
QFilter: Towards a Fine-Grained Access Control for
Aggregation Query Processing over Secret Shared Data
Meghdad Mirabi1,∗, Carsten Binnig1

1Faculty of Computer Science, Technical University of Darmstadt, Darmstadt, Germany

Abstract
This paper presents QFilter, a privacy-preserving and communication efficient solution that integrates an Attribute-Based
Access Control (ABAC) model into query processing. QFilter enables the specification and enforcement of fine-grained access
control policies tailored to secret-shared data. It can process aggregation SQL queries, including ”count”, ”sum”, and ”avg”
functions, with both conjunctive (using ”AND”) and disjunctive (using ”OR”) equality query conditions, without the need
for inter-server communication. QFilter is secure against honest-but-curious adversaries, and the preliminary experiments
illustrate its applicability for preserving privacy in query processing over secret-shared data, especially at the tuple level
access control with the lowest overhead.

Keywords
Access Control, Data Outsourcing, Privacy Preserving, Query Processing, Secret Sharing

1. Introduction
Cloud computing offers numerous benefits to organi-
zations and individuals looking to store and process
data in a public environment. These advantages include
high availability, scalability, and efficiency, while also
reducing infrastructure provisioning and maintenance
expenses [1, 2, 3]. However, security concerns pose sig-
nificant obstacles to data outsourcing in the cloud. There
is apprehension about potential breaches of data privacy
and leakage of data processing results to other cloud ten-
ants or the service provider, as data owners lack direct
control over their data and computations [4, 5, 6].
To enhance the security of outsourced data, it is es-

sential to develop models and mechanisms for specify-
ing and enforcing access control policies tailored to this
context [7, 8]. These models should consider varying
levels of data sensitivity. Fine-grained access control
policies offer enhanced control, allowing organizations
to define restrictions at the level of individual tuples,
attributes, or cells within a relation [9, 10, 11]. Such gran-
ular control ensures the protection of sensitive data by
permitting access only to authorized users. In addition

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — Workshop on Cloud Databases (CloudDB’23),
August 28 - September 1, 2023, Vancouver, Canada
∗Corresponding author.
Envelope-Open meghdad.mirabi@cs.tu-darmstadt.de (M. Mirabi);
carsten.binnig@cs.tu-darmstadt.de (C. Binnig)
GLOBE https://www.informatik.tu-darmstadt.de/systems/systems_tuda/
group/team_detail_120640.en.jsp (M. Mirabi);
https://www.informatik.tu-darmstadt.de/systems/systems_tuda/
group/team_detail_18624.en.jsp (C. Binnig)
Orcid 0000-0003-3803-2756 (M. Mirabi); 0000-0002-2744-7836
(C. Binnig)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

to the access control specification model, it is crucial to
tightly integrate an access control enforcement mech-
anism into the query processing workflow for data re-
trieval [12, 13, 14, 15]. By seamlessly integrating access
control enforcement into the query processing engine,
unauthorized access attempts can be promptly thwarted,
while authorized users can efficiently perform their op-
erations. The enforcement mechanism must prioritize
privacy, safeguarding sensitive data when processed by
external servers. Furthermore, it should address effi-
ciency and scalability challenges, considering the sub-
stantial volumes of data involved in query processing
over outsourced data.
The conventional approach to protect sensitive data

from unauthorized disclosure is to encrypt the data be-
fore outsourcing it [5, 16, 17, 11, 18, 19]. This approach
involves transferring access to the outsourced data into
access to secret keys used for encryption prior to upload-
ing it to the cloud. However, existing techniques such as
Homomorphic Encryption [20, 21, 22, 23, 24], Searchable-
Encryption [25, 26, 27, 28], and Bucketization [29] are
either extremely complex or cannot practically support
various types of queries.

Attribute-Based Encryption (ABE) is an effective tech-
nique in cloud computing for ensuring data confidential-
ity, data privacy, and fine-grained access control [30, 31,
32, 33, 34, 35, 36, 37]. ABE allows decryption of ciphertext
only if the user’s attribute set meets the specified access
control policies. However, conventional ABE approaches
suffer from the drawback of revealing user attributes and
access policies to the public, making them susceptible to
inference attacks [38, 39].

Recently, several research works have explored secret
sharing schemes for efficient processing of aggregation
SQL queries over outsourced data while preserving the

mailto:meghdad.mirabi@cs.tu-darmstadt.de
mailto:carsten.binnig@cs.tu-darmstadt.de
https://www.informatik.tu-darmstadt.de/systems/systems_tuda/group/team_detail_120640.en.jsp
https://www.informatik.tu-darmstadt.de/systems/systems_tuda/group/team_detail_120640.en.jsp
https://www.informatik.tu-darmstadt.de/systems/systems_tuda/group/team_detail_18624.en.jsp
https://www.informatik.tu-darmstadt.de/systems/systems_tuda/group/team_detail_18624.en.jsp
https://orcid.org/0000-0003-3803-2756
https://orcid.org/0000-0002-2744-7836
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

privacy of the data, user queries, and query results. How-
ever, the existing proposals [40, 41, 42, 43] assume that
data users are fully trusted and can access outsourced
data without any limitations. In practice, data users have
different access privileges, and requests to access unau-
thorized parts of outsourced data must be filtered.
Existing research on data outsourcing lacks a practi-

cal solution for specifying fine-grained access control
policies and enforcing them during the processing of
aggregation SQL queries over secret-shared data while
simultaneously preserving the privacy of outsourced
data, associated access control policies, user queries, and
query results. To address these challenges, this paper
introduces QFilter, which integrates an Attribute-Based
Access Control (ABAC) model with aggregation query
processing. QFilter enables the specification and enforce-
ment of fine-grained access control policies tailored to
secret-shared relations. The proposed ABAC model sup-
ports flexible access control policy specification at the
tuple, attribute, or cell level, accommodating complex
access conditions. To enforce access authorizations, QFil-
ter employs an oblivious query rewriting and process-
ing technique, incorporating query conditions into the
WHERE clause of the submitted SQL query to check ac-
cess authorizations and filter unauthorized data during
query execution. For efficient and privacy-preserving
query processing, QFilter utilizes string matching-based
operators to process aggregation SQL queries, including
”count”, ”sum”, and ”avg” functions, with both conjunc-
tive (using ”AND”) and disjunctive (using ”OR”) equality
query conditions over secret-shared data. The contribu-
tions of this paper can be summarized as follows:

• We propose an ABACmodel for QFilter that intro-
duces new attributes to the relation, representing
specific access control policies. These attributes
allow us to specify a set of fine-grained access
control policies. To support complex access con-
ditions and reduce the number of ABAC poli-
cies, our proposed ABAC model combines user
attribute conditions using boolean operators, re-
sulting in a single condition set. This set is then
automatically mapped to a unique user group in
QFilter, which facilitates the specification of ac-
cess control policies for different data items (i.e.,
tuples, attributes, or cells) in the outsourced rela-
tion.

• We obliviously rewrite the submitted aggregation
SQL query in QFilter by adding new query condi-
tions to the WHERE clause, ensuring access au-
thorizations are checked and unauthorized data
items are filtered out during query processing.
Importantly, QFilter eliminates the need for inter-
server communication during query rewriting.

• We design efficient string matching-based opera-

tors for QFilter to obliviously process aggregation
SQL queries, including ”count”, ”sum”, and ”avg”
functions, with both conjunctive (using ”AND”)
and disjunctive (using ”OR”) equality query con-
ditions over secret-shared data. These operators
utilize bit-wise multiplication and addition on
secret-shared data, enabling fast computation of
aggregation results. Moreover, the use of these
operators in QFilter eliminates the need for inter-
server communication during query processing.

• We analyze QFilter in terms of the number of
computation and communication rounds at both
server and data user sides. Additionally, we con-
duct preliminary experiments to demonstrate the
performance overhead of QFilter for data out-
sourcing and privacy-preserving query process-
ing.

The rest of paper is organized as follows: Section 2
describes the preliminary concepts. Section 3 provides
an overview of the system architecture, adversary model,
and security requirements in QFilter. Section 4 presents
our proposed ABAC model. Section 5 explains our pro-
posed solution for data outsourcing and oblivious query
rewriting and processing. Section 6 evaluates the over-
head of QFilter for data outsourcing and privacy preserv-
ing query processing. Section 7 reviews and compares
existing research works with QFilter. Finally, Section 8
concludes the paper and discusses future works.

2. Background
In this section, we briefly review the basic concepts used
in QFilter.

2.1. Shamir’s Secret Sharing Scheme
Shamir’s secret sharing scheme [44] is a threshold se-
cret sharing scheme that provides security against ad-
versaries with unlimited computing resources. The ba-
sic idea behind Shamir’s secret sharing scheme is that
k points are enough to define a k-1 degree polynomial.
To share a secret value S among c non-communicating
participants/servers, the data owner chooses k-1 ran-
dom coefficients 𝑎1, 𝑎2, ..., 𝑎𝑘−1 to build a polynomial
𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ... + 𝑎𝑘−1𝑥𝑘−1, where (𝑘 ≤ 𝑐),
𝑓 (𝑥) ∈ 𝔽ℙ[𝑥], ℙ is a prime number, 𝔽ℙ is a finite field
of order ℙ, 𝑎0 = 𝑆, and 𝑎𝑖 ∈ ℕ (∀1 ≤ 𝑖 ≤ 𝑘 − 1). Then,
each participant/server i (∀1 ≤ 𝑖 ≤ 𝑐) is given a point
(𝑥𝑖, 𝑓 (𝑥𝑖)) on the polynomial. The secret value 𝑆 can be
reconstructed by performing the Lagrange interpolation
operation using any subset of k secret shares [45, 46, 47].

2.2. String Matching on Secret Shares
Recently, a new string matching method called Accumu-
lating Automata (AA) is proposed by [48], which elim-
inates the requirement for cooperation between partic-
ipants/servers during string matching. This technique
can be effectively utilized in QFilter to determine the
satisfaction of query conditions in the WHERE clause of
submitted SQL queries.
Assuming that S is the secret value and 𝑆𝑖 (∀1 ≤ 𝑖 ≤ 𝑐)

represents the ith secret-share of S stored at the corre-
sponding server, the AA method enables a data user to
search a string pattern p. By generating c secret-shares
of p (𝑝𝑖, ∀1 ≤ 𝑖 ≤ 𝑐), each server can independently search
for the secret-share pattern 𝑝𝑖 within the secret-share 𝑆𝑖.
The result is a secret-share of either 1 or 0, indicating a
match or mismatch between the respective secret-shares.
The AA method combines the secret-shares through mul-
tiplication and addition, allowing the data user to recon-
struct the secret value using the Lagrange interpolation
operation after collecting outputs from k servers, where
𝑘 ≤ 𝑐. The process of string matching using this method
in shown in Example 1.

Example 1. Consider the values of the Account Type at-
tribute in the Account relation shown in Table 1, which are
”checking” and ”saving”. These two values can be mapped
to ”01” and ”10” in the unary representation form, respec-
tively, as we only have these two values for the Account
Type attribute.

Table 1
Account Relation

Account No. Account Type Balance (×1000$)

1 checking 2
2 saving 3
3 checking 1

Now, let’s assume that the unary representation ”01” of
the value ”checking” is outsourced by the data owner. This
means that the value ”checking” will be revealed to the ad-
versary. To prevent data disclosure, the data owner can use
two polynomials with an identical degree to outsource the
value ”checking” to a set of 5 non-communicating servers,
as shown in Table 2.

Table 2
Secret-Shares of Value ”checking” Created by the Data Owner

Value Polynomial S1 (x=1) S2 (x=2) S3 (x=3) S4 (x=4) S5 (x=5)

0 0+x 1 2 3 4 5
1 1+2x 3 5 7 9 11

Now, assume that the data user wants to search for
the value ”checking”. The data user knows that the value
”checking” is represented as ”01”. Then, he/she creates secret-
shares for that as shown in Table 3. It should be noted here

that the data user does not need to ask from the data owner
about any polynomial to build the secret-shares of value
”checking”.

Table 3
Secret-Shares of Value ”checking” Created by the Data User

Value Polynomial S1 (x=1) S2 (x=2) S3 (x=3) S4 (x=4) S5 (x=5)

0 0+3x 3 6 9 12 15
1 1+4x 5 9 13 17 21

At the server side, every individual server performs a
position-wise multiplication of the bits they possess, adds
up all the multiplication results, and sends them to the data
owner. This process is illustrated in Table 4.

Table 4
Operations Performed by Non-Communicating Servers

Server 1 Server 2 Server 3 Server 4 Server 5
1 × 3 = 3 2 × 6 = 12 3 × 9 = 27 4 × 12 = 48 5 × 15 = 75
3 × 5 = 15 5 × 9 = 45 7 × 13 = 91 9 × 17 = 153 11 × 21 = 231
3 + 15 = 18 12 + 45 = 57 27 + 91 = 118 48 + 153 = 201 75 + 231 = 306

After receiving the outputs from the set of 5 non-
communicating servers, which are 𝑦1 = 18, 𝑦2 = 57, 𝑦3
= 118, 𝑦4 = 201, and 𝑦5 = 306, the data user performs the
Lagrange interpolation operation to reconstruct the secret
answer, which is 1 (i.e., 𝑏0 = 1), confirming that the string
pattern has been found. The process is as follows:

(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4)(𝑥 − 𝑥5)
(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥1 − 𝑥4)(𝑥1 − 𝑥5)

× 𝑦1 +
(𝑥 − 𝑥1)(𝑥 − 𝑥3)(𝑥 − 𝑥4)(𝑥 − 𝑥5)

(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)(𝑥2 − 𝑥4)(𝑥2 − 𝑥5)
× 𝑦2+

(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥4)(𝑥 − 𝑥5)
(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)(𝑥3 − 𝑥4)(𝑥3 − 𝑥5)

× 𝑦3 +
(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥5)

(𝑥4 − 𝑥1)(𝑥4 − 𝑥2)(𝑥4 − 𝑥3)(𝑥4 − 𝑥5)
× 𝑦4+

(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4)
(𝑥5 − 𝑥1)(𝑥5 − 𝑥2)(𝑥5 − 𝑥3)(𝑥5 − 𝑥4)

× 𝑦5 =
(𝑥 − 2)(𝑥 − 3)(𝑥 − 4)(𝑥 − 5)
(1 − 2)(1 − 3)(1 − 4)(1 − 5)

× 18+

(𝑥 − 1)(𝑥 − 3)(𝑥 − 4)(𝑥 − 5)
(2 − 1)(2 − 3)(2 − 4)(2 − 5)

× 57 +
(𝑥 − 1)(𝑥 − 2)(𝑥 − 4)(𝑥 − 5)
(3 − 1)(3 − 2)(3 − 4)(3 − 5)

× 118+

(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 5)
(4 − 1)(4 − 2)(4 − 3)(4 − 5)

× 201 +
(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 4)
(5 − 1)(5 − 2)(5 − 3)(5 − 4)

× 306 =

𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4, 𝑏0 = 1

3. Overview
In this section, we provide an overview of the system
architecture of QFilter, the adversarial model, and the
security requirements in QFilter.

3.1. System Architecture
We assume three entities in QFilter’s system architec-
ture: Data Owner, Data User, and Non-Communicating
Servers. The interaction between these entities are shown
in Figure 1.

In Step 1, the data user registers his identity attributes
with the data owner. In Step 2, the data owner creates
and sends a credential to the data user based on his iden-
tity attributes. User credentials are stored in the userInfo

Figure 1: System Architecture of QFilter

relation at the data owner side, and authentication is per-
formed using these credentials at the server side. In Step
3, the data owner splits relation R (i.e., including data
and associated access control policies) into c relations
𝑅1, 𝑅2, ..., and 𝑅𝑐 using Shamir’s secret sharing scheme,
and sends each relation to the corresponding server. Sim-
ilarly, c relations 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜1, 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜2, ..., and 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜𝑐
are created for relation userInfo and sent to the respective
servers. Every individual server 𝑆𝑖 requires the informa-
tion stored in its corresponding 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜𝑖 relation for the
query rewriting process. In Step 4, the data user cre-
ates c queries 𝑄1, 𝑄2, ..., and 𝑄𝑐 based on the query Q
by converting each value of query condition into sets
of secret-shared values. Each query is sent to the cor-
responding server along with the set of secret-shared
values. In Step 5, every individual server rewrites its
assigned query by adding new query conditions to the
WHERE clause for access authorization checks and exe-
cutes it to produce the partial output for that. The partial
outputs from the execution of queries 𝑄1, 𝑄2, ..., and 𝑄𝑘
(where 𝑘 < 𝑐) are then sent to the data user. The data
user then performs the Lagrange interpolation operation
to obtain the final query result.

3.2. Adversary Model
In this paper, we consider the honest-but-curious ad-
versary model. Under this model, non-communicating
servers faithfully perform their assigned tasks (i.e., query
rewriting and query processing) without attempting to
modify sensitive data. However, every individual server
may utilize side information, such as background knowl-
edge, query execution, and output size, to gather useful
information about outsourced data, access control poli-
cies, user query, and query results.
We assume that the data owner is fully trusted and

immune to any attacks from the adversary. The adversary

also lacks access to the secret-sharing algorithm and its
related information employed by the data owner.
In this model, only authenticated users are allowed

to request aggregation SQL queries on the outsourced
data. They seek to uncover unauthorized portions of the
data and confidential access control policies. Addition-
ally, they aim to extract information about filtered parts
of their query results. Authenticated users establish se-
cure and trusted communication channels with the data
owner and non-communicating servers, employing their
credentials for authentication at the server side.

It is important to note that QFilter adheres to the lim-
itations imposed by secret sharing schemes, where the
adversary is unable to colludewith themajority of servers
or access the communication channel between the data
owner/data user and individual servers. It is assumed
that the servers are hosted across diverse cloud infrastruc-
tures, each managed by a distinct cloud service provider.
Additionally, it is assumed that the majority of these
providers refrain from colluding with one another due
to their conflicting interests.

3.3. Security Requirements
In the honest-but-curious adversary model, QFilter must
prevent an adversary from learning about the outsourced
data itself, associated access control policies, user queries,
and query results. This prevention is essential to avoid
potential attacks, including:

• Frequent Count Attack: Observing cryptograph-
ically secure data and associated access control
policies to infer the frequency of each value.

• Access Pattern Attack: Deducting which tuples
satisfy or are filtered out from a submitted query.

• Query Pattern Attack: Analyzing the pattern of
queries issued by data users to infer sensitive
information or unauthorized access patterns.

• Output Size Attack: Counting the number of tu-
ples satisfying or being filtered out from a query
condition during both query processing and ac-
cess authorization checking.

The privacy of secret values (i.e., outsourced data itself,
associated access control policies, and query results) in
QFilter relies on two factors: (1) ensuring that only the
data owner or authorized users can reconstruct the secret
value, and (2) providing unique representations for each
occurrence of a value at each individual server to prevent
frequency analysis.
To ensure the privacy of user queries in QFilter, two

conditions must be met: (1) the actual values of query
conditions are concealed from adversaries, and (2) queries
of the same type cannot be distinguished based on their
query results. Queries are considered to be of the same

type if they produce identical output sizes, such as aggre-
gation SQL queries containing the ”count” function.
QFilter must ensure that every individual server be-

haves identically when processing a given aggregation
SQL query submitted by the data user. Furthermore,
the servers must always provide the same answer to the
query. To demonstrate this, it is needed to compare the
actual execution of the algorithms used in QFilter for
query processing on the servers with the ideal execution
of these algorithms at a trusted party that has the same
data, access control policies, and query conditions. An
algorithm in QFilter preserves data privacy from every
individual server if the real and ideal executions of such
an algorithm return the same answer to the data user.

4. Access Control Specification
In this section, we provide a detailed description of our
proposed access control model.

4.1. Access Control Moded in QFilter
In Attribute Based Access Control (ABAC) model, request
of a subject to perform an action on an object is granted
or denied based on a set of the assigned attributes of
subjects and objects [49, 50, 51, 52]. Based on the general
basis in this model, our proposed ABAC model includes
the following elements:

• Users (U). It consists of the data userswho submit
aggregation SQL queries over the outsourced data
in QFilter.

• Data Items (DI). It represents the protected data
items in QFilter, such as tuples, attributes, or cells
in a relation.

• Actions (A). It encompasses the available ag-
gregation functions in QFilter, namely ”count”,
”sum”, and ”avg”.

• Policies (P). It includes all the access control poli-
cies associated with the data items in QFilter.

In this model, users possess identity attributes (e.g.,
name, affiliation, office number, job title, role, trust level),
and ABAC policies are linked to data items to define ac-
cess conditions based on users’ identity attributes. A user
whose attributes satisfy the ABAC policy associated with
a data item is granted permission to perform a specific
action (i.e., an aggregation function) on that data item.

Definition 1 (User Attribute (UA)). A user attribute is
defined as a pair of (𝑎𝑁𝑎𝑚𝑒, 𝑎𝑇𝑦𝑝𝑒) such that ∀𝑎 ∈ 𝑈𝐴 ∶
𝑎 = (𝑎𝑁𝑎𝑚𝑒, 𝑎𝑇 𝑦𝑝𝑒), where 𝑎𝑁𝑎𝑚𝑒 is a unique attribute
name and 𝑎𝑇𝑦𝑝𝑒 is a predefined data type in QFilter.

In accordance with Definition 1, user attributes re-
quire predefined data types (e.g., integer, floating point,

boolean, etc.) to ensure consistency and avoid any po-
tential ambiguity or type mismatching in access control
policies.

Example 2. Three user attributes (Role, String), (Age,
Integer), (Sex, Boolean) can be defined in QFilter based on
Definition 1.

Definition 2 (User Attribute Condition). A user attribute
condition is defined in the form of 𝑐𝑜𝑛𝑑: 𝑎𝑡𝑡𝑟𝑁 𝑎𝑚𝑒 𝑐𝑜𝑚𝑝𝑂𝑝
𝑎𝑡𝑡𝑟𝑉 𝑎𝑙, where 𝑐𝑜𝑛𝑑 is a unique condition name, 𝑎𝑡𝑡𝑟𝑁 𝑎𝑚𝑒
is the name of an identity attribute of users, 𝑐𝑜𝑚𝑝𝑂𝑝 is a
comparison operator such as ”=”, ”>=”, ”<=”, ”>”, ”<”, and
”!=”, and 𝑎𝑡𝑡𝑟𝑉 𝑎𝑙 is a value from the set of values in the
predefined datatype 𝑎𝑇𝑦𝑝𝑒 that can be used by the identity
attribute.

Example 3. Three user attribute conditions C1, C2, and
C3 can be defined in QFilter based on Definition 2 as follows:
C1: Role = ”Banker”, C2: Age > 18, and C3: Sex = 0.

Definition 3 (User Attribute Condition Set). A user at-
tribute condition set is defined in the form of 𝑐𝑜𝑛𝑑𝑆𝑒𝑡: 𝑐𝑜𝑛𝑑
| (𝑐𝑜𝑛𝑑 𝑏𝑜𝑜𝑙𝑂𝑝 𝑐𝑜𝑛𝑑𝑆𝑒𝑡) | (𝑐𝑜𝑛𝑑𝑆𝑒𝑡 𝑏𝑜𝑜𝑙𝑂𝑝 𝑐𝑜𝑛𝑑) | (𝑐𝑜𝑛𝑑𝑆𝑒𝑡
𝑏𝑜𝑜𝑙𝑂𝑝 𝑐𝑜𝑛𝑑𝑆𝑒𝑡), where 𝑐𝑜𝑛𝑑𝑆𝑒𝑡 is a unique name for the
condition set, 𝑐𝑜𝑛𝑑 is a unique condition name, 𝑏𝑜𝑜𝑙𝑂𝑝 is
a boolean operator which can be ”∧” or ”∨”, and ”|” is a
discriminator.

Example 4. User attribute condition set CS1: (C1 ∧ (C2
∨ C3)) can be defined in QFilter based on Definition 3.

Based on Definition 3, our proposed ABAC model al-
lows user attribute conditions specified by the data owner
to be combined as a set of conditions, enabling the speci-
fication of complex conditions. This feature supports the
modeling of complex real-world situations.

Definition 4 (User Group). A user group is defined as a
set of data users whose identity attributes satisfy the user
attribute condition set in an ABAC policy.

In our proposed ABAC model, each unique user at-
tribute condition set is mapped to a unique user group
(according to Definition 5).

Definition 5 (Mapping of a User Attribute Condition Set
to a User Group). Given a set of user attribute condition
set UACS = {𝑐𝑜𝑛𝑑𝑆𝑒𝑡1, 𝑐𝑜𝑛𝑑𝑆𝑒𝑡2, ..., 𝑐𝑜𝑛𝑑𝑆𝑒𝑡𝑡}, a unique user
group 𝐺𝑖 can be automatically created by QFilter for a user
attribute condition set 𝑐𝑜𝑛𝑑𝑆𝑒𝑡𝑖, where ∀1 ≤ 𝑖 ≤ 𝑡.

Example 5. User group 𝐺1 can be automatically mapped
to the user attribute condition set CS1 in Example 4 based
on Definition 5.

Definition 6 (ABAC Policy). An ABAC policy is defined
as a triple (userGroup, dataItem, aggrFunc), where user-
Group is a user group, each member of which has a set of

identity attributes which satisfy a specific user attribute
condition set, dataItem is a data item in relation R, and
aggrFunc is an aggregation function supported by QFilter.

Example 6. An ABAC policy can be defined as follows:
(𝐺1, Balance, sum) in which a user who is a member of user
group 𝐺1 can perform the aggregation function sum on the
data item Balance in the relation Account (Table 1).

Based on Definition 6, our ABAC model only supports
positive access authorizations, implying that access to a
specific data item is denied by default.

4.2. Policy Attachment in QFilter
To attach ABAC policies to the outsourced relation R,
new attributes representing these policies are added to
the relation. For tuple-level access control, two additional
attributes are introduced, one for the ”count” aggregation
function and another for the ”sum” aggregation function.
For attribute/cell-level access control, two attributes are
introduced for each attribute in relation R, one for the
”count” aggregation function and another for the ”sum”
aggregation function. Each value of the new attribute
corresponds to a labeled ABAC policy, associated with a
unique user group according to Definition 5.

It is important to note that our proposed ABAC model
excludes access control policies for the aggregation func-
tion ”avg”. This decision is based on the observation
that the result of aggregation function ”avg” can be de-
rived from the results of aggregation functions ”sum”
and ”count”. By relying on the ABAC policies for the ag-
gregation functions ”sum” and ”count”, QFilter prevents
potential conflicts between different access control poli-
cies for the aggregation function ”avg”. Therefore, when
a data user requests an aggregation SQL query including
”avg” function, the corresponding ABAC policies for the
aggregation functions ”sum” and ”count” are checked
instead of explicitly checking access control policies for
the aggression function ”avg”. Additionally, QFilter does
not allow the setting of access control policies for specific
data items (i.e., tuples, attributes, or cells) with different
user groups for the aggregation functions ”count” and
”sum” in order to avoid conflicts among access control
policies for the aggregation function ”avg”. However, it
is permissible to set access control policies with differ-
ent user groups for the aggregation function ”sum” (or
”count”) when access to preform the aggregation function
”count” (or ”sum”) for such data items are denied, as the
aggregation function ”avg” is not allowed in such cases.
To support the case that no ABAC policy is specified

for a specific data item in relation R, QFilter uses a user
group called Min User Group, which does not map to any
user attribute condition set in the system.

Definition 7 (Min User Group). The user group 𝐺0 is
defined as the 𝑀𝑖𝑛 𝑈 𝑠𝑒𝑟 𝐺𝑟𝑜𝑢𝑝 if it is not mapped to any
of the existing user attribute condition sets in QFilter.

Based on Definition 7, if there is no ABAC policy for
a data item in relation R (i.e., access denied for all data
users), the value of the new attribute for this data item
in relation R is set to 𝐺0.

Example 7. Tables 5 and 6 illustrate the policy attach-
ment process for relation Account (Table 1), with tuple and
attribute/cell access control granularity levels, respectively.
As shown in Table 5, users in user group 𝐺1 have access to
the first tuple of relation R for performing the aggregation
functions ”count” and ”sum”. However, none of the users
in 𝐺1 can access the second and third tuples to preform an
aggregation function, as the attributes Count and Sum are
set to 𝐺0 and 𝐺2 for them, respectively. In Table 6, users
in user group 𝐺1 can access the first and third tuples of
relation R for performing the aggregation functions ”count”
and ”sum” on the Balance data item, as the attribute values
Balance-Count and Balance-Sum are set to 𝐺1. As shown
in Table 6, the attributes Account No.-Sum and Account
Type-Sum in all tuples of relation Account are set to 𝐺0,
as the ”sum” aggregation function is not defined for the
attributes Account No. and Account Type.

Table 5
Tuple Level Policy Attachment

Account No. Account Type Balance (×1000$) Count Sum

1 checking 2 𝐺1 𝐺1
2 saving 3 𝐺0 𝐺0
3 checking 1 𝐺2 𝐺2

5. Data Outsourcing and Privacy
Preserving Query Processing

In this section, we provide a detailed description of
our proposed solution for data outsourcing and privacy-
preserving query processing in QFilter. It utilizes an
oblivious query rewriting and processing technique to
tightly integrate the access control enforcement mecha-
nism into the query processing workflow. The solution
involves the following steps: 1) Creation and distribution
of secret shares by the data owner, 2) Query submission
and distribution by the data user, 3) Query rewriting and
processing by non-communicating servers, and 4) Query
result collection by the data user. We also consider the
complexity of our proposed solution in terms of num-
ber of communication and computation rounds at both
server and data user sides.

Table 6
Attribute or Cell Level Policy Attachment

Account No. Account No.-Count Account No.-Sum Account Type Account Type-Count Account Type-Sum Balance (×1000$) Balance-Count Balance-Sum

1 𝐺1 𝐺0 checking 𝐺1 𝐺0 2 𝐺1 𝐺1
2 𝐺2 𝐺0 saving 𝐺2 𝐺0 3 𝐺2 𝐺2
3 𝐺1 𝐺0 checking 𝐺1 𝐺0 1 𝐺1 𝐺1

5.1. Creation and Distribution of
Secret-Shares

To create a set of secret-shares for relation R (i.e., includ-
ing data and associated access control policies), we need
to represent each value of relation R in a unary form
as explained in Section 2.2. Example 8 shows how to
represent different numerical values in a unary form.

Example 8. Assume that a relation contains only numeri-
cal values. Generally, a numerical value can be represented
by a unary array with 10 bits since we have only 10 num-
bers from ’0’ to ’9’ in decimal form. Hence, the number
’1’ can be represented as (11, 02, 03, ..., 010), where the sub-
script indicates the position of the numerical value; since
’1’ is the first number, the first bit in the unary array is one
and others are zero. Similarly, ’2’ is (01, 12, 03, ..., 010), ...,
’9’ is (01, 02, ..., 08, 19, 010), and ’0’ is (01, 02, ..., 09, 110).

This process can be followed in a similar way to repre-
sent other symbols. Example 9 shows how to represent
different letters in the English alphabet in a unary form.

Example 9. The English alphabet contains 26 letters. Each
letter can be represented by a unary array with 26 bits.
Hence, ’A’ can be represented as (11, 02, ..., 026) since ’A’
is the first letter and therefore, the first bit in the unary
array is one and others are zero. ’B’ can be represented as
(01, 12, ..., 026) since ’B’ is the second letter and therefore,
the second bit in the unary array is one and others are zero,
and so on.

In the AA method, a data user can search for a b-bit
string pattern without the need for inter-server commu-
nication. Both the data owner and data user employ
a polynomial of degree one, resulting in a final poly-
nomial degree of 2b due to secret-share multiplication
during string matching. Solving this polynomial requires
2b+1 secret-shares from different servers. However, in
some cases it is possible that values in relation R can be
mapped to a unary representation with fewer bits, offer-
ing greater efficiency and reducing the required secret-
shares from non-communicating servers. Such mapping
requires prior agreement between the data owner and
data users, akin to marshaling in distributed systems. Ex-
ample 10 illustrates this process for the Account relation.

Example 10. Table 7 shows the output of unary represen-
tation of values in the relation Account including the tuple
level policy attachment (Table 5). We only need to use 3 bits

to represent the values of attributes Account-No., Balance,
Count, and Sum in the unary representation form since
each of them has only three different values. Moreover, we
only need to use 2 bits to represent the values of attribute
Account Type in the unary representation form since it has
two different values.

Table 7
Unary Representation of Account Relation

Account No. Account Type Balance (×1000$) Count Sum

100 01 010 100 100
010 10 001 001 001
001 01 100 010 010

By outsourcing the unary representation form of rela-
tion values, the data owner risks exposing the underlying
data. To mitigate this, the data owner employs b polyno-
mials of the same degree, where b represents the number
of bits in the unary representation of a value. These
polynomials generate b secret-shares for each specific
value, which are then distributed to a designated server.
Rather than transmitting the actual unary representation,
the secret-shares are sent. Example 1 in Section 2.2 pro-
vides a demonstration of this process for the value of
”checking” in the attribute Account Type of the relation
Account.

Assume that R with n tuples and m attributes denoted
by 𝐴1, 𝐴2, ..., and 𝐴𝑚 is a relation which should be out-
sourced. In the case of tuple level policy attachment, two
new attributes Count and Sum are added to relation R
whose values specify the ABAC policy attached to each
tuple of relation R. Therefore, relation 𝑅𝑡 (𝑡 stands for
tuple level policy attachment) with n tuples and m+2 at-
tributes denoted by𝐴1, 𝐴2, ..., 𝐴𝑚, 𝐶𝑜𝑢𝑛𝑡, and 𝑆𝑢𝑚 should
be outsourced to a set of non-communicating servers. In
the case of attribute/cell level policy attachment, two new
attributes are added for each attribute in relation R whose
values specify the ABAC policies associated with each
attribute in relation R. Therefore, relation 𝑅𝑎 (𝑎 stands
for attribute level policy attachment) with n tuples and (3
× m) attributes denoted by 𝐴1, 𝐴𝐶𝑜𝑢𝑛𝑡

1 , 𝐴𝑆𝑢𝑚
1 , 𝐴2, 𝐴𝐶𝑜𝑢𝑛𝑡

2 ,
𝐴𝑆𝑢𝑚
2 , ..., 𝐴𝑚, 𝐴𝐶𝑜𝑢𝑛𝑡

𝑚 , and 𝐴𝑆𝑢𝑚
𝑚 should be outsourced to a

set of non-communicating servers. Now, assume that 𝑣𝑖𝑗
is the value of the ith tuple and jth attribute in relations
𝑅𝑡 and 𝑅𝑎, and c is the number of non-communicating
servers. Therefore, the data owner creates c secret-shares
for the value 𝑣𝑖𝑗 (i.e., 𝑆(𝑣𝑖𝑗)). The result of this step is 𝑐

secret-shared relations (i.e., 𝑅𝑡1, 𝑅𝑡2, ..., and 𝑅𝑡𝑐 in the case
of tuple level policy attachment and 𝑅𝑎1, 𝑅𝑎2, ..., and 𝑅𝑎𝑐
in the case of attribute/cell policy attachment). Then,
the pth secret-shared relation (i.e., 𝑅𝑡𝑝 in the tuple level
policy attachment and 𝑅𝑎𝑝 in the attribute/cell level policy
attachment) is outsourced to the pth server.
To rewrite the aggregation SQL query submitted by

the data user u at the server side, all servers need the list
of user groups of which the data user u is a member of
to add new query conditions as access conditions in the
WHERE clause of the submitted query. To provide this
information, the data owner creates relation userInfo =
(Credential, User Group) to store the values of credentials
and user groups for each registered data user in QFilter.
The values of attributes Credential and User Group are
inserted into relation userInfo during the user registra-
tion process when a specific credential is created for the
data user u and all the ABAC policies specified by the
data owner are considered to find the list of user groups
of which the data user u with a set of identity attributes
is member of. However, outsourcing the values of at-
tribute User Group in relation userInfo may infer some
information about associated access control policies by
revealing relationships between different user groups
in the system. It is noted that servers need the exact
values of attribute Credential in the process of user’s au-
thentication. To prevent the leakage of access control
policies, the data owner creates c secret-shares for each
value of attribute User Group and then creates c relations
𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜1, 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜2, ..., and 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜𝑐 for relation user-
Info in such a way that the values of attribute Credential
are unchanged and the values of attribute User Group are
replaced by their corresponding secret-shares. Finally,
the pth relation of userInfo (i.e., 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜𝑝) is send to the
pth server.

Example 11. Table 8 (a) provides an example of the user-
Info relation that needs to be outsourced to multiple non-
communicating servers. It demonstrates that data users
with specific credentials can belong to various user groups
in our proposed ABAC model. Table 8 (b) displays the at-
tributes Credential and User Group to be outsourced to the
pth server. The notation 𝑆(𝐺𝑥)𝑝 represents the secret-share
of the xth user group (𝐺𝑥) in the 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜𝑝 relation.

Table 8
Relations 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜 and 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜𝑝

Credential User Group

𝑐1 𝐺1
𝑐1 𝐺3
𝑐2 𝐺2
𝑐3 𝐺1
𝑐3 𝐺2

(a) 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜 Relation

Credential User Group

𝑐1 𝑆(𝐺1)𝑝
𝑐1 𝑆(𝐺3)𝑝
𝑐2 𝑆(𝐺2)𝑝
𝑐3 𝑆(𝐺1)𝑝
𝑐3 𝑆(𝐺2)𝑝

(b) 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜𝑝 Relation

5.1.1. Discussion about Information Leakage

By outsourcing relation R as secret shares, the actual
values of relation R and associated access control policies
remain unknown to adversaries. Also, outsourcing the
secret shared values of the attribute User Group in the
userInfo relation does not reveal any information about
the user groups to adversaries. It relies on the adver-
sary’s inability to collude with the majority of servers
or access the communication channel between the data
owner and individual servers during data outsourcing
(as assumed in Section 3.2). Our solution employs dif-
ferent polynomials to generate secret shares for each
occurrence of a specific value, ensuring that multiple
occurrences of a value have distinct secret shares. Con-
sequently, observing the secret-shared values does not
reveal any information about relation R or the attribute
User Group in relation userInfo. This mitigates the risk of
frequency analysis and protects against Frequent Count
Attacks. To conceal the actual number of user groups in
relation userInfo, the data owner can introduce unused
user groups and randomly assign registered data users
to them. For instance, Table 8 (b) may include fake user
groups to safeguard against the inference of user groups
and access policies. It is important to note that the actual
value of the attribute Credential cannot infer any infor-
mation about the access control policies associated with
the data items in relation R, as Credential is solely used
to authenticate the data users at the server side.

5.2. Query Submission and Distribution
Our proposed solution supports both the simple andmulti
dimensional aggregation SQL queries as shown in Table 9.
In the following, we explain how a data user can submit
and distribute an aggregation SQL query to the set of
non-communicating servers.

1. Simple aggregation SQL queries: Assume that
the data user u wishes to submit the aggregation
SQL query 𝑄1 in the form of ”select 𝛼(𝐴𝑖) from
R” to the servers. This query will be distributed
to every individual server without any changes.

2. Multi-dimensional aggregation SQL queries: In
the case that the data user u wishes to submit the
aggregation SQL query 𝑄2 in the form of ”select
𝛼(𝐴𝑖) from R where (𝐴𝑘 = 𝑣𝑘) 𝑂𝑃 ... 𝑂𝑃 (𝐴𝑙 = 𝑣𝑙)”,
the actual values in the query conditions (e.g., 𝑣𝑘
and 𝑣𝑙) should be represented in the unary form.
Then, a set of 𝑐 secret-shares should be created
for each bit of them by the data user u, where 𝑐 is
the number of non-communicating servers. Such
a process is explained in Example 1 in Section 2.2.
Assume that the pth set of secret-shares for all
bits of the values of 𝑣𝑘 and 𝑣𝑙 is denoted as 𝑆(𝑣𝑘)𝑝
and 𝑆(𝑣𝑙)𝑝, respectively. Then, these secret-shares

Table 9
Types of Supported Aggregation Queries in Our Proposed Approach

Aggregation SQL Query Type Query Format

Simple Aggregation SQL Queries select 𝛼(𝐴𝑖) from R
Multi-Dimensional Aggregation SQL Queries select 𝛼(𝐴𝑖) from R where (𝐴𝑘=𝑣𝑘) 𝑂𝑃 ... 𝑂𝑃 (𝐴𝑙=𝑣𝑙)
Note: 𝛼 can be ”count”, ”sum”, or ”avg” and 𝑂𝑃 can be ”∧” or ”∨” operator.

are replaced by the actual values in the query
conditions to hide the query pattern from every
individual server. Thus, the query 𝑄2𝑝 in the form
of ”select 𝛼(𝐴𝑖) from R where (𝐴𝑘 = 𝑆(𝑣𝑘)𝑝) 𝑂𝑃
... 𝑂𝑃 (𝐴𝑙 = 𝑆(𝑣𝑙)𝑝)” will be distributed to the pth
server.

5.2.1. Discussion about Information Leakage

By employing different polynomials to create a set of
secret shares for each value in each query condition, our
proposed solution hides the query pattern of the submit-
ted aggregation SQL query from adversaries. This ap-
plies specifically to multi-dimensional aggregation SQL
queries, where the query pattern remains undisclosed.
Conversely, in the case of simple aggregation SQL queries
without any query conditions, there is no need to worry
about query patterns being obvious. However, it is worth
mentioning that adversaries can acquire information
about the submitted query, such as the type of query
(i.e., simple or multi-dimensional), the specific type of
aggregation function used (i.e., ”count,” ”sum,” or ”avg”),
the attribute to which the aggregation function is ap-
plied, and the total number of conjunctive or disjunctive
equality query conditions. Nevertheless, this informa-
tion alone does not enable adversaries to ascertain the
exact values of outsourced data, associated access control
policies, query conditions, or query results, as they are
all represented in the form of secret shares.

5.3. Query Rewriting and Processing
In our proposed solution, every individual server per-
forms the tasks of query rewriting and query processing
without the need for communicating with other entities.

5.3.1. Query Rewriting

When an aggregation SQL query is submitted by the data
user u on relation R, it is necessary for QFilter to check
the set of ABAC policies attached to relation R to restrict
the query result to the only data items which the data
user u has access to. In the following, we explain in
detail how QFilter obliviously rewrites an aggregation
SQL query at the server side.

1. Simple aggregation SQL queries: Assume that the
aggregation SQL query 𝑄𝑝 = ”select 𝛼(𝐴𝑖) from 𝑅”

is sent from the data user u to the pth server and
𝐹𝑝 is relation 𝑅𝑡𝑝 in the case of tuple level access
control and relation 𝑅𝑎𝑝 in the case of attribute/cell
level access control outsourced on the pth server.
This query is rewritten as follows: 𝑄

′
𝑝 = ”select

𝛼(𝐴𝑖) from 𝐹𝑝where (𝛽 = 𝑆(𝑈𝐺1)𝑝) ∨ (𝛽 = 𝑆(𝑈𝐺2)𝑝)
∨ ... ∨ (𝛽 = 𝑆(𝑈𝐺𝑞)𝑝)”, where 𝛽 is the attribute 𝛼
in relation 𝑅𝑡𝑝 or attribute 𝐴𝛼

𝑖 in relation 𝑅𝑎𝑝, and
𝑆(𝑈𝐺𝑥)𝑝 is the secret-share of the xth user group
𝑈𝐺 (∀1 ≤ 𝑥 ≤ 𝑞) in relation 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜𝑝 which the
data user u is a member of. In the process of query
rewriting, we need to add a query condition in
the WHERE clause of the query 𝑄

′
𝑝 for each user

group which the data user u is member of since
the data user u can be a member of different user
groups and the set of ABAC policies are mapped
into user groups in the system.

2. Multi-dimensional aggregation SQL queries: As-
sume that the aggregation SQL query 𝑄𝑝 = ”select
𝛼(𝐴𝑖) from 𝑅 where (𝐴𝑘 = 𝑆(𝑣𝑘)𝑝) 𝑂𝑃 ... 𝑂𝑃 (𝐴𝑙 =
𝑆(𝑣𝑙)𝑝)” is sent from the data user u to the pth
server and 𝐹𝑝 is relation 𝑅𝑡𝑝 in the case of tuple
level access control and relation 𝑅𝑎𝑝 in the case of
attribute/cell level access control outsourced on
the pth server. This query is rewritten as follows:
𝑄

′
𝑝 = ”select 𝛼(𝐴𝑖) from 𝐹𝑝 where (𝐴𝑘 = 𝑆(𝑣𝑘)𝑝) 𝑂𝑃

... 𝑂𝑃 (𝐴𝑙 = 𝑆(𝑣𝑙)𝑝) ∧ ((𝛽 = 𝑆(𝑈𝐺1)𝑝) ∨ (𝛽 = 𝑆(𝑈𝐺2)𝑝)
∨ ... ∨ (𝛽 = 𝑆(𝑈𝐺𝑞)𝑝))”, where 𝛽 is the attribute 𝛼
in relation 𝑅𝑡𝑝 or attribute 𝐴𝛼

𝑖 in relation 𝑅𝑎𝑝, and
𝑆(𝑈𝐺𝑥)𝑝 is the secret-share of the xth user group
𝑈𝐺 (∀1 ≤ 𝑥 ≤ 𝑞) in relation 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜𝑝 which
the data user u is a member of. In this case, a
set of query conditions is added in the WHERE
clause of the query 𝑄

′
𝑝 using ”∧” operator. These

query conditions are specified for the user groups
which the data user u is member of and each two
query conditions are combined together using ”∨”
operator.

Example 12. Assume that the data user 𝑢1 with the cre-
dential 𝑐1 wishes to submit the query Q in the form of
”Select count(Balance) from Account where (Account Type
= ”checking”)” on relation Account (in Table 5). Such a
query is distributed to the pth server in the form of ”Se-
lect count(Balance) from Account where (Account Type
= 𝑆(𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔)𝑝)”. Next, this query is rewritten by the
pth server as follows: ”Select count(Balance) from Ac-

count where (Account Type = 𝑆(𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔)𝑝) ∧ ((𝐶𝑜𝑢𝑛𝑡 =
𝑆(𝐺1)𝑝)∨(𝐶𝑜𝑢𝑛𝑡 = 𝑆(𝐺3)𝑝)) since the data user 𝑢1 with the
credential 𝑐1 is a member of user groups 𝐺1 and 𝐺3 (refer
to Table 8).

5.3.2. Query Processing

In query processing, the pth server (∀1 ≤ 𝑝 ≤ 𝑐) exe-
cutes the pth aggregation SQL query 𝑄

′
𝑝 over the pth

outsourced relation 𝐹𝑝 (i.e., relation 𝑅𝑡𝑝 in the case of
tuple level access control and relation 𝑅𝑎𝑝 in the case of at-
tribute/cell level access control) and filters the data items
that do not satisfy the query conditions in the query 𝑄

′
𝑝.

To find the result of string matching (i.e., which can be
”0” or ”1” in the form of secret-share) for each query
condition in the query 𝑄

′
𝑝, the operator ⊙ as the string

matching operator is used by the pth server including a
bit-wise multiplication followed with an addition over all
values of bits of secret-shares in the unary representation
form. It is defined as follows:

𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝑦 =
⎧

⎨
⎩

𝑆(𝑣(𝛼)𝑧)𝑝 ⊙ 𝑆(𝑣𝑦)𝑝 if 𝛽 = 𝛼
𝑆(𝑣(𝐴𝛼

𝑦)𝑧)𝑝 ⊙ 𝑆(𝑣𝑦)𝑝 if 𝛽 = 𝐴𝛼
𝑖

𝑆(𝑣(𝐴𝑦)𝑧)𝑝 ⊙ 𝑆(𝑣𝑦)𝑝 otherwise

where 𝑆(𝑣(𝛼)𝑧)𝑝 is the secret-share of attribute 𝛼 in the
zth tuple of relation 𝐹𝑝 (i.e., 𝑅𝑡𝑝), 𝑆(𝑣(𝐴𝛼

𝑦)𝑧)𝑝 is the secret-
share of attribute 𝐴𝛼

𝑦 in the zth tuple of relation 𝐹𝑝 (i.e.,
𝑅𝑎𝑝), 𝑆(𝑣(𝐴𝑦)𝑧)𝑝 is the secret-share of attribute 𝐴𝑦 in the
zth tuple of relation 𝐹𝑝 (i.e., 𝑅𝑡𝑝 or 𝑅𝑎𝑝), and 𝑆(𝑣𝑦)𝑝 is the
secret-share of the corresponding query condition in the
query 𝑄

′
𝑝. It should be noted that 𝛼 is the aggregation

function in the query 𝑄
′
𝑝. Table 4 in Example 1 shows

how this operator can be used by every individual server
for obliviously searching the string pattern ”checking”
over outsourced data.

The results of string matching can be used to compute
the result of a specific aggregation function in the form
of secret-share at the pth server. Such a process varies
depending on the type of aggregation functions. In the
following, we explain in detail how to exploit the result
of string matching to process aggregation functions.

1. Count Function: The result of an aggregation
SQL query including ”count” function can be com-
puted by the pth server using the following oper-
ation:

𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑛
∑
𝑧=1

(((𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝐴𝑘
⊛ ...) ⊛ 𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝐴𝑙

))∧

(((𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝛽1 ∨ 𝑅𝑒𝑠𝑢𝑙𝑡
𝑧
𝛽2) ∨ ... ∨ 𝑅𝑒𝑠𝑢𝑙𝑡

𝑧
𝛽𝑞))

where ⊛ is 𝑂𝑃 (i.e, ∧ or ∨), 𝐴𝑘, ..., 𝐴𝑙 are the
set of attributes in the WHERE clause of query
𝑄𝑝 (and 𝑄

′
𝑝), and 𝛽𝑖 is the ith 𝛽 in the WHERE

clause of query 𝑄
′
𝑝 (∀1 ≤ 𝑖 ≤ 𝑞). To capture

the operation ”∧” and compute the final result
of (𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝑖 ∧ 𝑅𝑒𝑠𝑢𝑙𝑡

𝑧
𝑗) in the form of secret-share

for each tuple z, the pth server executes the fol-
lowing computation:

𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝑖𝑗 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝑖 × 𝑅𝑒𝑠𝑢𝑙𝑡
𝑧
𝑗

To capture the operation ”∨” and compute the
final result of (𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝑖 ∨ 𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝑗) in the form of
secret-share for each tuple z, the pth server exe-
cutes the following computation:

𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝑖𝑗 = 𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝑖 + 𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝑗 − 𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝑖 × 𝑅𝑒𝑠𝑢𝑙𝑡
𝑧
𝑗

The correctness of the output of ”count” function
can be described as if the zth tuple has ”0” in the
form of secret-share as a comparison resultant
of (((𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝐴𝑘

⊛ ...) ⊛ 𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝐴𝑙
)) or (((𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝛽1 ∨

𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝛽2) ∨ ... ∨ 𝑅𝑒𝑠𝑢𝑙𝑡
𝑧
𝛽𝑞)), it will produce ”0” in the

secret-share form as the result of this operation
for the zth tuple; therefore, the zth tuple will not
counted as the result of this operation. Thus, the
correct occurrences over all tuples that satisfy the
query’s WHERE clause are counted as the result
of this operation.

2. Sum Function: The result of an aggregation SQL
query including ”sum” function can be computed
by the pth server using the following operation:

𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑛
∑
𝑧=1

𝑆(𝑣(𝐴𝑖)𝑧)𝑝×(((𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝐴𝑘
⊛...)⊛𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝐴𝑙

)

∧(((𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝛽1 ∨ 𝑅𝑒𝑠𝑢𝑙𝑡
𝑧
𝛽2) ∨ ... ∨ 𝑅𝑒𝑠𝑢𝑙𝑡

𝑧
𝛽𝑞)))

where 𝐴𝑖 is the attribute which the aggregation
function ”sum” is applied on, 𝑆(𝑣(𝐴𝑖)𝑧)𝑝 is the
secret-share of the attribute 𝐴𝑖 of zth tuple of re-
lation 𝐹𝑝, ⊛ is 𝑂𝑃 (i.e, ∧ or ∨), 𝐴𝑘, ..., 𝐴𝑙 are the set
of attributes in the WHERE clause of query 𝑄𝑝
(and 𝑄

′
𝑝), and 𝛽𝑖 is the ith 𝛽 in the WHERE clause

of query 𝑄
′
𝑝 (∀1 ≤ 𝑖 ≤ 𝑞). The process of computa-

tion to find the final results of (𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝑖 ∨ 𝑅𝑒𝑠𝑢𝑙𝑡
𝑧
𝑗)

and (𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝑖 ∧ 𝑅𝑒𝑠𝑢𝑙𝑡
𝑧
𝑗) for each tuple z is similar

to this process in ”count” function. In addition,
the argument for the correctness of ”sum” opera-
tion is similar to the correctness of the operation
”count”.

3. Avg Function: The result of an aggregation SQL
query including ”avg” function can be computed
by dividing the result of corresponding aggrega-
tion SQL query including ”sum” function by the
result of corresponding aggregation SQL query
including ”count” function. In this case, every in-
dividual server sends the query results for these
two queries to the data user u. Upon arrival of

Table 10
Execution of Multi-Dimensional SQL Query including ”Count” Function

Account Type Value of the First Condition 𝑅𝑒𝑠𝑢𝑙𝑡𝑘𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑇 𝑦𝑝𝑒 Count Value of the Second Condition 𝑅𝑒𝑠𝑢𝑙𝑡𝑘𝐶𝑜𝑢𝑛𝑡1 Count Value of the Third Condition 𝑅𝑒𝑠𝑢𝑙𝑡𝑘𝐶𝑜𝑢𝑛𝑡2

𝑆(𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔)𝑝 𝑆(𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔)𝑝 𝑆(1) 𝑆(𝐺1)𝑝 𝑆(𝐺1)𝑝 𝑆(1) 𝑆(𝐺1)𝑝 𝑆(𝐺3)𝑝 𝑆(0)
𝑆(𝑠𝑎𝑣 𝑖𝑛𝑔)𝑝 𝑆(𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔)𝑝 𝑆(0) 𝑆(𝐺0)𝑝 𝑆(𝐺1)𝑝 𝑆(0) 𝑆(𝐺0)𝑝 𝑆(𝐺3)𝑝 𝑆(0)
𝑆(𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔)𝑝 𝑆(𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔)𝑝 𝑆(1) 𝑆(𝐺2)𝑝 𝑆(𝐺1)𝑝 𝑆(0) 𝑆(𝐺2)𝑝 𝑆(𝐺3)𝑝 𝑆(0)

the query results, the data user u utilizes them
to compute the result of aggregation SQL query
including ”avg” function.

Example 13. Assume that the query 𝑄
′
𝑝 in the form of

”Select count(Balance) from Account where (Account Type
= 𝑆(𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔)𝑝) ∧ ((𝐶𝑜𝑢𝑛𝑡 = 𝑆(𝐺1)𝑝) ∨ (𝐶𝑜𝑢𝑛𝑡 = 𝑆(𝐺3)𝑝))”
is the output of the query rewriting process by the pth server
(Refer to Example 12). Table 10 shows how do the pth server
executes this query using string matching based operations.
The results of string matching are used to compute the
result of the query 𝑄

′
𝑝 at the pth server using the following

operation:

𝑜𝑢𝑡𝑝𝑢𝑡 =
3

∑
𝑧=1

(𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑇 𝑦𝑝𝑒 ∧ (𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝐶𝑜𝑢𝑛𝑡1 ∨ 𝑅𝑒𝑠𝑢𝑙𝑡𝑧𝐶𝑜𝑢𝑛𝑡2)) =

(𝑆(1)∧(𝑆(1)∨𝑆(0)))+(𝑆(0)∧(𝑆(0)∨𝑆(0)))+(𝑆(1)∧(𝑆(0)∨𝑆(0))) =

𝑆(1) + 𝑆(0) + 𝑆(0) = 𝑆(1).

Note that this process will be performed on the unary repre-
sentation form of secret-shares. However, we show cleartext
values for simple explanation here.

5.3.3. Discussion about Information Leakage

By rewriting the aggregation SQL query Q and introduc-
ing a set of q query conditions in the WHERE clause,
where q represents the number of user groups the data
user belongs to in the relation 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜𝑖, the query pat-
tern of Q remains hidden from adversaries. The inclusion
of secret shares of the relation 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜𝑖 in query condi-
tions prevents adversaries from inferring any informa-
tion about user groups or their associated access control
policies. Additionally, the total number of user groups
to which the data user belongs can be obscured by the
presence of fake user groups in the relation 𝑢𝑠𝑒𝑟 𝐼 𝑛𝑓 𝑜𝑖. By
employing string matching-based operators for comput-
ing the aggregation functions ”count” and ”sum” in the
query Q, QFilter conceals the access pattern during query
processing and access authorization checking. This en-
sures that the identity of tuples satisfying or being filtered
out from the query Q remains hidden from adversaries
since these operators include bit-wise multiplication fol-
lowed by addition over all values of bits of secret-shares
of attributes that appear in the query condition for each
tuple. Therefore, string matching-based operators oblivi-
ously search for string pattern matching. Moreover, the
actual values and sizes of query results are masked from

adversaries, as the output of Q is provided in the form of
secret shares with an identical number of bits. Addition-
ally, it is assumed that there are no conflicts among the
access control policies specified for the aggregation func-
tions ”sum” and ”count” in each data item. Therefore,
utilizing string matching-based operators to compute
these aggregation functions, instead of computing the
aggregation function ”avg”, does not leak any sensitive
information. This assumption is based on the premise
that either the aggregation functions ”count” and ”sum”
are allowed to be performed for a data item by setting
the same user group for that data item, or at least one
of them is denied by setting the user group of that data
item as 𝐺0. It should be noted that although adversaries
may obtain some information about the rewritten query
such as the exact type of submitted query (i.e., simple and
multi-dimensional queries), the specific type of aggrega-
tion function used in the query (i.e., ”count”, ”sum”, and
”avg”), the attribute to which the aggregation function is
applied, and the total number of conjunctive or disjunc-
tive equality query conditions, this information alone
cannot help adversaries learn about the exact value of
outsourced data, associated access control policies, query
conditions, and query results. This is because they are
represented in a secret-shared form.

5.4. Query Result Collection
After receiving the query results in the form of secret
shares with an identical number of bits from different
servers, the data user performs the Lagrange interpola-
tion operation on the received results to obtain the final
answer for the submitted aggregation SQL query. This
process is explained in Example 1 in Section 2.2.

5.5. Complexity of Our Approach
Table 11 presents the complexity of our proposed so-
lution for processing various types of aggregation SQL
queries. As depicted in Table 11, our solution entails
a single communication round between the data user
and every individual server, as well as one computation
round to scan the tuples during the server-side query
processing for all types of aggregation SQL queries. To
interpolate the query results at the data user side, only
one computation round is needed for aggregation SQL
queries including the ”count” or ”sum” functions. For
aggregation SQL queries including the ”avg” function,

Table 11
Complexity of Our Proposed Approach

Aggregation SQL Query Computation Rounds at the Server Side Communication Rounds Computation Rounds at the Data User Side

Aggregation Queries including ”count” Function 1 1 1
Aggregation Queries including ”sum” Function 1 1 1
Aggregation Queries including ”avg” Function 1 1 2

it requires two computation rounds (one for ”sum” and
one for ”count”) to perform the Lagrange interpolation
operation.

6. Experimental Evaluation
In this section, we evaluate the overhead of QFilter for
data outsourcing and privacy preserving query process-
ing through preliminary experiments.

6.1. Setup
We implemented QFilter using JAVA programming lan-
guage and conducted our experiments on a machine
equipped with a 3.60 GHz Intel® Core™ i7-7700 CPU
and 16 GB of RAM. This machine was utilized by the
data owner, data user, and every server involved in our
experiments.
For generating datasets, we employed the LINEITEM

relation from the TPC-H benchmark. To prevent an ad-
versary to learn about the distribution of values in the
LINEITEM relation, we added a set of zeros to the left side
of the unary representation of values in such a way that
all values contain identical bits. To create secret shares
for the values in the LINEITEM relation, we selected dif-
ferent polynomials of degree 1 with randomly generated
coefficients. Table 12 provides a comprehensive list of
the parameters used in our experiments, along with their
corresponding values.

Table 12
List of Parameters and Their Values

Parameter Value

Number of Servers 5, 15 (default), 25
Number of Tuples 100K (default), 250K, 500K
Number of Attributes 3, 4 (default), 5, 7

In our setting, we randomly selected 50% of the data
items in the LINEITEM relation as accessible data items
and assigned them to the user group 𝐺1. Conversely,
all inaccessible data items were assigned to the default
user group 𝐺0 (i.e., the Min User Group). We made the
assumption that the data user submitting an aggregation
SQL query belongs to the user group 𝐺1.
We utilized a set of aggregation SQL queries in our

experiments, named in the form of F-XYZ. Here, F de-
notes the type of aggregation function in the query (C

for ”Count”, S for ”Sum”, and A for ”Avg”), XY represents
the type of queries (SI for ”Simple”, CE for ”Conjunctive
Equality”, and DE for ”Disjunctive Equality”), and Z de-
notes the number of query conditions in the WHERE
clause of the query (i.e., 0, 2, and 4).
In [42], it is demonstrated that the utilization of the

AA method [48] for privacy-preserving query processing
has outperformed existing approaches. Therefore, our
main focus here is to evaluate the overhead of QFilter for
data outsourcing and privacy preserving query process-
ing in two cases: tuple-level and attribute-level policy
attachments.

6.2. Experimental Results
In this section, we present the preliminary experimental
results to demonstrate the performance overhead of QFil-
ter for data outsourcing and privacy-preserving query
processing.

6.2.1. Computation at the Data Owner Side

Table 13 displays the average time required to create se-
cret shares for the LINEITEM relation, as well as the total
size of the generated dataset. In these measurements, we
considered a scenario where the number of attributes
was 4, the number of servers was 15, and no access policy
was attached to the relation.

Table 13
Average Time and Total Size for Creating Secret Shares

No. of Tuples Avg Time Time for Each Attribute Total Size Size of Each Attribute

100K 12.7832 s 2.13 × 10−6 s 94.16 MB 16 Byte
250K 32.1551 s 2.14 × 10−6 s 235.41 MB 16 Byte
500K 64.5962 s 2.15 × 10−6 s 470.82 MB 16 Byte

As observed in Table 13, it is evident that both the av-
erage time to create secret shares and the total size of the
generated dataset increase with an increasing number
of tuples in the LINEITEM relation. QFilter requires 16
bytes to store each value of the LINEITEM relation in
unary representation form due to the uniform bit length
of all values within the LINEITEM relation. However, the
creation of secret shares can still be accomplished within
a short period of time (approximately 2.15 microseconds
for each attribute of the LINEITEM relation). Similar
results are obtained when the number of attributes in-
creases. It should be noted that attributes can be added to

the LINEITEM relation to specify access policies. How-
ever, the number of attributes to be added depends on
the type of policy attachment, whether it is at the tuple
level or the attribute/cell level.

Figure 2 shows the impact of number of attributes and
tuples on the computational overhead of QFilter to create
secret shares for both types of policy attachments. As
shown in Figure 2a, the computational overhead to create
secret shares for the tuple-level policy attachment de-
creases when the number of attributes in the LINEITEM
relation increases. The reason is that only two new at-
tributes should be added to the LINEITEM relation for the
aggregation functions ”count” and ”sum” in our proposed
approach. However, increasing the number of attributes
in the case of attribute-level policy attachment does not
have any effect on the computational overhead. This
is due to the fact that two new attributes (for ”count”
and ”sum” functions) should be added in our proposed
solution to specify ABAC policies for each attribute of
the LINEITEM relation. It is also clear from Figure 2b
that the number of tuples does not have any effect on the
computational overhead for both types of policy attach-
ments. This is because new attributes should be added
for each tuple of the LINEITEM relation in the process
of policy attachment.

𝑇𝑢𝑝𝑙𝑒 − 𝐿𝑒𝑣𝑒𝑙 𝐴𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒 − 𝐿𝑒𝑣𝑒𝑙

3 5 7
0
50
100
150
200

Number of Attributes

O
ve
rh
ea
d
(%
)

(a) Impact of No. of Attributes

100K 250K 500K
0
50
100
150
200

Number of Tuples

O
ve
rh
ea
d
(%
)

(b) Impact of No. of Tuples

Figure 2: Computational Overhead at the Data Owner Side

Based on the experimental results shown here, it
is obvious that there is a trade-off between enforcing
finer granularity of access control and the computational
overhead for creating secret shares. QFilter provides
finer granularity to specify ABAC policies in the case of
attribute-level policy attachment, but it imposes more
computational overhead compared to the tuple-level pol-
icy attachment for creating secret shares at the data
owner side.

6.2.2. Computation at the Server Side

Figure 3 illustrates the computation time required to pro-
cess different aggregation SQL queries for both types of
policy attachments at the server side. As depicted in Fig-
ure 3, the computation time for processing SQL queries
including the aggregation function ”sum” is longer com-
pared to SQL queries including the aggregation function

”count”. This is due to the need for an additional mul-
tiplication operation for each tuple in the outsourced
relation. Furthermore, the computation time for process-
ing SQL queries including the aggregation function ”avg”
is approximately the same as the computation time for
processing the corresponding SQL query with the aggre-
gation function ”sum”. This is because the process of
computing the result of the aggregation function ”avg” at
the server side is accomplished by simultaneously com-
puting the results of the corresponding aggregation SQL
queries, including the aggregation functions ”sum” and
”count”. Since the ”sum” function hasmore overhead com-
pared to the ”count” function, the overall computation
times for processing the aggregation functions ”sum” and
”avg” remain similar. We also observed that as the num-
ber of query conditions increases, the computation time
also increases, primarily due to the increased number of
multiplications. Additionally, the computation time for
processing aggregation SQL queries with attribute-level
policy attachment is always longer than that with tuple-
level policy attachment. This difference can be attributed
to the longer data fetching and query processing time in
the case of attribute-level policy attachment.

𝑇𝑢𝑝𝑙𝑒 − 𝐿𝑒𝑣𝑒𝑙 𝐴𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒 − 𝐿𝑒𝑣𝑒𝑙

C-SI0 S-SI0 A-SI0 C-CE2 S-CE2 A-CE2 C-CE4 S-CE4 A-CE4 C-DE2 S-DE2 A-DE2C-DE4 S-DE4 A-DE4

2

4

⋅109

Query Name

C
om

pu
ta
ti
on

Ti
m
e
(n
s)

Figure 3: Computation Time for Processing Aggregation SQL
Queries

Based on the experimental results presented here, it is
apparent that the computational overhead for processing
an aggregation SQL query at the server side can vary
depending on several factors. These factors include the
type of query, the specific aggregation function used,
the number of query conditions, and the type of policy
attachment.

6.2.3. Computation at the Data User Side

Figure 4a illustrates the computation time for creating
secret shares of the values of query conditions for ag-
gregation SQL queries C-SI0, C-CE2, and C-CE4 at the
data user side, considering varying numbers of servers.
The computation time increases with a higher number
of servers and query conditions due to additional com-
putations required. However, the process can still be
completed quickly. Figure 4b displays the computation
time for the Lagrange interpolation operation on received

results from different servers to obtain the final answer
for aggregation SQL queries C-SI0, C-CE2, and C-CE4 for
both types of policy attachments. As shown in Figure 4b,
the computation time at the data user side is approxi-
mately the same for both types of policy attachments
and different types of aggregation SQL queries since the
total number of received results from different servers
remains constant. It is worth noting that similar results
were observed for other aggregation SQL queries.

𝐶 − 𝑆𝐼0 𝐶 − 𝐶𝐸2 𝐶 − 𝐶𝐸4

5 15 25
0

0.5

1
⋅106

Number of Servers

C
om

pu
ta
ti
on

Ti
m
e
(n
s)

(a) Query Distribution

𝑇𝑢𝑝𝑙𝑒 − 𝐿𝑒𝑣𝑒𝑙 𝐴𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒 − 𝐿𝑒𝑣𝑒𝑙

C-SI0 C-CE2 C-CE4
0

0.5

1

1.5

2 ⋅106

Type of Query

C
om

pu
ta
ti
on

Ti
m
e
(n
s)

(b) Result Collection

Figure 4: Computation Time at the Data User Side

Based on the experimental results presented here, it is
clear that the computation time for both creating secret
shares of the values of query conditions in an aggregation
SQL query and performing the Lagrange interpolation
operation on received results at the data user side is neg-
ligible. This indicates that data users can utilize devices
with limited resources to submit aggregation SQL queries
and obtain the query results using QFilter.

7. Related Works
In theory, it is possible to utilize Fully Homomorphic
Encryption (FHE) [20, 21, 22, 23, 24] to perform arbitrary
query processing operations on a relation, but it is ex-
tremely complex and cannot practically support various
types of queries [11, 10, 53]. By contrast, QFilter employs
Shamir’s secret sharing scheme which can efficiently pro-
cess aggregation SQL queries over secret-shared data.

Several proposals have been suggested to improve the
performance of FHE by utilizing specific hardware such
as GPUs [54, 55, 56, 57]. However, this technique can-
not be applied to low-cost hardware. In contrast, QFilter
can be run on any hardware. Another solution to over-
come the limitations of FHE is to employ Intel SGX as a
hardware-assisted Trusted Execution Environment (TEE),
which offers high computational efficiency, generality,
and flexibility [58, 59, 60, 61]. However, this solution
exposes access patterns due to side-channel attacks (such
as cache timing [62, 63, 64], branch shadowing [65], and
page fault attacks [66, 67]) on Intel SGX. In contrast, QFil-
ter can obliviously evaluate aggregation SQL queries over
secret-shared data without revealing access patterns and
query patterns.

Attribute Based Encryption (ABE) is a public key
cryptographic technique that achieves data confidential-
ity, data privacy, and access control in data outsourc-
ing [68, 69]. It is mainly classified into two types: Key-
Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-
ABE). In KP-ABE solutions [31, 32, 33, 34], the cipher-
text is based on user attributes, and the user’s secret
keys are based on access policies, while in CP-ABE so-
lutions [35, 36, 37], the ciphertext is based on access
policies, and the user’s secret keys are based on user
attributes. However, these solutions may inadvertently
expose user attributes and access policies to the public
and are vulnerable to inference attacks [38, 39]. In con-
trast, QFilter can protect both the privacy of data users
and the privacy of access policies.

8. Conclusion and Future Works
In this paper, we proposed QFilter to integrate an
Attribute-Based Access Control (ABAC) model with ag-
gregation query processing. Our proposed ABAC model
was able to specify complex access control policies at
the tuple, attribute, or cell level of the outsourced rela-
tion. QFiler used an oblivious query rewriting technique
to add new query conditions for access authorization
checking during query processing at the server side. To
obliviously process aggression SQL queries (i.e., ”count”,
”sum”, and ”avg” having single-dimensional, conjunc-
tive (using ”AND”), and disjunctive (using ”OR”) equality
query conditions) over secret-shared data, QFilter used a
set of string matching-based operators to compute query
results without the need for communication between
servers. We showed that QFilter was able to protect the
privacy of outsourced data, its associated access con-
trol policies, query conditions, and query results from
the honest-but-curious adversaries. Experimental results
demonstrated that QFilter had lower overhead in the case
of tuple level policy attachment and could be used for
real-world applications.
In our future plans for extending QFilter, we aim to

explore various directions, which include the following:

1. Design algorithms to process aggregation func-
tions ”min” and ”max” in an aggregation SQL
query by combining an order-preserving secret
sharing (OP-SS) schemewith Shamir’s secret shar-
ing scheme. This combination will allow for the
secure distribution of data while preserving the
order of the secret-shared values.

2. Design an algorithm to process aggregation SQL
queries with ”group-by” and ”having” clauses in
an efficient and privacy-preserving manner with-
out knowing the unique values of the attribute
on which the group-by query is executed on.

3. Design an algorithm to create a set of bins over
the domain of the attribute values and organize
these bins into an index tree, which can be used
to process range queries over secret shared data.

4. Design algorithms to process complex aggrega-
tion SQL queries, including multiple aggregation
functions with inequality conditions in the query.

5. Conduct a comprehensive experiment to evaluate
the efficiency and scalability of QFilter compared
to existing approaches for privacy-preserving
query processing.

Acknowledgments
This work was partially funded by the BMWK project
SafeFBDC (01MK21002K), the National Research Center
ATHENE, and the BMBF project TrustDBle (16KIS1267).
We also want to thank hessian.AI at TU Darmstadt as
well as DFKI Darmstadt for the support.

References
[1] J. Li, D. Lin, A. C. Squicciarini, J. Li, C. Jia, Towards

privacy-preserving storage and retrieval in multiple
clouds, IEEE Transactions on Cloud Computing 5
(2017) 499–509.

[2] M. Li, S. Yu, K. Ren, W. Lou, Y. T. Hou, Toward
privacy-assured and searchable cloud data storage
services, IEEE Network 27 (2013) 56–62.

[3] Y. Mansouri, A. N. Toosi, R. Buyya, Data storage
management in cloud environments: Taxonomy,
survey, and future directions, ACM Computing
Surveys 50 (2018) 1–51.

[4] J. Wei, W. Liu, X. Hu, Secure data sharing in cloud
computing using revocable-storage identity-based
encryption, IEEE Transactions on Cloud Comput-
ing 6 (2018) 1136–1148.

[5] C. Ge, W. Susilo, Z. Liu, J. Xia, P. Szalachowski,
L. Fang, Secure keyword search and data sharing
mechanism for cloud computing, IEEE Transactions
on Dependable and Secure Computing 18 (2021)
2787–2800.

[6] C. Wang, N. Cao, K. Ren, W. Lou, Enabling se-
cure and efficient ranked keyword search over out-
sourced cloud data, IEEE Transactions on Parallel
and Distributed System 23 (2012) 1467–1479.

[7] R. S. Sandhu, P. Samarati, Access control: principle
and practice, IEEE communications magazine 32
(1994) 40–48.

[8] I. Indu, P. M. R. Anand, V. Bhaskar, Identity and
access management in cloud environment: Mecha-
nisms and challenges, Engineering science and tech-
nology, an international journal 21 (2018) 574–588.

[9] S. Rizvi, A. Mendelzon, S. Sudarshan, P. Roy, Ex-
tending query rewriting techniques for fine-grained
access control, in: Proceedings of the 2004 ACM
SIGMOD international conference on Management
of data, ACM Press, New York, NY, USA, 2004, p.
551–562.

[10] M. I. Sarfraz, M. Nabeel, J. Cao, E. Bertino, Dbmask:
Fine-grained access control on encrypted relational
databases, Transactions on Data Privacy 9 (2016)
187–214.

[11] M. I. Sarfraz, M. Nabeel, J. Cao, E. Bertino, Dbmask:
Fine-grained access control on encrypted relational
databases, in: Proceedings of the 5th ACM Confer-
ence on Data and Application Security and Privacy,
ACM Press, New York, NY, USA, 2015, pp. 1–11.

[12] J.-G. Lee, K.-Y. Whang, W.-S. Han, I.-Y. Song, The
dynamic predicate: integrating access control with
query processing in xml databases, The VLDB Jour-
nal 16 (2007) 371–387.

[13] M. Mirabi, H. Ibrahim, L. Fathi, N. I. Udzir, A. Ma-
mat, A dynamic compressed accessibility map for
secure xml querying and updating, Journal of In-
formation Science & Engineering 31 (2015) 59–93.

[14] M. Mirabi, H. Ibrahim, N. I. Udzir, A. Mamat, A
compact bit string accessibility map for secure xml
query processing, Procedia Computer Science 10
(2012) 1172–1179.

[15] B. Luo, D. Lee, W.-C. Lee, P. Liu, Qfilter: fine-
grained run-time xml access control via nfa-based
query rewriting, in: Proceedings of the 13 ACM
international conference on Information and knowl-
edge management, ACM Press, New York, NY, USA,
2004, p. 543–552.

[16] R. A. Popa, C. M. S. Redfield, N. Zeldovich, H. Bal-
akrishnan, Cryptdb: Protecting confidentiality with
encrypted query processing, in: Proceedings of the
23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP ’11), ACM Press, New York, NY, USA,
2011, pp. 85–100.

[17] D. T. T. Anh, A. Datta, Streamforce: outsourcing
access control enforcement for stream data to the
clouds, in: Proceedings of the 4th ACM conference
on Data and application security and privacy, ACM
Press, New York, NY, 2014, p. 13–24.

[18] C. Thoma, A. J. Lee, A. Labrinidis, Polystream:
Cryptographically enforced access controls for out-
sourced data stream processing, in: Proceedings
of the 21st ACM on Symposium on Access Control
Models and Technologies, ACM Press, New York,
NY, USA, 2016, p. 227–238.

[19] J. Li, J. Li, Z. Liu, C. Jia, Enabling efficient and secure
data sharing in cloud computing, Concurrency and
Computation: Practice and Experience 26 (2014)
1052–1066.

[20] M. Mani, Enabling secure query processing in the

cloud using fully homomorphic encryption, in: Pro-
ceedings of the SecondWorkshop onData Analytics
in the Cloud, ACM Press, New York, NY, USA, 2013,
pp. 36–40.

[21] M. Kim, H. T. Lee, S. Ling, B. H. M. Tan, H. Wang,
Private compound wildcard queries using fully ho-
momorphic encryption, IEEE Transactions on De-
pendable and Secure Computing 16 (2019) 743–756.

[22] D. Boneh, C. Gentry, S. Halevi, F. Wang, D. J. Wu,
Private database queries using somewhat homomor-
phic encryption, in: Proceedings of International
Conference on Applied Cryptography and Network
Security, Springer-Verlag, Berlin, Germany, 2013,
pp. 102–118.

[23] M. Kim, H. T. Lee, S. Ling, H. Wang, On the effi-
ciency of fhe-based private queries, IEEE Trans-
actions on Dependable and Secure Computing 15
(2018) 357–363.

[24] B. H. M. Tan, H. T. Lee, H. Wang, S. Ren, K. M. M.
Aung, Efficient private comparison queries over
encrypted databases using fully homomorphic en-
cryption with finite fields, IEEE Transactions
on Dependable and Secure Computing 18 (2021)
2861–2874.

[25] E. Damiani, S. D. C. Vimercati, S. Jajodia, S. Para-
boschi, P. Samarati, Balancing confidentiality and
efficiency in untrusted relational dbmss, in: Pro-
ceedings of the 10th ACM conference on computer
and communications security, ACM Press, New
York, NY, USA, 2003, p. 93–102.

[26] S. Wang, D. Agrawal, A. E. Abbadi, A comprehen-
sive framework for secure query processing on re-
lational data in the cloud, in: Workshop on Secure
Data Management, Springer-Verlag, Berlin, Ger-
many, 2011, p. 52–69.

[27] M. Nabeel, E. Bertino, Privacy preserving dele-
gated access control in public clouds, IEEE Transac-
tions on Knowledge and Data Engineering 26 (2014)
2268–2280.

[28] M. Nabeel, E. Bertino, Privacy preserving delegated
access control in the storage as a service model,
in: Proceedings of the IEEE 13th International Con-
ference on Information Reuse & Integration, IEEE
Computer Society, Washington, DC, USA, 2012, pp.
645–652.

[29] B. Hore, S. Mehrotra, G. Tsudik, A privacy-
preserving index for range queries, in: Proceedings
of the 13th international conference on very large
data bases, Springer-Verlag, Berlin, Germany, 2004,
p. 720–731.

[30] A. Sahai, B. Waters, Fuzzy identity-based encryp-
tion, in: Proceedings of the Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, Springer-Verlag, Berlin,
Germany, 2005, p. 457–473.

[31] V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-
based encryption for fine-grained access control
of encrypted data, in: Proceedings of the 13th
ACM conference on computer and communications
security, ACM Press, New York, NY, USA, 2006, p.
89–98.

[32] R. Ostrovsky, A. Sahai, B. Waters, Attribute-
based encryption with non-monotonic access struc-
tures, in: Proceedings of the 14th ACM conference
on computer and communications security, ACM
Press, New York, NY, USA, 2007, p. 195–203.

[33] A. Lewko, A. Sahai, B. Waters, Revocation sys-
tems with very small private keys, in: Proceed-
ings of the 2010 IEEE Symposium on Security and
Privacy, IEEE Computer Society, Washington, DC,
USA, 2010, pp. 273–285.

[34] N. Attrapadung, B. Libert, E. de Panafieu, Expres-
sive key-policy attribute-based encryption with
constant-size ciphertexts, in: Proceedings of the In-
ternational Workshop on Public Key Cryptography,
Springer-Verlag, Berlin, Germany, 2011, p. 90–108.

[35] J. Bethencourt, A. Sahai, B. Waters, Ciphertext-
policy attribute-based encryption, in: Proceedings
of the IEEE Symposium on Security and Privacy,
IEEE Computer Society, Washington, DC, USA,
2007, pp. 321–334.

[36] L. Cheung, C. Newport, Provably secure ciphertext
policy abe, in: Proceedings of the 14th ACM con-
ference on Computer and communications security,
ACM Press, New York, NY, USA, 2007, p. 456–465.

[37] X. Liang, Z. Cao, H. Lin, D. Xing, Provably secure
and efficient bounded ciphertext policy attribute
based encryption, in: Proceedings of the 4th In-
ternational Symposium on Information, Computer,
and Communications Security, ACM Press, New
York, NY, USA, 2009, p. 343–352.

[38] J. Hao, J. Liu, H. Wang, L. Liu, M. Xian, X. Shen,
Efficient attribute-based access control with autho-
rized search in cloud storage, IEEE Access 7 (2019)
182772–182783.

[39] K. Yang, Q. Han, H. Li, K. Zheng, Z. Su, X. Shen,
An efficient and fine-grained big data access con-
trol scheme with privacy-preserving policy, IEEE
Internet of Things Journal 4 (2017) 563–571.

[40] S. Dolev, P. Gupta, Y. Li, S. Mehrotra, S. Sharma,
Privacy-preserving secret shared computations us-
ing mapreduce, IEEE Transactions on Dependable
and Secure Computing 18 (2021) 1645–1666.

[41] H. Corrigan-Gibbs, D. Boneh, Prio: Private, robust,
and scalable computation of aggregate statistics, in:
14th USENIX symposium on networked systems
design and implementation, ACM Press, New York,
NY, USA, 2017, pp. 259–282.

[42] P. Gupta, Y. Li, S. Mehrotra, N. Panwar, S. Sharma,
S. Almanee, Obscure: Information-theoretically se-

cure, oblivious, and verifiable aggregation queries
on secret-shared outsourced data, IEEE Transac-
tions on Knowledge and Data Engineering 34 (2022)
843–864.

[43] F. Emekci, A. Methwally, D. Agrawal, A. ElAbbadi,
Dividing secrets to secure data outsourcing, Infor-
mation Sciences 263 (2014) 198–210.

[44] A. Shamir, How to share a secret, Communications
of the ACM 22 (1979) 612–613.

[45] V. Attasena, J. Darmont, N. Harbi, Secret sharing
for cloud data security: a survey, The VLDB Journal
26 (2017) 657–681.

[46] A. Chandramouli, A. Choudhury, A. Patra, A survey
on perfectly-secure verifiable secret-sharing, ACM
Computing Surveys 54 (2022) 1–36.

[47] C. Blundo, D. R. Stinson, Anonymous secret sharing
schemes, Discrete Applied Mathematics 77 (1997)
13–28.

[48] S. Dolev, N. Gilboa, X. Li, Accumulating automata
and cascaded equations automata for communi-
cationless information theoretically secure multi-
party computation, Theoretical Computer Science
795 (2019) 81–99.

[49] D. Servos, S. L. Osborn, Current research and open
problems in attribute-based access control, ACM
Computing Surveys 49 (2017) 1–45.

[50] L. Wang, D. Wijesekera, S. Jajodia, A logic-based
framework for attribute based access control, in:
Proceedings of the 2004 ACM workshop on formal
methods in security engineering, ACM Press, New
York, NY, USA, 2004, p. 45–55.

[51] K. Frikken, M. Atallah, J. Li, Attribute-based access
control with hidden policies and hidden creden-
tials, IEEE Transactions on Computers 55 (2006)
1259–1270.

[52] X. Zhang, Y. Li, D. Nalla, An attribute-based access
matrix model, in: Proceedings of the 2005 ACM
Symposium on Applied Computing, ACM Press,
New York, NY, USA, 2005, p. 359–363.

[53] M. A. Hadavi, R. Jalili, E. Damiani, S. Cimato, Secu-
rity and searchability in secret sharing-based data
outsourcing, International Journal of Information
Security 14 (2015) 513–529.

[54] W.Wang, Y. Hu, L. Chen, X. Huang, B. Sunar, Accel-
erating fully homomorphic encryption using gpu,
in: Proceedings of 2012 IEEE Conference on High
Performance Extreme Computing, IEEE Computer
Society, Washington, DC, USA, 2012, pp. 1–5.

[55] A. A. Badawi, B. Veeravalli, J. Lin, N. Xiao,
M. Kazuaki, A. K. M. Mi, Multi-gpu design and
performance evaluation of homomorphic encryp-
tion on gpu clusters, IEEE Transactions on Parallel
and Distributed Systems 32 (2021) 379–391.

[56] W. Wang, Z. Chen, X. Huang, Accelerating lev-
eled fully homomorphic encryption using gpu, in:

Proceedings of 2014 IEEE International Symposium
on Circuits and Systems, IEEE Computer Society,
Washington, DC, USA, 2014, pp. 2800–2803.

[57] Özgün Özerk, C. Elgezen, A. C. Mert, E. Öztürk,
E. Savaş, Efficient number theoretic transform
implementation on gpu for homomorphic encryp-
tion, The Journal of Supercomputing 78 (2022)
2840–2872.

[58] Y. Chen, Q. Zheng, Z. Yan, D. Liu, Qshield: Protect-
ing outsourced cloud data queries with multi-user
access control based on sgx, IEEE Transactions on
Parallel and Distributed Systems 32 (2021) 485–499.

[59] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, M. Russinovich, Vc3:
Trustworthy data analytics in the cloud using sgx,
in: Proceedings of 2015 IEEE Symposium on Secu-
rity and Privacy, IEEE Computer Society, Washing-
ton, DC, USA, 2015, pp. 38–54.

[60] W. Sun, R. Zhang, W. Lou, Y. T. Hou, Rearguard:
Secure keyword search using trusted hardware, in:
Proceedings of IEEE Conference on Computer Com-
munications, IEEE Computer Society, Washington,
DC, USA, 2018, pp. 801–809.

[61] S. Bajaj, R. Sion, Trusteddb: A trusted hardware-
based database with privacy and data confidential-
ity, in: Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data,
ACM Press, New York, NY, USA, 2011, p. 205–216.

[62] J. Götzfried, M. Eckert, S. Schinzel, T. Müller, Cache
attacks on intel sgx, in: Proceedings of the 10th
European Workshop on Systems Security, ACM
Press, New York, NY, USA, 2017, pp. 1–6.

[63] A. Moghimi, G. Irazoqui, T. Eisenbarth, Cachezoom:
How sgx amplifies the power of cache attacks, in:
Proceedings of the International Conference on
Cryptographic Hardware and Embedded Systems,
Springer-Verlag, Berlin, Germany, 2017, p. 69–90.

[64] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, S. Man-
gard, Malware guard extension: abusing intel sgx
to conceal cache attacks, Cybersecurity 3 (2020).

[65] S. Hosseinzadeh, H. Liljestrand, V. Leppänen,
A. Paverd, Mitigating branch-shadowing attacks
on intel sgx using control flow randomization, in:
Proceedings of the 3rd Workshop on System Soft-
ware for Trusted Execution, ACM Press, New York,
NY, USA, 2018, p. 42–47.

[66] K. Murdock, D. Oswald, F. D. Garcia, J. V. Bulck,
D. Gruss, F. Piessens, Plundervolt: Software-based
fault injection attacks against intel sgx, in: Pro-
ceedings of the IEEE Symposium on Security and
Privacy, IEEE Computer Society, Washington, DC,
USA, 2020, pp. 1466–1482.

[67] S. Fei, Z. Yan, W. Ding, H. Xie, Security vulnerabili-
ties of sgx and countermeasures: A survey, ACM
Computing Surveys 54 (2022) 1–36.

[68] Y. Zhang, R. H. Deng, S. Xu, J. Sun, Q. Li, D. Zheng,
Attribute-based encryption for cloud computing
access control: A survey, ACM Computing Surveys
53 (2021) 83:1–41.

[69] P. P. Kumar, P. S. Kumar, P. J. A. Alphonse, At-
tribute based encryption in cloud computing: A
survey, gap analysis, and future directions, Journal
of Network and Computer Applications 108 (2018)
37–52.

	1 Introduction
	2 Background
	2.1 Shamir's Secret Sharing Scheme
	2.2 String Matching on Secret Shares

	3 Overview
	3.1 System Architecture
	3.2 Adversary Model
	3.3 Security Requirements

	4 Access Control Specification
	4.1 Access Control Moded in QFilter
	4.2 Policy Attachment in QFilter

	5 Data Outsourcing and Privacy Preserving Query Processing
	5.1 Creation and Distribution of Secret-Shares
	5.1.1 Discussion about Information Leakage

	5.2 Query Submission and Distribution
	5.2.1 Discussion about Information Leakage

	5.3 Query Rewriting and Processing
	5.3.1 Query Rewriting
	5.3.2 Query Processing
	5.3.3 Discussion about Information Leakage

	5.4 Query Result Collection
	5.5 Complexity of Our Approach

	6 Experimental Evaluation
	6.1 Setup
	6.2 Experimental Results
	6.2.1 Computation at the Data Owner Side
	6.2.2 Computation at the Server Side
	6.2.3 Computation at the Data User Side

	7 Related Works
	8 Conclusion and Future Works

