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Abstract
Data sharing and monetization provides organizations with new sources of revenue and value creation. However, an accurate
and scalable approach to data sharing and monetization for organizations is still lacking in practice. Due to the lack of effective
mechanisms for control and enforcing governance as well as accurate valuation and pricing mechanisms, organizations are
hesitant to share data. As a result, a large share of the economic value-creation potential of data is foregone. We propose a
distributed-ledger-technology-based approach for decentralized data valuation incorporating federated machine learning to
enable decentralized data-enabled learning and data valuation in a collaborative manner. We evaluate the proposed concept
model with empirical evidence from expert interviews and single out the predictive maintenance context for future prototype
development and testing.
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1. Introduction
In practice, an accepted and scalable approach to data
sharing and monetization for organizations is still lack-
ing [1]. In today’s interconnected digital economies,
data is a key enabler for economic value creation and
innovation [2]. Driven by the ongoing digital transfor-
mation, organizations produce, exchange, and consume
data in every aspect of their business operations [3].
The surging amounts of available data provides organi-
zations with abundant avenues for new business value
creation such as improving operational efficiency, en-
hancing decision-making, and innovating with emerg-
ing technologies [4]. Moreover, data can provide firms
with new revenue streams, when being monetized exter-
nally [4]. Despite this promising outlook, data exchange
and monetization beyond organizational boundaries is
still scarce [5]. Today, most data transactions are still
completed through offline negotiations between individ-
ual data sellers and data buyers sold for an (arbitrarily)
fixed price set by the data owner [1] or are exchanged
via centralized third-party data platforms. Centralized
data platforms, such as Snowflake and Advaneo, offer
companies a pathway to exchange their data by provid-
ing a common infrastructure, complementary resources
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(e.g., APIs, SDKs), and governance policies for its partic-
ipants (complementors) to monetize data. However, a
major drawback of centralized platforms, characterized
by having a central actor (data platform owner), is the
centralization of control and decision rights (e.g., plat-
form access and data sharing rules). As such, the platform
owner accumulates large power over the platform com-
plementors, allowing it to capture large fractions of the
economic value created within the platform ecosystem.
This disincentivizes companies to participate in the data
exchange. As a result, a large share of the economic
value-creation potential of data remains unused.
In the emerging literature strand of data monetization,
various challenges have been identified hindering the
systematic monetization of data. Besides general issues
relating to the provisioning of data to third parties such as
security and privacy, data management, or organizational
challenges [6, 4], the ownership, control, and gover-
nance [3] as well as the valuation and pricing of data [4, 1]
have been singled out as key challenges preventing data
producers from sharing and monetizing their data ef-
fectively. [3] state that data ownership, control, trust,
and the enforcement of inter-organizational governance
mechanisms are central to effective and sovereign data ex-
change. Furthermore, [1] postulates that extant research
tends to focus on the value creation aspect of data shar-
ing, while the question of a fair compensation for data
sharing is largely avoided. An emerging literature stream
on centralized platforms focuses on antitrust and regula-
tion, addressing major drawbacks such as market power
and anti-competitive practices that reduce innovation
and consumer welfare [7, 8]. Decentralized platforms,
fueled by Distributed-Ledger-Technology (DLT) and fed-
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erated machine learning capabilities have the potential to
overcome the drawbacks of centralized control, market
power, valuation, privacy, and security concerns by pro-
viding a decentralized infrastructure that enables both,
secure data-enabled learning, and data valuation without
an intermediary [9, 10, 11]. In our quest to facilitate a
secure and scalable approach to data sharing and mon-
etization, we set out to answer the following research
question:

RQ: How can Distributed-Ledger-Technology and federated
machine learning foster data monetization in decentralized
data ecosystems?

Due to the nascent nature of DLT and federated ma-
chine learning-based data monetization, we propose a
blockchain-based artefact including federated learning
capabilities and pre-evaluate it in the context of an Indus-
trial Internet of Things (IIoT) enabled predictive mainte-
nance use case. In IIoT, the value of information exchange
as well as the challenges thereof have been discussed
manifold [12]. At the current stage, this research-in-
progress paper presents a conceptual model for an artifact
that is to be developed and evaluated in the near future.
The envisioned artefact draws on and extends the solu-
tion proposed by [1]. The presented conceptual model
addresses the two fundamental issues of centralized plat-
forms —disproportional control and value capturing—
as well as data privacy and data security by proposing
an approach for DLT-based data valuation and federated
data-enabled learning. The suggested approach combines
the scalable concept of compute-to-data (edge comput-
ing) with a public, permissioned blockchain (Ethereum)
for secure and transparent data access, valuation, and
monetization. We contribute to the growing body of In-
formation Systems literature on data monetization and
data ecosystems, as well as Computer Science literature
on federated machine learning in data ecosystems and
provide an innovative data monetization approach in
form of a conceptual model to practitioners.

2. Background

2.1. Data Valuation and Data
Monetization

Data valuation and pricing are key obstacles to data shar-
ing and monetization. Data is a “non-rivalrous experience
good” [4]. Non-rivalrous means that, once created, data
can be exploited repeatedly by multiple parties without
deteriorating in value [4]. Experience means that data
must be used to realize its value [4]. Consequently, the
value of the same data set varies significantly depending
on the use case, context, and time. Even in adequate

contextual conditions, there are only very few objective
measures and limited methodologies available to accu-
rately determine the value of data. As such, the data qual-
ity dimensions (e.g., completeness, accuracy, timeliness)
or the relative position along the data value chain (e.g.,
collecting, pre-processing, analyzing, using) help organi-
zations to better gauge the value of their data [13, 14].
Extant literature proposes mainly four overarching,
methodological data valuation concepts [13, 15, 1]: cost-
oriented, market-price-oriented, risk-oriented, and usage-
oriented data valuation. Cost-oriented approaches build
their valuation on all costs that arise throughout the data
value chain such as data storage or data analytics. How-
ever, this approach is limited as the actual value created
by the data is entirely neglected. Market-price-oriented
concepts assume that data assets are traded on markets
where their prices as an approximation of value are de-
termined. This approach is limited by the availability
of comparable idiosyncratic use case-data combinations
[4] and the assumed homogeneity among data buyers
in their willingness-to-pay [16]. Risk-oriented valua-
tion approaches consider potential business risks (e.g.,
measured as a function of probability and business cost
of contingent outcomes) that may arise for a company
from loss or misusage of data assets [13, 15]. Given that
both, the probability and the business costs of adversarial
scenarios are extremely difficult to quantify and forecast,
the practicality of this approach is arguably low. Finally,
usage-oriented valuation refers to the contribution that
a data asset can generate to the company performance.
[1] propose an approach for the usage-oriented data val-
uation suggesting that data valuation and pricing should
comprise a combination of both, forward-looking ex-
pected value anticipation and ex-post value measuring,
which depends on the actual value contribution of a data
asset.
Data monetization provides organizations with an incen-
tive to share their data with external parties and partici-
pate in data ecosystems [4]. Data monetization describes
the usage of data to achieve “quantifiable economic ben-
efit” [17]. In a broader sense data monetization refers to
both, indirect efforts aiming at improvement of business
processes and decision making, as well as external efforts
aiming at outright selling data assets (via a data broker
or independently) or data-based products and services
[18, 19, 20]. While extant research examines the value
creation potentials of data sharing manifold, the question
of a fair valuation in data sharing arrangements is largely
avoided [1].

2.2. Decentralized Data Platform
Ecosystems

Centralized digital platforms can be defined as “the exten-
sible codebase of a software-based system that provides



core functionality shared by apps that interoperate with
it, and the interfaces through which they interoperate”
[21]. They enable multisided transactions and innova-
tions between different market players and create value
through network effects [22, 23, 24]. A centralized data
platform refers to a technical environment for record-
ing, storing, analyzing, and presenting (big) data [25, 26].
Ecosystems are described by a “group of interacting firms
that depend on each other’s activities.” [27], e.g., devel-
opers on Google Android depending on software updates
provided by the platform owner or data providers on a
data platform such as Snowflake depending on certain
standards and requirements for data storage.
Decentralized data platform ecosystems can be under-
stood as a subtype of data platform ecosystems. How-
ever, literature still lacks a generally adopted and recog-
nized definition of decentralized data platform ecosys-
tems. In management and organizational theory decen-
tralization is mostly referring to decision making and
authority [28, 29]. Correspondingly, in the platform
context, decentralization regularly refers to governance,
the mechanisms employed by platform owners aiming
to orchestrate and influence ecosystem outcomes to fos-
ter value co-creation [30]. On a more technical level
decentralization in data platform ecosystems can also
refer to the data infrastructure [31]. Within this paper
decentralized data platforms are understood as platforms
with decentralized data infrastructure and decentralized
governance building on DLT [32, 33]. With that, our un-
derstanding of decentralized data platforms follows [34],
who define a decentralized data marketplace as lacking
both a central authority and a central data repository.

DLT serves as an umbrella term for multiparty systems
operating in an environment without a central authority
or operator [35]. Blockchain technology is frequently
regarded as a certain subgroup of DLT using a specific
decentralized data structure building on a chain of hash-
linked data blocks, representing transactions that are
distributed and consistent among the network partici-
pants, the so-called nodes [35, 36]. Public blockchains
allow all nodes to read the transactions logs while pri-
vate blockchains only permit the reading of transactions
only to authorized nodes. Permissioned blockchains re-
strict transaction validation, i.e., the participation in the
consensus mechanisms, to chosen nodes while in per-
missionless blockchains all nodes validate transactions
[35, 37, 38, 31]. Due to their distributed nature and the
peer-to-peer validation of transactions, DLT-based data
platform ecosystems eliminate the need for a central plat-
form owner [9, 39, 32].

Central aspects of decentralized DLT-based data platform
ecosystems are smart contracts and tokens. Smart con-
tracts can be understood as “systems which automatically

move digital assets according to arbitrary pre-specified
rules” [40]. Thus, smart contracts are algorithms that
comprise a-priori specified business logics (e.g., owner-
ship, access-, and control rights), automatically execute
transactions accordingly, and record all transactions to
the blockchain [31]. In combination with blockchain
infrastructure, smart contracts provide a “reliable, secure,
and convenient approach to specifying an agreement,
which is essential for data sharing” [1], enhancing the
transparency and traceability of transactions within the
system.

Tokenization refers to the “abstract representation of
physical assets in the form of blockchain tokens" [41].
There are different token types, each with different char-
acteristics and taking central roles in the governance
and accessibility of decentralized DLT-based platform
ecosystems. A high-level categorization distinguishes
between three token types: Payment tokens, security
tokens, and utility tokens [42]. In this paper, we fo-
cus on two subtypes of utility tokens. Utility tokens are
required for accessing the functionality of DLT token
platforms. Without ownership of such tokens neither
the platform’s services can be used, nor any transactions
can be executed. The first utility token subtype, non-
fungible token (NFT), is based on the ERC721 standard
[43]. Non-fungible means that while it can be transferred
between participants within the ecosystem, the token
is unique. Thus, NFTs certify ownership and tradeable
rights to a digital asset. The second utility token subtype,
fungible tokens, are classified by the ERC20 standard
[43]. Fungible tokens are identical and interchangeable
and represent access rights to digital assets. These ac-
cess rights can be traded and managed much like any
other good. In sum, smart contracts and tokenization
provide an infrastructure for a decentralized data plat-
form ecosystem, enabling data sovereignty and trust and,
thus, eliminating the need for a central platform owner.
Further central aspects of decentralized data platform
ecosystems that enhance data sharing and monetization
are federated machine learning and digital twin capabili-
ties.

2.3. Digital Twins and Federated Machine
Learning

Digital twins refer to a virtual representation or digital
replication of a physical object, system, or process [44].
It is a digital counterpart that mirrors the characteristics,
behavior, and attributes of its real-world counterpart in
real-time or near real-time and allows for diagnostics
by using data captured from connected sensors. This
data can be further utilized to optimize the operation and
performance of the physical counterpart or predict fu-



ture states [45]. Digital twins have been widely adopted
in various fields, such as manufacturing, healthcare and
transportation, due to their ability to offer real-time mon-
itoring and simulation, performance optimization, and
fault prediction [46]. The emergence of Internet of Things
(IoT) technology and machine learning has significantly
accelerated the implementation and application of Digital
twins. IoT allows real-time data collection from various
sensors placed on the physical twin, and machine learn-
ing enables the processing of this vast amount of data.
Machine learning, as a subset of Artificial Intelligence
(AI), has been central in enhancing the capabilities of
digital twins. Machine learning provides the necessary
algorithms and methods to analyze the data and create
models capable of learning from this data, identifying
patterns, and making predictions.

Currently, machine learning process models are majorly
centralized. The process involved collecting data from
various sources and aggregating it at a central point (e.g.,
server or cloud), where a machine learning model would
then be trained [47]. However, this process raises sev-
eral concerns [48]. Firstly, the transmission of data to a
central repository results in security risks. Data can be
intercepted during transmission, and the central reposi-
tory itself can be a target for cyberattacks. Secondly, the
aggregation of data at a central point raises privacy con-
cerns and ethical issues. In many cases, the data used for
machine learning contains sensitive information about in-
dividuals or organizations. Even if anonymized, the risk
of re-identification through data linkage remains. Thirdly,
the centralized approach requires significant computa-
tional resources and is less efficient. Large volumes of
data have to be moved, requiring substantial bandwidth
and storage. The latency associated with moving data to
a central point can also slow down the learning process.

To address these limitations, the concept of federated (ma-
chine) learning was introduced [49]. Instead of requiring
data centralization like other conventional approaches,
federated (machine) learning describes a distributed ma-
chine learning approach that allows for training a global
model on decentralized data sources while data remains
on its original [11]. It is designed to address privacy con-
cerns and data localization requirements, particularly in
scenarios where data cannot be easily centralized due
to privacy regulations or data ownership considerations.
The process typically involves the repetition of the fol-
lowing steps, namely, client selection, global model dis-
tribution, local model training, model verification, model
aggregation and global model update. Federated Learning
provides a methodology to build machine learning mod-
els using data located across different devices or servers
while ensuring data privacy and reducing the require-
ments for data transmission. This strategy is particularly

beneficial in scenarios where data privacy is critical, or
where devices have limited connectivity or resources.

3. Proposed conceptual Model

3.1. Concept Model Overview - Predictive
Maintenance as Exemplary
Application Context

Figure 1 provides an economic-centered overview of the
proposed conceptual model of DLT-based data monetiza-
tion, focusing on the use case of predictive maintenance.
The exchange of information as base for innovative ma-
chine learning models that enhance the accuracy of pre-
dictive maintenance and prevent machine downtime has
proven to be high [12], thus providing a suitable basis
for our DLT-based data monetization concept model.

Currently, the value of datasets is estimated pre-
acquisition, at the moment of sale based on cost, risk,
market, or usage-oriented calculations. Post-acquisition
value creation, not a-priori considered currently is not re-
flected in the data valuation, leading to high uncertainty
for data sellers, especially regarding competitive data
sets. The proposed reverse data monetization logic is a
step-by-step, post-acquisition valuation and pricing ap-
proach based on data usage, actual costs, and generated
business impact, aiming to consider future value creation
in the determination of data value over the course of
data usage. Data valuation and pricing is associated with
the achieved business outcome by the data buyer after
purchasing a data set. In the predictive maintenance use
case, the business impact of a data set is determined by
potential prevented machine downtime costs and produc-
tion losses it can reduce. For instance, a dataset on rare
frequencies of industrial pumps leading to breakdowns,
ultimately leading to production stops of industry goods,
would be of high value for competitors running simi-
lar pump systems in case machine downtimes could be
prevented based on predictive maintenance precautions.

Potential machine downtime costs are calculated by the
amount of produced items per hour with a certain profit
per item equaling total costs of production losses. Fur-
thermore, the value of a dataset is comprised of costs,
such as data usage costs (curation, storage, monitoring,
analysis) and (predictive) maintenance costs (employees,
operating resources). Finally, a negotiable profit margin
for the data seller completes the data valuation determina-
tion. The proposed reversed data monetization approach
further comprises upfront and post-acquisition compen-
sation. Upfront compensation is based on pre-acquisition
valuation using traditional cost- and risk-oriented pric-
ing models to mitigate any costs associated with the data



Figure 1: Reverse Data Monetization Concept Model

Figure 2: Federated Learning enabled DLT-based Data Monetization Architecture

buyer side. Post-acquisition compensation is determined
by the actual costs and generated business impact along
a pre-acquisition defined and negotiable time period. The
value of data is determined at certain pre-acquisition de-
fined milestones over the course of data usage, actual
costs, and generated business impact.

Figure 2 provides a technology-centric overview of the
proposed DLT-based reverse data monetization concept
model enabling a more accurate data valuation of data
monetized between different actors in a digital ecosys-
tem: The proposed model comprises a decentralized



data fabric with built in services such as a digital twin
visualization service, tokenization, federated machine
learning capabilities, and an access and authority
management, as well as a DLT-enabled data valuation
meta space. In the following, the key components and
functions of the proposed model are elaborated.

3.2. Blockchain-enabled Data Valuation
Meta Space

The Blockchain-based infrastructure provides the foun-
dation for a decentralized platform ecosystem and the
reversed data monetization logic. The decentralized
platform ecosystem, we refer to as meta space, con-
sists of two sub-dimensions: Data valuation space and
Blockchain network. The Blockchain network comprises
the key infrastructure elements of a public, permissioned
blockchain (Ethereum), smart contracts, access control,
DIDs, and a data explorer. The data valuation space
contains and visualizes data transactions through dig-
ital twins along the data value chain from different actors
within the ecosystem. It aims to provide a full traceability
of data transactions to enable the reverse data valuation
logic over the course of data usage. While the actual
data sets are stored off-chain in a local organizational
network, the access control of meta data assets in form of
tokens is stored on-chain [34]. The Blockchain network
comprises smart contracts, that allow for a-priori speci-
fied business logics (e.g., ownership, access-, and control
rights), automatically execute transactions accordingly,
(e.g., micropayments for data transactions) and record
all transactions as meta data to the blockchain [50, 31].
Therefore, the data infrastructure is designed to function
without a central platform owner shifting the control
and governance over the data assets to the data owners.
Moreover, the underlying blockchain provides the data
owner with full traceability of the actual data usage of
third parties, enabling a usage-based pricing approach.

3.3. Data Fabric
To better understand the data value chain, the proposed
model comprises a data fabric, a decentralized framework,
that enables organizations to seamlessly and efficiently
manage, integrate, and distribute data across diverse and
distributed systems. The data fabric allows for a unified
and consistent view of data, and facilitates data sharing,
accessibility, and analysis by providing built in services
such as a digital twin toolbox. The visualization of busi-
ness and production processes in a digital manner allows
for replication of the data value chain, including data
transactions, forming the basis for reverse data valuation.
Connectors (E.g., Eclipse, Gaia-X) provide a secure and

trustful exchange of data within a local network of an or-
ganization as well as the exchange of meta data between
the meta space and the local network of organizations.

The data fabric further comprises federated learning
capabilities, enabling the data sellers to retain their
data on-premise while allowing third parties access
to a data set. Federated machine learning enables
access to data assets distributed across multiple devices
without revealing sensitive information to a central
cloud server [11]. As such, the decentralized data
storage and federated learning builds the foundation
for enhanced control and data sovereignty for the data
owner. Previously, the data seller had no control over
the data set, once it was sold to a third party. A further
built-in service of the data fabric, tokenization, enables
transparent and auditable access to data assets. The
ERC721 NFT certifies ownership and full rights to a
digital asset [51, 52]. By acquiring an ERC20 data
token that contains access rights to a certain data set,
a data buyer can access and use the data assets as
pre-specified by smart contracts. Access can either mean
accessibility to a full data asset or parts of a data asset,
or the deployment of approved algorithms by the data
seller on the data asset. Furthermore, access to a data
asset might be “perpetual”, “time-bound” or “one-time”
[53]. By enabling traceability and control, tokenization
contributes to data sovereignty of the data owner.

4. Pre-Evaluation
To test and reach a better understanding of the suggested
concept of DLT-based reverse data monetization, a first
pre-evaluation with experienced industry experts was
conducted. For this purpose, the data monetization logic
was precisely described to receive feedback. The drawn
conclusions and the feedback were incorporated in the
proposed framework. Two key challenges need to be
overcome. First, it might be difficult to persuade data
sellers to take part in this monetization scheme as risk
is shifted to the data sellers. High costs may accrue for
collecting and preparing the data prior to a monetization,
efforts which ask for some a-priori reward. High com-
pensation in case of success might increase data seller’s
willingness to enter expenditure in advance, however a
certain upfront payment might also become necessary.
Second, evaluating the step-by-step implementation as
introduced within this paper one expert notes that it
might be a challenge to achieve consensus between data
buyer and data seller about when a particular milestone
is reached and to what extent the data set was used for
achieving this outcome. This paper aims at mitigating
this second challenge by unambiguously defining the



monetization milestones, ideally in conjunction with
external third parties, representing it in smart contracts
and tracking data usage using tokenization and a
permissioned blockchain. Especially, a clear definition
of milestones and corresponding to this triggering
of the following actions like for example payments,
implemented by smart contracts, are emphasized in that
respect.

5. Conclusion and Future Work
This paper presents a conceptual model for a prototype
that is to be developed and further evaluated in the near
future. The proposed concept combines the scalable con-
cept of federated machine learning (compute-to-data)
with a public, permissioned blockchain, a reverse val-
uation logic and addresses the two fundamental issues
of centralized platforms, disproportional control, and
value capturing, as well as key issues of data sharing,
trust, data privacy, and ultimately, data valuation and
pricing. The evaluation of the approach was only car-
ried out in an initial step. The prototype is yet to be
developed and tested in practice. Consequently, the tech-
nical specifications such as automation, security, and low
transaction costs – while we recognize their importance
for the prototype development [1] – were not central
to the proposed conceptual logic in its current stage. Fu-
ture work on this artefact will focus on an extensive
evaluation with industry experts in order to complete
and extend the proposed concept model. We recognize
the difficulty of evaluating the actual value generated
by using a data asset as the final value generation often
cannot be measured and the value creation also depends
on external factors. To mitigate that we aim to test our
concept model in the predicitve maintenance use case,
in which the actual data usage can effectively be mea-
sured ex-post. We aim to contribute to the growing body
of Information Systems literature on data monetization
and data ecosystems as well as literature in the field of
Computer Science especially, federated machine learning
and data ecosystems, and offer an initial innovative data
monetization approach that may reduce the hesitancy of
firms to monetize their data and actively contribute to
the value creation within their data ecosystems.
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