used in the table is as follows:
(i) Low Cardinality: data points whose total number of
possible values are very low, for example all HTTP er-
rors (202, 402, 500, etc.), (ii) High Cardinality: data points
whose total number of possible values are very high, for
example, total trace IDs, (iii) Point Query: querying on
some point value like fetching traces with HTTP error
500, (iv) Range Query: querying on some range of values
like fetching traces with HTTP error between 200 and
500.

For low cardinality data, both the point queries and
range queries can be handled by a Folders Index (Sec-
tion 7.2). High cardinality point queries are served by
Sequence Bloom Trees, (Section 7.3). High cardinality

range queries are served by the Range index (Section 7.4).

7.1. Structural Index

Data Layout: By default, QUEST creates a strucural in-
dex. This index stores information which is used for find-
ing traces of some specific graph structure. For example,
a user might be interested in finding traces where service
X calls service Y, which in turn, calls some other service
Z. As discussed separately, user could provide any kind of
structure to search for in the traces. In this paper, we de-
scribe the index as solving these sorts of graph questions,
formally called subgraph isomorphism, and we use a well-
known algorithm for determining subgraph isomorphism
as a proof-of-concept in our prototype. However the in-
dex design is fundamentally agnostic to the kind of graph
processing. Theoretically it can be used for a wide range
of graph computations, such as matching graphs exactly
or determining properties such as branching factors.

Ingest: While sending the traces to the cloud storage,
hash of each trace structure is computed using an algo-
rithm pioneered by eBay’s distributed tracing system[21].
The algorithm hashes the structure of a trace (that is, the
combination of named nodes and edges). When several
traces have same hash, it shows that all of them represent
the same graph, and they may only differ in the infor-
mation stored in the individual spans, such as latency
or HTTP response code. This index uses the hashes in
three ways: first, it creates a mapping from a given hash
and time period to all the trace IDs of that hash and time
period (contained in the Structural Bucket), second, it
creates a list of all structures that currently exist in the
system (in the Hash Bucket), and finally, it creates a map-
ping from a microservice to all the structures it is a part
of (in the Microservice To Hash bucket). The buckets of
these mappings are shown in Figure 2.

Querying: The reasoning for making three different
structures to answer one structural question is simple:
listing objects takes time. By first retrieving all the hashes
that match a query’s microservices, then doing the more
expensive isomorphism operation on just the structures,
then doing the most expensive job (due to scale) of re-
trieving all matching trace IDs, we remove large amounts
of data from consideration quickly, before doing the most
expensive operations computationally. Then, we are left
with a list of trace IDs that match the graph in the query.

Analysis: Each of these buckets’ objects also address
challenges from Section 4. The structural index also
allows for parallelism within all three stages: first, by
looking up each microservice’s hashes in parallel, then,
by retrieving structures and computing subgraph isomor-
phism in parallel, and finally by retrieving the relevant
trace IDs in parallel. In this way, although we may do
many calls to cloud storage, we are able to hide the rela-
tively expensive latency of retrieving from cloud storage.

Low Cardinality

High Cardinality

Range Queries

Give me all 5xx errors (Folder Index)

Get traces with latency 100 to 200ms (Range Index)

Point Queries

Give me all 503 errors (Folder Index)

Give me trace with ID 1234 (Sequence Bloom Trees)

Figure 3: Taxonomy of indices used within QUEST.

In addition, each object is relatively limited in size, relat-
ing information from a single batch. Each microservice’s
hashes are represented in limited size objects. Each pos-
sible trace structure exists within its own object, and is
of a small size. Finally, the mapping from time period
to a list of trace IDs is limited because generally only a
certain number of traces are created within a given time
period. Finally, the structural index never rewrites any
data; if the data relevant to an incoming trace already
exists within the system, we add nothing. Otherwise, we
either add a microservice’s information once, a hash to
its corresponding exemplar structure once, or trace ID
data in batches that are linked to time periods. Thus we
never rewrite data.

7.2. Folders Index

Data Layout: Figure 4 depicts an example index of a
folders index. In a folder index, there is a bucket for
the attribute on which a folders index has been created;
this is not a native data structure to cloud storage, but
rather something we built on top of it. For example, if
we index HTTP Error, then we will see a bucket named
“index-http-error”. There will be several folders inside
this bucket, one for each distinct value of the indexed
attribute. In our example of HTTP errors, we will see
folders like “Error-500”, "Error-402”, etc,. In each folder,
QuEST inserts objects containing Trace IDs which are
batched according to time. The name of objects reflect
the time range for which batched data is present in a
particular object.

Ingest: The folders index update occurs at scheduled
intervals during the execution of QuEST. It reads raw
trace data from the structural buckets, and constructs the
index as described above.

Querying: When it comes to querying a folders index,
we first choose the folder, or several folders if it is a range
query. Inside the folder, we have several batched objects
that are processed in parallel. We read trace IDs from
these objects, and then consult the Structural bucket to
get structure and span IDs of our trace IDs.

Analysis: Using the folder index, we avoid reading all
the trace and spans data from microservices buckets and
then filtering the results based on some attribute. The
index directly give us trace IDs that have some particular
attribute of our interest. In addition, they are well suited
to the cloud storage. Objects with common prefixes can
be easily obtained using a LIST operation in the cloud

T1-T10
Trace ID: AB
Trace ID: DEF
5 ! y y

Trace ID: GHI
r11-T20
ERROR ERROR ERROR
INDEX 402 202 500

Trace ID: LMN
Trace ID: OPQ
HTTP ERRORS

TIME 1-TIME 20

Figure 4: HTTP Errors Index: An example of Folders Index

storage. As the cloud storage namespace is flat, we can
simultaneously search by category (folder name) and
time (object prefix) in the same LIST operation, precisely
the data we need. Upon querying a folders index, we get
the Trace IDs of all the traces corresponding to a user
query and then the actual traces data (i.e., spans) can be
fetched from Microservices Buckets against the found
Trace IDs using parallelism that significantly improves
the system’s performance.

7.3. Sequence Bloom Tree (SBT) Index

(" Time Range: 0-5r |
| Contains:A,B,C |
e D,EF) _

/

e
/ N
L -
- N
Time Range: 0-3r
Contains: A, B, C,

.

Time Range: 3r-5r
Contains: F, G

- N N
Name: 0-r
Contains: A, B

N -, - ~/
Name: r-2r .
Contains: C, ‘lfamei 2r—3Er

Name: 3r-4r Name: 4r-5r
5 Contains: F ins: G

Figure 5: A Sequence Bloom Tree containing trace IDs. Each
Bloom filter is the union of its children.

Trace ID and span ID queries are among the most com-
mon types of queries in a tracing system. QuEST must
have a fast ID lookup. This data consists of uniformly
distributed identifiers of 128 bits for trace IDs. At config-
urable intervals, an index is updated with the newest ID
data. Then the data is available to be queried faster than
the linear lookup of every ID to exist.

Time Range: 0-6r
Contains: A, B, C
D,E,FH

(" Time Range: 0-3r

Time Range: 3r-6r
Contains: A, B, C,
D,E

Contains: F, G, H

< sub%

= [~N—)
—~ / \f‘*—:

T~ / N T

Ve <
Name: 0-r

n SV B
jame: r-2r "
Contains: A, Name: 2r-3r W
B

S W ‘ Contains: E
L J L L N\

Name: 5r-6r
Contains: H

P
Name: 3r-4r Name: 4r-5r
Contains: F Contains: G

Figure 6: Insertion of a new batch from time period 5r to 6r.

Contains H? !

.

-
Time Range: 0-6r
Contains: A, B, C
D,E,F,GH
\)
Contains H?

= N (
Time Range: 0-3r Time Range: 3r-6r
Contains: A, B, C, Contains: F, G, H
J

ontai: H?x«fontains HV

(-
Name: 3r-4r | Name: 4r-5r
Contains: F | Contains: G

) A

Contains H?

S T

e e
Name: 0-r
Contains: A,

~. Contains H?

.
Name: r-2r

Contains: C, Name: 5r-6r
D J

Ve N
Name: 2r-3r
Contains: H
J

Contains: E
L N

L)\

Figure 7: Querying for the trace ID H.

-

Time Range: 0-6r
Contains: A, B, C

p D,E.FGH
/ \ , !
p Contains H?
Time Range: 0-3r
Contains: A, B, C,
D,E
Contains H? M Contains H?xcomams HV

N
/ g .
Name: 0-r Name: r-2r
e: O o I Name: 3r-4r | Name: 4r-57
[Contaams_A, } [Comaéns. C, } [Contains: F Contains: G

Figure 8: Query for the trace ID H, using a shortcut to avoid
the root node.

Time Range: 3r-6r
Contains: F, G, H

Name: 5r-6r
Contains: H

Name: 2r-3r
Contains: E

To address this need, we use a data structure that has
gone by multiple names; here, for simplicity, we call
them Sequence Bloom Trees (SBTs) after their use in
gene sequencing problems [22]. The basic data structure
has been used in diverse contexts and excels at problems
with the following attributes [23]:

1. There are many small batches of data added in a
streaming fashion, and data is not often repeated
across or within batches.

2. A batch is static once added.

3. The primary query is: which (if any) of these
many batches is the target, small piece of data in?

Data Layout: The SBT has two parameters: a fan-out
factor, f, and a smallest range size, r. From this, the SBT
is primarily a tree of Bloom filters. Each parent Bloom
filter is the union of its children, and is named such that
the Bloom filter represents the set of trace or span IDs
that were created within a named time frame. The leaves’
time frame is precisely that of the smallest range size, r,
and contain the data from multiple batches, which is a
group of traces ingested into the system. The parents’
range is ftimes the range of its children. Each parent has
at most fchildren. This tree is shown in Figure 5. The
basic data structure consists of nodes that are arranged
into an n-ary tree, where n is a constant.

Ingest: When one inserts a batch, one creates a Bloom
filter on all the data in the batch. A node consists of this
Bloom filter and a pointer to the ground truth data. When
the node is inserted, it does not only get inserted in the
tree; the data in it must be bubbled up to the root. The
Bloom filter in the new leaf node is unioned with its
parent’s Bloom filter, and its parent is updated to the
new value. That parent will then update its parent to
the union of the parent and grandparent’s Bloom trees.
In this way, the root will contain the union of all Bloom
filters in the tree as shown in Figure 6.

Querying: Querying the tree happens as follows: if
the Bloom filter at the root returns that the value does not
exist in that Bloom filter, we return that the value is not
found. While Bloom filters can return false positives, they
never return false negatives, so this is a valid operation.
Otherwise, we look to see which of its children’s Bloom
filters return that they contain the value. At each level,
we check Bloom filters, and if the Bloom filter returns
that it contains the value, we check its children. We
include false positives in this exploration; note, however,
that it becomes more and more unlikely with each level
that we will get multiple false positives in a row. In the
case of a negative result, we stop exploring that subtree,
because that parent node contains all its children, thus
the subtree does not contain our value. Eventually, we
get to a set of leaf nodes. Note that in the case of the
values being trace IDs or span IDs, this would likely
be a single leaf node, because trace and span IDs are
unique; the only way it would be multiple is in the event
of a collision in the Bloom filter itself. If the leaf nodes’
Bloom filters report that they contain the queried value,
we verify that with the lookup to the ground truth data
(remember, false positives are possible). We can then
conclude the data belongs to the batch represented by
the aforementioned leaf node(s). This operation, in the
average case, is O(logn), where n is the number of nodes
in the tree. The number of nodes in the tree is on the
order of the number of batches. In the worst case, we’d
get false positives for every batch and explore all nodes
in the tree. Note that this worst case is extraordinarily
unlikely; each Bloom filter often has a false positive rate

of about 1-3 percent. To get that false positive of 1-3
percent repeatedly, for every node, would be 0.01". An
example of querying an SBT in the regular case is shown
in Figure 7.

If we know from the start that we are querying within
only a specified time range, we can shorten our search.
We can query the root to determine the data structure’s
parameters and its the overall time range, calculate a
starting node, and start our search midway down the tree.
This significantly reduces the expected search complexity
from O(logn). For example, for the tree in Figure 7, if we
know that we only want to search within the 4r-6r time
range, we find the node with the smallest range that
contains that entire range, and search below, as shown
in Figure 8.

Analysis: This data structure is appropriate for high
cardinality point queries for a number of reasons. First,
insertion happens in batches, and data enters our system
in batches. Unlike disk-based solutions like LSM-trees,
once data is inserted, it never needs to be edited again.
This is convenient because we need to batch our data, and
each edit to an object in cloud storage is costly. Second,
the data structure is very amenable to highly parallel
computation; the n—ary tree has a configurable number
of children, and by setting n to a relatively large number,
one gets a fairly shallow tree, which makes the update
time, bubbling up, less expensive, and allows for fast
computation due to parallelism. Third, high cardinality
data by definition has a lot of possible values. For the
data structure in general, the less common a value is in
the data set, the more efficient its lookup is. For trace
and span IDs, this is very efficient because one has to
follow only one path from root to leaf (excluding false
positives), due to the fact that these IDs are unique. The
shallow tree necessitated by high parallelism keeps this
path relatively short.

7.4. Range Index

The range index is used to compute range queries over
high and low cardinality data. The key challenge in the
range index is that there must be some ordering on the
data to efficiently do a range query. However, placing
an ordering on the data means that some data might
be rewritten; one must adapt if data should be ordered
between already existing data points. The range index
strikes a compromise between these two. There are two
parameters to the range index: the number of time ranges
per summary, s, and the time range, t.

Data Layout: We completely order the data within

a specified time range, determined by the parameters.

We make this time range configurable, so a user may
anticipate their most frequent queries. Then, within a
time range, we split the data into fixed sized blobs, and
record the first and last items in a blob.

Then, we can store highly compressed representations
of the data within a single time period through measuring
just their first and last items. So when querying a given
range, we can narrow down our search considerably by
simply ignoring blobs whose specified range is not of
interest to us. This is the general intuition behind the
index. We give a more formal definition below.

Ingest: To insert into the range index, one first finds
the last time a index was updated. If the index does not
yet exist, this is the time of the earliest data in the system.

Then, for each subsequent time period t, we retrieve
and sort the data that is indexed. This happens automat-
ically in the background. For example, if the index is
on latency, latency for each trace within the time period
is retrieved and sorted, and annotated with pointers to
the original trace data. Then, the data is split into 1IMB
batches, with 1MB being the object size at which cloud
storage performs best. Finally, that data is sent to stor-
age, and summary objects, containing only pointers to
the data, plus their first and last values, is placed in a
summary object every s time ranges.

Querying: To search the range index, one first re-
trieves all summary objects within the specified time
range. All queries contain time ranges by default. Then,
within each summary object, one looks through each
time range, and sees if any of the 1MB objects contain
the range of interest. If they do, those 1MB objects are
retrieved, and for the data strictly within a range, the
pointers to the rest of the trace are retrieved and used.

Time Range: 1s-2s Time Range: 1s-2s Time Range: 1s-2s
Starts With: A

Ends With: C

Starts With: D
Ends With: G

Starts With: H
Ends With: Z

Figure 9: A range index’s time range objects.

Time Range: 1s-2s

Object: A-C

Object: D-G
Object: H-Z

Figure 10: The corresponding range index’s summary object.

Analysis: The range index’s primary speedup comes
from increasing the speed with which one can search
through large quantities of data. The choice of the two pa-
rameters, the time range, and the number of time ranges
per summary object, make the most difference in evalu-
ating how efficient it will be for a given query.

It also adapts to the distribution of the data. If some
change is made to the underlying data, such as a certain

error code becoming much more popular, or latencies
increasing greatly, the size of the objects within the index
stay the same, thus they are still appropriately sized for
optimal retrieval from cloud storage.

8. Query Execution

We now describe how our runtime is designed to process
the user-provided query. The runtime operates by taking
the user’s query as input, generating an execution plan,
and then executing that plan to obtain the desired output.
The generation of the execution plan and its execution
are interleaved at several stages because the results of
part of the execution plan often help in optimizing the
rest. It allows QUEST to retrieve the query’s answer
efficiently.

Next, we present the runtime design in detail. It
would be helpful to take an example query and refer to
it throughout the design for better understanding. Let’s
use the following example querys; it is intended to fetch
the total number of traces where product-service gets
called by some service (say the caller) and the start time
of the span of the caller service is X and the start-time of
the span of the product-service is at least Y:

MATCH (a) -> (product-service)
WHERE a.start-time == X AND
product-service.start-time >= Y
RETURN count-of-traces

There are three main stages in the runtime: (i) Indices
Consultation, (ii) Brute Force search, and, (iii) Process-
ing of the RETURN clause of the query. Within each
stage, the runtime utilizes parallelism to its full extent as
there are significant opportunities to do so. Below is the
overview of each stage and then we present explanation
of each item in further subsections.

« Indices Consultation Stage

— Structural Filter Sub-stage: Processes
MATCH clause of query by consulting
Trace Hashes Index

— Attribute Filter Sub-stage: Processes the
parts of WHERE clause that contain in-
dexed attributes

« Brute Force Search Stage

— Processes the parts of WHERE clause that
contain non-indexed attributes

« Processing of RETURN Clause

— Once the previous stages have completed,
it uses their results to form the result re-
quested in the query

8.1. Indices Consultation

The indices consultation stage has two main goals: (i) get
all the trace IDs corresponding to the traces that match
the query structure provided in the MATCH clause and,
(ii) if any indices can help in processing some parts of
WHERE clause, get the trace IDs from them. Each goal
is achieved in a separate sub-stage described below. The
two sub-stages, structural filter and attribute filter, can be
processed in parallel; they do not depend on one another.

8.1.1. Structural Filter Sub-stage

This stage outputs the trace IDs corresponding to the
traces whose structure matches the query structure. The
runtime consults the Trace Hashes Index described in 7.2
to retrieve the relevant trace IDs.

First, QUEST determines which microservices are spec-
ified by name in the query; here, it is just product-service.
Then, it refers to the Microservice to Hash bucket, and
retrieves all trace hashes that include the named microser-
vice(s). Then, QuEST retrieves all those structural exem-
plars from the Hash bucket. The structural exemplars
contain the nodes and edges of the graph. QuEST per-
forms subgraph isomorphism to determine which exem-
plars conform to the query. The expensive subgraph
isomorphism is only performed once we have already
eliminated some hashes from consideration, and is per-
formed once per hash. Because trace structures are very
likely to be repeated, we limit the amount of data on
which we do the expensive isomorphism operation by a
large margin. In addition, the retrieval and computation
of structural hashes is highly parallel, and thus masks
the latency inherent to a call to cloud storage.

Once the list of trace hashes has been narrowed down
by isomorphism, QUEST consults the Structural Bucket.
The Structural Bucket contains folders of hashes, and
within each folder are batches of lists of trace IDs by
time. QuEST looks within each folder in its hash list and
retrieves trace IDs that match the query’s time (if one is
given in the query).

The query structure could contain placeholder services,
i.e, the service represented by ”a” in our example query.
In this case, we need to map the placeholder to a real
service name so that the further stages know which ser-
vice is referred to by the user query. This knowledge is
necessary if the WHERE or the RETURN clause refers to
such a service as in our example query. Therefore, this
stage also outputs mappings from the query structure to
an exemplar trace from each folder. This sub-stage’s out-
put consists of all the trace IDs that satisfy the structural
query and the isomorphism maps (mapping the target
structure to the structure of traces).

8.1.2. Attribute Filter Sub-stage

This stage helps in processing the WHERE clause. The
WHERE clause instructs the runtime to filter query re-
sults based on the values of attributes. In our example
query, the WHERE clause restricts the query results to
only those traces where the span of the service calling
the product-service has start-time X and the span of the
product service has start-time at least Y. If we have in-
dexed the start-time then both of the sub-clauses of our
example WHERE clause could be resolved in this stage.
Otherwise only a part of WHERE clause is resolved de-
pending on what has been indexed. Note that the where
clause can be divided into multiple sub-clauses each con-
cerning one attribute. And then these sub-clauses can be
processed in parallel; we can retrieve which traces satisfy
each part of the WHERE clause independently, and later
filter those which satisfy all of them.

Depending upon the type of attribute, we find out
the type of corresponding index (folders index, sequence
bloom tree index, etc.,). Figure 3 shows which attributes
have which indices.

Once we know the bucket corresponding to the index
of an attribute, it is straightforward to fetch trace IDs
from that bucket. For folders index, the bucket contains
multiple objects batched by time and each object lists
trace IDs. We read the objects and get all the trace IDs.
For Sequence Bloom Tree Index, we query starting at the
root, and find the batches that have the relevant value
as described in Section 7.3. Then from those batches, we
can look up the relevant trace or span IDs in the relevant
structural bucket.

At the end of the Structural filter stage and Attribute
filter stage, we take the intersection of the results. The
resulting trace IDs are passed on to the next stage, brute
force search. To aid further stages, we retain two key
pieces of information along with the resultant trace IDs:
(i) the object names, (ii) the isomorphism maps. In further
subsections, we will detail how this data is used.

8.2. Brute Force Search

This stage processes the parts of WHERE clause that have
not been processed by the Attribute Filter Sub-stage of
Indices Consultation Stage. It deals with the attributes
of the WHERE clause that are not indexed and must be
processed by a brute force search. In our example query,
if the start-time attribute is not indexed then this stage
will search all traces present in the system and determine
which have a start-time >= Y. Note that this stage only
needs to search the traces that are results of the previous
stage, the Indices Consultation Stage.

The results of the previous stage have trace IDs along
with their corresponding object names. The runtime
uses these object names for reading the corresponding

objects from the Microservices Buckets. These objects
are used for finding spans of traces which has trace IDs
present in the result of previous stage. The attribute
values of the spans are checked for the conditions of
WHERE clause and this way, the trace IDs get filtered; if
the span passes the check, the corresponding trace ID is
retained otherwise excluded from the result. Note that
the runtime needs to know which Microservices Bucket
to read for finding the span of a trace and filtering it based
on the attribute present in the WHERE clause. The bucket
name is determined based on what microservice is being
referred in the WHERE clause. For our example query,
the runtime would read the Microservice Bucket for the
product-service. It also needs to know which service is
referred by the placeholder service "a”. The isomorphism
maps that are included in the results of the previous stage,
help in solving this problem. The isomorphism map tells
what is the service name for a place holder service for
a given trace ID. This way we know what Microservice
Bucket to read for finding objects corresponding to a
placeholder service.

Parallelism is easily incorporated in this stage. The
results of previous stage has object names and corre-
sponding trace IDs. In this stage, the runtime processes
each object name in parallel so that there is only one
GCS fetch per thread and there are no redundant fetch
calls; we retrieve each object precisely once. Each thread
receives an object name and corresponding trace IDs
to filter. It then fetches the corresponding object and
processes each trace ID.

8.3. Processing the RETURN Clause

This is the last stage of the runtime wherein QuEST pro-
cesses the RETURN clause of the query. It receives the
results of the previous stage as input (the trace IDs which
conform to the Structural and WHERE clauses). The
RETURN clause can be as simple as asking the count
of traces or it can ask for some attribute values of the
traces that satisfy the previous clauses. In our example
query, the return clause is the count of results. However
consider an alternative RETURN clause for our example
query: a.end-time. This clause is asking for returning the
end-times of the spans of services that calls the product-
service. The runtime will read the corresponding spans
from Microservices Buckets for the trace IDs this stage
was given as input and extracts end-times for the final
output. If the attributes referred to in the RETURN clause
were also present in the WHERE clause then the runtime
will not need to fetch the data from the Cloud Storage be-
cause they would already be present in the VM running
the query. This is because the WHERE clause retrieves
and stores data related to the attributes it filters.

Query

Meaning

Use Case

Execution Time (s) ‘

MATCH (x)->(a), (x)->(b), (x)->(c), (x)->(d) Match on traces that have experienced Determine what traces have 14
WHERE x.service.name == "adservice” a fan out of at least 4 from wide fan outs from adservice
RETURN a.span.id adservice and return their span IDS. to multiple replicas.
MATCH (a)- > (b) Return traces where front-end calls To list all traces, 13
WHERE a.service.name == "frontend” at least one other service. with at-least two spans.
RETURN trace.id
MATCH (a)— > (b)— > (¢) Return trace IDs where recommendation | Investigate abnormal latency. 1.2
WHERE a.service.name == "frontend” AND service is called by the frontend and the

b.service.name == "recommendation” AND | duration of the recommendation

b.duration > 50ms span is greater than 50ms.
RETURN trace.id
MATCH (a)— > (b)— > (c)— > (d) Get trace IDs of all traces Investigate unusually large traces. | 1.3
RETURN trace.id that are of height at least 4.

Figure 11: Example queries in QUEST and execution times based on 10 minutes’ worth of data at a rate of 1000 traces per

second.

9. Evaluation

We evaluate our own system in isolation, and we also
evaluate two other systems: (i) Tempo and, (ii) Jaeger
with Elasticsearch, which we will refer to for brevity as
just Jaeger. Both are open source systems for manag-
ing distributed trace data. Tempo and QUEST use cloud
storage for storing the traces. Jaeger uses a database,
Elasticsearch, for storing the traces, usually on a cluster
of VM. It is expected that any query latency for Jaeger
will be less than any cloud storage-based system because
all data is kept locally. However, cloud storage-based
systems will save in terms of both dollar and operational
cost. We provide cost analysis of different systems to
better understand the latency vs cost trade-off.

9.1. Questions
We evaluate our system through a series of questions:

1. How expressive is QUEST? §9.2

2. How long does it take to answer a query in
QuEST? §9.3

3. How does query latency change as data accumu-
lates? §9.4

4. How does query performance depend on whether
indices are available or not? §9.4.2

5. How much does it cost QUEST to ingest and store
data? §9.5.1

6. How much does it cost for QUEST to answer
queries? §9.5.2

7. How many traces per second can QuEST support?
§9.6

8. How does QUEST compare to other distributed
tracing systems (Tempo and ElasticSearch)? §9.2,
9.3,9.5

9.2. Expressiveness

In Figure 11, we show examples of queries QuUEST sup-
ports. These queries can be used to debug errors, gain

insight from normal behavior, or find anomalous behav-
ior. We focus on graph-based queries as a first-order
concern in constructing queries. Another distributed
tracing system, Grafana Tempo, is also working towards
a query language for traces that enables graph-based
queries. As of writing of this manuscript, their query
language, TraceQL is in its infancy and does not support
general graph queries [1].

9.3. Latency

Cloud-storage systems incur more latency to fetch data
than local storage based systems because they transfer
data over the network. We therefore expect that our
system will have higher latency than disk systems (i.e.,
Jaeger), but due to our indices, will have lower latency
than other cloud storage-based systems (i.e., Tempo).

9.3.1. Plain Query Latency

A
250 230 ms
- 175 ms
)
2
150,
g
Fe2
H
4 _| 4 ms
[E— 77j—>

@, 78 Yae
Ssp oo é\/esfl er

Wiy
qg@ere/:?

Figure 12: Median latency of a plain (i.e., Fetch By Trace ID)
query

A plain query is a fetch of a trace given a trace ID.
Support for the plain queries is ubiquitous in the existing

distributed tracing systems; some systems are even lim-
ited to only this type of query [1]. Figure 12 shows the
time it takes to execute a plain query on all three systems.
QuEST performs better than Tempo (another cloud stor-
age based system) as QUEST has lower latency. QUEST
performs worse than Elasticsearch as Elasticsearch is
able to retrieve data locally and does not need to fetch
anything over the network. In 9.5, we will see that Elas-
ticsearch shows this superiority at the cost of dollars.

9.3.2. Graph Query Latency

QuEST () Jaeger with ElasticSearch

C+3 & >
60k_| % * %

Time
(Miliseconds)
©
2

10k 87k 8.6k 9.2k 7.6k 8.9k

ol ool B es| I O =

Y Y e G R

Graph Graph Graph
Query 1 Query 2 Query 4

Figure 13: Median latency of various graph queries on QUEST,
Tempo and Jaeger

We also evaluate all three systems using several graph
queries and show that QuEST is faster than the others
due to its indices for graph structures. Other systems
answer the graph query via a scan of all the stored traces.
Note that Tempo and Jaeger do not support graph queries
so we write a wrapper around their APIs that enables
them to answer graph queries. Figure 13 shows the time
it takes to run the following four graph queries:

MATCH (frontend)->(adservice)->(a)
RETURN trace-id

The above queries exhibit a variety of trace structures and
span attributes. We constructed the evaluation queries to
include a mixture of indexed (trace structures, trace IDs)
and unindexed (span durations) attributes. It is pertinent
to mention that QUEST’s latencies would further improve
if we index all the queries’ attributes.

9.4. Graph Query Latency On Larger Data
Sets

We also evaluated our system on a larger data set to see
how it scaled. The results are as follows:

9.4.1. Realistic and Increasing Data Set Size

Figure 14 shows the results of running four different
queries on the published AliBaba tracing data set. The
queries are as follows:

duration: Get all the traces where a parent service
calls at least two other children services and the response
latency of the parent is atleast 300 milliseconds.

fanout: Get all the traces where a parent service calls
at-least four other services.

onecall: Get all the traces where a parent service calls
at one other service.

height: Get all the traces where a chain of service calls
has a length of at least four.

We convert the AliBaba set into OpenTelemetry format
and load it into QUEST. We measure query latency as the
data is continuously being ingested by the system. We
show the number of traces (and the number of bytes)
on the horizontal axis and query latency on the vertical
axis. We see that query latency is a linear function of the
amount of data stored in the system. The onecall query
is the most general query which resolves into the most
number of traces. This is depicted in the figure as its
latency grows faster than other queries.

9.4.2. Impact of Indices and Data Volume on
Query Latency

MATCH (frontend)->(adservice)->(currencyservice)

RETURN trace-id

MATCH (frontend)->(adservice)->(checkoutservice) 10

WHERE frontend.duration > 100ms
RETURN trace-id

MATCH (frontend)->(adservice)->
(checkoutservice)

WHERE checkoutservice.duration > 50ms

RETURN trace-id

Figure 13 shows that QuEST outperforms the existing
systems by a significant margin in terms of query latency.

Time Latency with | Latency without
(Minutes) | index (ms) index (ms)
775 2847

20 851.5 2990.5

30 946.5 3070.5

40 1046.5 3207.5

50 1212 3307.5

90 1681 3745.5

Table 1
Median latency with a SBT index as data accumulates

Table 1 shows as more data accumulates, the query la-
tency increases. The first column represents the time for

Structural Query Latencies on AliBaba Data

o 1501
g 100
o
5 50+
04 T T T T T T T
0 10000 20000 30000 40000 50000 60000
Bytes of AliBaba Data (MB)
o 1501
o
g 100
2
8 504
04 T T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500

Number of Traces (Thousands)

—— duration fanout —— one_call —_— heightl

Figure 14: Median latency of various graph queries on Al-
iBaba Data Set

which the application sends traces to QUEST at the rate
of 12k spans per second. The query we use to perform
this experiment is:

MATCH (frontend)->(adservice)->(*)
WHERE adservice.span-id = XYZ
RETURN trace-id

This query has span-id attribute in the WHERE clause.
We perform the evaluation with and without indexing
on the Span ID attribute and present the numbers in
Table 1. The table shows that although the query latency
increases as more data is accumulated, having an index
helps in keeping the overall latency low.

9.5. Cost Analysis
9.5.1. Operational And Storage Costs

QuEST Tempo | Jaeger +
ES

Operational Cost | $8.70 $8.70 $6.40
Storage Cost $3.31 $0.007 $32.30
Data Retention $123.26 | $120.20 | $732

Cost

[Total Cost [$135.27 [$1289 [$770.70 |
Table 2

Cost breakdown of tracing systems

The cost to ingest traces at a collector and export them
to storage is defined as operational cost. The cost to
store and retain data for a configurable retention window
is defined as storage cost. We present the operational
and storage cost of a day with the retention window

A
$800_| $770.7
T
®©
k]
»
>S5
gt
2:
< c $150
8o 1 $135.27
35 $128.9
3 ¢
g2 $100_|
o}
°
+ $50_
$0 S
Q(, 7é ‘/Q@
SS P /)7400 8/88 //.‘9@/' h///
Coas U
alb/?

Figure 15: Cost incurred in a day by tracing systems

set to 30 days, i.e., the system ran for 31 days and we
present the cost of the 31st day including the cost of
retaining the previous 30 days’ data. We present this
analysis for QUEST, Tempo, and Jaeger. To obtain these
numbers, we run each system for 30 minutes to get the
operational and storage costs and then extrapolate the
cost of a day along with the retention cost for 30 days’
worth of data. In our setup, the application generates
12k spans per second. All systems collect these spans,
do pre-processing if required, and export the data to
some storage. Figure 15 summarizes the cost incurred
by the three systems in a day. Table 2 presents the cost
breakdown.

Operational Cost: Here we analyze the operational
cost for QUEST, Tempo and Jaeger. The cost includes
running an OpenTelemetry collector that receives spans
data from application and exports it to a storage backend.
The storage backend for QUEST and Tempo is Google
Cloud Storage (GCS), whereas for Jaeger uses a virtual
machine that runs the Elasticsearch database. QUEST
and Tempo perform significnat pre-processing at this
step, and less processing on data within store, whereas
ElasticSearch does little preprocessing in the collector,
but significant processing at storage. Thus, QUEST and
Tempo require a VM that has enough memory and com-
pute to pre-process the data. We found the e2-highmem-8
VM, which has 8 vCPUs and 64GB of memory, suffices
for QUEST’s and Tempo’s pre-processing requirements.
The VM e2-standard-8, which has 8 vCPUs and 32 GB of
memory, suffices for running the ingestion and export-
ing for Jaeger. The VM e2-standard-8 costs $6.4 per day

while e2-highmem-8 costs $8.7 per day.

Storage Cost: QUEST and Tempo both use GCS while
Jaeger uses VMs’ disks. We only run one VM with a
persistent disk mounted for the Elasticsearch database.
In production operations, Elasticsearch is often run on
a cluster of VMs, but we only assume a single VM to
provide a lower bound on cost.

For QuEST and Tempo, we observe the I/O operations
in GCS to calculate the cost. QUEST performs 661,296
operations (47,136 reads and 614,160 writes) per day and
Tempo performs 1440 operations (all writes) per day. The
Tempo’s write operations include writing large objects
that GCS may consider multiple writes, but we consider
one write. We err on the side of generosity toward Tempo
by not counting write operations’ amplification from
writing large objects. GCS charges $0.05 per 10k opera-
tions. Exporting one day of data to GCS costs $3.31 for
QuEST and $0.007 for Tempo. We calculate an upper
bound on the cost for QUEST and a lower bound on the
cost for Tempo. For Jaeger, we record no extra payment
because persistent disks cost in terms of storage volume,
not I/0.

An Elasticsearch database needs a VM that can process
the data, calculate indices and then store data in the
persistent disk. The overall database cost (i.e., storage
cost) comprises of the cost of the VM and persistent
disk utilized. We use e2-highmem-8 VM that costs $8.7
for a day. Elasticsearch stores 12.3 GB of data for a 30
minute run of the system, which includes the original
tracing data and all the indices that Elasticsearch creates
by default. Per day, the data amounts to 590.4 GB. The
cheapest persistent disk offered by GCP costs $0.04 per
GB. To store one day’s data, Elasticsearch database costs
$23.6 for the persistent disk and $8.7 for the VM that runs
the database, which sums to $32.30.

To calculate the data retention cost for a month, we find
the data stored by each system: QuEST stores 6,163.18
GB, Tempo stores 6011.52 GB and, Jaeger stores 18,302.4
GB. The retention cost provided by GCS is $0.02 per GB
and the cost of persistent disk is $0.04 per GB. Therefore
the overall retention cost comes out to be $123.26 for
QuEST, $120.2 for Tempo and $732 for Jaeger.

9.5.2. Cost To Query With QuEST

We ran 10,000 queries on 30 minutes’ worth of data. A
lookup by trace ID costs $0.92 in cloud storage charges,
whereas a structural request costs $20.33.

9.6. Throughput

QuEST’s throughput is defined by the throughput of the
collector. We originally had a throughput bottleneck with
one collector replica at about 5K traces per second, which
was replicated by Hindsight [24]. However, to scale is not

as straightforward as horizontally autoscaling, as spans
from the same trace must be sent to the same collector,
since we do trace-level analysis at the collector.

We thus enabled a load balancer OpenTelemetry col-
lector that load balanced based on the trace ID of a
span. However, that only increased throughput slightly
to about 8K traces per second. We determined that the
load balancer sent spans one at a time to each backend;
the throughput was improved by batching spans.

The collector now adapts to changes in load by hav-
ing a frontend loadbalancer which forwards spans to
backend collectors, which send data to GCS. If there are
not sufficient backend collectors for the given load, they
will refuse to accept spans, and build up a queue at the
load balancer. This ensures no data is lost during tem-
porary spikes in workload. Then, horizontal autoscaling
is enabled through GCP, and kicks in when the backend
collectors are overwhelmed. Using this horizontal au-
toscaling, we scale our system to up to about 34K traces
per second, which uses 25 backend collector replicas.

While our fix to the collector wasn’t trivial, it also
was not a huge project. We describe it to illustrate the
bleeding edge, unstable character of the OpenTeleme-
try project. We believe there may be other similar low-
hanging fruit within the OpenTelemetry collector, and
that throughput may be improved even further.

10. Conclusion

We presented QuUEST, a system that enables fast and
cheap distributed tracing storage and analysis. We have
found that QuEST improves upon traditional database
systems in terms of cost, and provides more expressibility
in query language than current cloud storage-based sys-
tems. In particular, QUEST excels at graph-based queries
through building data structures that emphasize both the
graph-based nature of distributed tracing and time.

11. Acknowledgements

We are grateful to Nisarg Patel for his invaluable feed-
back on data structure analysis. We would also like to
thank Jinyang Li, Aurojit Panda, and Eugene Ng for their
feedback on previous versions of this paper. This work
was supported in part by NSF grant CNS-2008048, an
Amazon Research Award and a gift from the Network
Programming Initiative.

References

[1] G. Labs, Grafana tempo, 2023. URL: https://
grafana.com/oss/tempo/.

https://grafana.com/oss/tempo/
https://grafana.com/oss/tempo/

(2]

(3]

(4]

(6]

(7]

(9]

Jaeger, Frequently asked questions, 2021. URL:
https://www .jaegertracing.io/docs/1.18/faq/#what-
is-the-recommended-storage-backend.

S.Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding,
J. He, C. Xu, Characterizing microservice depen-
dency and performance: Alibaba trace analysis, in:
Proceedings of the ACM Symposium on Cloud Com-
puting, Association for Computing Machinery, New
York, NY, USA, 2021, pp. 412-426.

X. Feng, G. Jin, Z. Chen, C. Liu, S. Salihoglu, Kuzu
graph database management system, 2023.

S. Yang, K. Srinivasan, K. Udayashankar, S. Krish-
nan, J. Feng, Y. Zhang, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, Tombolo: Performance enhance-
ments for cloud storage gateways, in: 2016 32nd
Symposium on Mass Storage Systems and Tech-
nologies (MSST), IEEE, Santa Clara, CA, USA, 2016,
pp. 1-14. doi:10. 1109/MSST. 2016 .7897076.

R. Guiu, What are traces, and how sql (yes, sql)
and opentelemetry can help us get more value
out of traces to build better software, 2022. URL:
https://www.timescale.com/blog/what-are-traces-
and-how-sql-yes-sql-and-opentelemetry-can-help-
us-get-more-value-out-of-traces-to-build-better-
software/.

M. Pandey, Building netflix’s distributed
tracing infrastructure, 2020. URL: https:
//netflixtechblog.com/building-netflixs-distributed-
tracing-infrastructure-bb856c319304.

I. Wilkes, From “secondary storage” to just “stor-
age”: A tale of lambdas, 1z4, and garbage collec-
tion, 2021. URL: https://www.honeycomb.io/blog/
secondary-storage-to-just-storage.

M. Armbrust, T. Das, L. Sun, B. Yavuz,
S. Zhu, M. Murthy,]J. Torres, H. van Hovell,
A. Ionescu, A. Luszczak, M. undefinedwitakowski,
M. Szafranski, X. Li, T. Ueshin, M. Mokhtar,
P. Boncz, A. Ghodsi, S. Paranjpye, P. Senster,
R. Xin, M. Zaharia, Delta lake: High-performance
acid table storage over cloud object stores,
Proc. VLDB Endow. 13 (2020) 3411-3424.
doi:10.14778/3415478.3415560.

R. Whitmore, Learn about microsatellites, 2021.
URL: https://docs.lightstep.com/docs/learn-about-
micro-satellites.

N. Relic, Introduction to infinite tracing, 2023. URL:
https://docs.newrelic.com/docs/distributed-tracing/
infinite-tracing/introduction-infinite-tracing/.

(12]

(13]

[24]

dynatrace, Meet davis, our powerful ai-engine,
2023. URL: https://www.dynatrace.com/platform/
artificial-intelligence/.

Lightstep, Lightstep features and product
overview, 2023. URL: https://lightstep.com/change-
intelligence.

Honeycomb, Quickly identify and investigate
anomalies with bubbleup, 2022. URL: https://

www.honeycomb.io/bubbleup.

R. Whitmore, Get started with lightstep observ-
ability, 2022. URL: https://docs.lightstep.com/docs/
welcome-to-lightstep.

A. Vondrak, Why observability
a distributed column store, 2022.
https://www.honeycomb.io/blog/why-
observability-requires-distributed-column-store.
C. McAnlis, Optimizing your cloud storage perfor-
mance: Google cloud performance atlas | google
cloud blog, 2018. URL: https://cloud.google.com/
blog/products/gep/optimizing-your-cloud-storage-
performance-google-cloud-performance-atlas.

G. C. Platform, Pricing cloud storage, 2023. URL:
https://cloud.google.com/storage/pricing.

G. C. Platform, About cloud storage objects | google
cloud, 2023. URL: https://cloud.google.com/storage/
docs/objects#immutability.

Neo4j, Inc, Cypher Query Language Reference, Ver-
sion 9, 2019.

X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding,
T. Xie, L. Su, Graph-based trace analysis for mi-
croservice architecture understanding and problem
diagnosis, in: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Soft-
ware Engineering, Association for Computing Ma-
chinery, New York, NY, USA, 2020, p. 1387-1397.
B. Solomon, C. Kingsford, Fast search of thousands
of short-read sequencing experiments, Nature
Biotechnology 34 (2016) 300-302. doi:10.1038/
nbt.3442.

D. Lillis, F. Breitinger, M. Scanlon, Hierarchical
bloom filter trees for approximate matching, The
Journal of Digital Forensics, Security and Law 13
(2018) 81-96. doi:10.15394/jdfs1.2018.1489.

L. Zhang, V. Anand, Z. Xie, Y. Vigfusson, J. Mace,
The benefit of hindsight: Tracing edge-cases in dis-
tributed systems, 2022. URL: https://arxiv.org/abs/
2202.05769. doi:10.48550/ARXIV.2202.05769.

requires
URL:

https://www.jaegertracing.io/docs/1.18/faq/#what-is-the-recommended-storage-backend
https://www.jaegertracing.io/docs/1.18/faq/#what-is-the-recommended-storage-backend
http://dx.doi.org/10.1109/MSST.2016.7897076
https://www.timescale.com/blog/what-are-traces-and-how-sql-yes-sql-and-opentelemetry-can-help-us-get-more-value-out-of-traces-to-build-better-software/
https://www.timescale.com/blog/what-are-traces-and-how-sql-yes-sql-and-opentelemetry-can-help-us-get-more-value-out-of-traces-to-build-better-software/
https://www.timescale.com/blog/what-are-traces-and-how-sql-yes-sql-and-opentelemetry-can-help-us-get-more-value-out-of-traces-to-build-better-software/
https://www.timescale.com/blog/what-are-traces-and-how-sql-yes-sql-and-opentelemetry-can-help-us-get-more-value-out-of-traces-to-build-better-software/
https://netflixtechblog.com/building-netflixs-distributed-tracing-infrastructure-bb856c319304
https://netflixtechblog.com/building-netflixs-distributed-tracing-infrastructure-bb856c319304
https://netflixtechblog.com/building-netflixs-distributed-tracing-infrastructure-bb856c319304
https://www.honeycomb.io/blog/secondary-storage-to-just-storage
https://www.honeycomb.io/blog/secondary-storage-to-just-storage
http://dx.doi.org/10.14778/3415478.3415560
https://docs.lightstep.com/docs/learn-about-micro-satellites
https://docs.lightstep.com/docs/learn-about-micro-satellites
https://docs.newrelic.com/docs/distributed-tracing/infinite-tracing/introduction-infinite-tracing/
https://docs.newrelic.com/docs/distributed-tracing/infinite-tracing/introduction-infinite-tracing/
https://www.dynatrace.com/platform/artificial-intelligence/
https://www.dynatrace.com/platform/artificial-intelligence/
https://lightstep.com/change-intelligence
https://lightstep.com/change-intelligence
https://www.honeycomb.io/bubbleup
https://www.honeycomb.io/bubbleup
https://docs.lightstep.com/docs/welcome-to-lightstep
https://docs.lightstep.com/docs/welcome-to-lightstep
https://www.honeycomb.io/blog/why-observability-requires-distributed-column-store
https://www.honeycomb.io/blog/why-observability-requires-distributed-column-store
https://cloud.google.com/blog/products/gcp/optimizing-your-cloud-storage-performance-google-cloud-performance-atlas
https://cloud.google.com/blog/products/gcp/optimizing-your-cloud-storage-performance-google-cloud-performance-atlas
https://cloud.google.com/blog/products/gcp/optimizing-your-cloud-storage-performance-google-cloud-performance-atlas
https://cloud.google.com/storage/pricing
https://cloud.google.com/storage/docs/objects#immutability
https://cloud.google.com/storage/docs/objects#immutability
http://dx.doi.org/10.1038/nbt.3442
http://dx.doi.org/10.1038/nbt.3442
http://dx.doi.org/10.15394/jdfsl.2018.1489
https://arxiv.org/abs/2202.05769
https://arxiv.org/abs/2202.05769
http://dx.doi.org/10.48550/ARXIV.2202.05769

	1 Introduction
	2 Background and Related Work
	2.1 Graph Databases
	2.2 Observability
	2.3 Trace Data Pipeline
	2.4 Trace Storage
	2.5 Inputs to Trace Analysis

	3 Challenges of Tracing
	4 Challenges of Cloud Storage
	5 Key Design Principles
	5.1 Traces as graphs
	5.2 Time as a first-class citizen

	6 System Architecture
	6.1 The QuEST query language
	6.2 Ingest
	6.3 Data Layout

	7 Indices
	7.1 Structural Index
	7.2 Folders Index
	7.3 Sequence Bloom Tree (SBT) Index
	7.4 Range Index

	8 Query Execution
	8.1 Indices Consultation
	8.1.1 Structural Filter Sub-stage
	8.1.2 Attribute Filter Sub-stage

	8.2 Brute Force Search
	8.3 Processing the RETURN Clause

	9 Evaluation
	9.1 Questions
	9.2 Expressiveness
	9.3 Latency
	9.3.1 Plain Query Latency
	9.3.2 Graph Query Latency

	9.4 Graph Query Latency On Larger Data Sets
	9.4.1 Realistic and Increasing Data Set Size
	9.4.2 Impact of Indices and Data Volume on Query Latency

	9.5 Cost Analysis
	9.5.1 Operational And Storage Costs
	9.5.2 Cost To Query With QuEST

	9.6 Throughput

	10 Conclusion
	11 Acknowledgements

