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Abstract
Users often want to augment entities in their datasets with relevant information from external data sources. As many external
sources are accessible only via keyword-search interfaces, a user usually has to manually formulate a keyword query that
extracts relevant information for each entity. This is challenging as many data sources contain numerous tuples, only a small
fraction of which may be relevant. Moreover, different datasets may represent the same information in distinct forms and
under different terms. In such cases, it is difficult to formulate a query that precisely retrieves information relevant to a specific
entity. Current methods for information enrichment mainly rely on resource-intensive manual effort to formulate queries to
discover relevant information. However, it is often important for users to get initial answers quickly and without substantial
investment in resources (such as human attention). Thus, as an alternative to manually writing mappings from entities to
queries, one can learn these mappings progressively by leveraging end users’ feedback. We evaluate the use of parameter
efficient techniques for leveraging a pretrained large language model (LLM) for this task of online query policy learning.
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1. Introduction
There is a recognized need to collect and connect infor-
mation from a variety of data sources [1]. For example,
we have recently worked in a large-scale NIH-funded
project to augment the information of biomedical enti-
ties by querying other biomedical data sources [2]. The
focus of this project is to repurpose current drugs to treat
the symptoms of diseases for which there is insufficient
time or resources to develop new treatments [3]. Biomed-
ical researchers often have some local dataset of available
drugs. Given a drug in their dataset, a researcher usually
needs to query external data sources to find additional
information about the drug.

Due to a lack of access or resources, external infor-
mation often must be retrieved through querying [4].
Many external datasets are only accessible via query in-
terfaces or APIs. Even with access, it may require too
much of a resource (e.g., storage space, time) to down-
load and maintain an up-to-date copy of the external
dataset. Thus, information relevant to some local entity
must often be gathered on a as-needed basis by querying
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external data sources.
However, formulating a query that extracts specific

information can be troublesome. Different data sources
often represent the same concept in distinct forms [5].
Thus, one needs to tailor their query to specific data
sources. Figure 1 illustrates a case where users have a
local dataset of FDA-approved uses of drugs and would
like to query an external data source that contains the
off-label uses of those drugs. A drug that is identified
by one of its brand names (e.g., Zoloft) in FDA-Approved
Uses is referred to by its generic name (e.g., Sertraline)
in Off-Label Uses. Due to heterogeneities, one may not
know how to query for a specific external entity prior to
investigating the data in the external source. Consider
a biomedical researcher who seeks more information
about the drug Zoloft. Since they are only aware of the
structure and content of their local dataset, they query the
external data source for Zoloft, but this elicits no results.
They try again using a more general description of Zoloft
(i.e., being a serotonin reuptake inhibitor). However, their
under-specified query produces many results, most of
which are irrelevant. After additional trial-and-error,
they find a query that retrieves Sertraline. More work
is required to then merge the local and external entities
into one coherent representation.

Manually querying for specific external entities re-
quires too much work. Continuing our example, if the
researcher needs more information for another drug in
their local dataset, they will need to repeat the process.
Moreover, if they need information from multiple exter-
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Query Policy 𝜋

Featurization Φ
Brand Drug Class Approved Use Description

Provigil wake-promoting 
central nervous agent Narcolepsy affects attention areas 

in the brain

Zoloft selective serotonin 
reuptake inhibitor

Clinical 
depression

increases serotonin, 
controls mood & panic

Paxil selective serotonin 
reuptake inhibitor

Obsessive-
compulsive 
disorder

boosts serotonin, 
reduces stress

Mediator generates keyword query2

User selects a local entity 
and passes it to mediator1 User

Example Local Datasource: FDA-Approved Uses

“serotonin 
depression 

panic”

Example External Datasource: Off-Label Uses

User provides relevance feedback; 
used to update query policy4

RewardFeedback Response

Entity

Generic M. Formula Off-Label Use How Works

Sertraline 𝐶!"𝐻!"𝐶𝑙#𝑁 Fibromyalgia
raises serotonin levels in 
the brain, stops panic, 
may reduce depression

Paroxetine 𝐶!$𝐻#%𝐹𝑁𝑂& IBS
raises serotonin levels in 
the brain, improves 
mood, controls stress

Quetiapine 𝐶#!𝐻#'𝑁&𝑂# Anxiety
decreases serotonin & 
dopamine in the brain, 
improves thinking and

Query Interface

External returns top 
results for the generated 

query to the user
3

Query

Figure 1: An example of our framework for a single user and single external data source. The user selects (by query, GUI, etc,.)
the local entity Zoloft. The mediator uses its learned query policy to extract the relevant entity (Sertraline) from the external
source. The user provides relevance feedback on the results, which is then used to further refine the mediator’s querying policy.

nal data sources, then the work required to query for
each drug is exacerbated. Furthermore, other researchers
with similar information needs must repeat the same such
work themselves.

To alleviate the burden, one can use a shared system
that automates query formulation. This mediator
system acts as a go-between for users and external data
sources: a user specifies a local entity (e.g., Zoloft) per-
haps through a query or a graphical user interface, and
the mediator maps the local entity to queries that retrieve
the relevant external entities (e.g., Sertraline) from their
respective external sources.

To the best of our knowledge, such mediators are cur-
rently created by manually writing programs that gener-
ate queries for specific external sources. These programs
consist of rules that cannot necessarily be reused across
data sources. Thus, they require a significant amount of
labor and expert attention to build and maintain.

In this paper, we learn the mediator’s query policy on-
line through user interaction. As illustrated in Figure 1,
after the user specifies a local entity, the mediator formu-
lates a query to retrieve records from an external source
according to its query policy and shows the returned
external records to the user. The user then provides feed-
back on the relevance of the returned records to the local
entity. The mediator then uses this feedback to improve
its query policy.

Of course, online learning of query policies has its
own set of challenges. First, the mediator must learn a
sufficiently effective policy in the short run so users will
continue providing feedback. This challenge is easier to
meet when the users’ only alternative is tiresome (i.e.,
manually submitting queries for many local entities) or
there are many users providing feedback. Second, the
mediator should continue leveraging user feedback to
find increasingly effective policies in the long run (i.e.,
it should not be prone to under-fitting to local entities).
To help overcome these challenges, we use a pretrained
LLM to extract features from local entities and terms.
Through pretraining, LLMs encode linguistic knowledge
within the rich representations of their outputs. How-

ever, to get the most out of an LLM, its output repre-
sentations should be adjusted to suit the specific task
and domain. This is commonly done through finetuning,
where the weights of the LLM are trained jointly with
the task-specific model. However, finetuning is resource-
intensive and may overwrite the LLM’s knowledge [6].
Thus, in this paper, we evaluate more parameter efficient
techniques for our online setting.

Due to the wide-spread use of keyword query inter-
faces over external sources, we use an online learning
method for formulating keyword queries. We evaluate
prefix tuning and attribute encoding as parameter ef-
ficient techniques for boosting the performance of an
LLM-based query policy learner. We evaluate the tech-
niques using Longformer [7] over four pairs of real-world
datasets. We find the techniques may be highly effective
for select datasets.

2. Framework
We briefly outline the problem of learning a query policy
online. A more detailed discussion of the framework,
challenges, and related work can be found in [8]. The
mediator wraps the local dataset and the query inter-
face over the external data source. We assume the local
dataset is a single table where each tuple stores informa-
tion about a distinct entity. We denote the set of local
dataset entities as ℰ . Given a local entity 𝑒 and exter-
nal dataset 𝐷, 𝑋(𝑒) ∈ 𝐷 represents the external entity
that is relevant to the local one, where the definition of
relevance is domain-dependent. For example, Figure 1
shows excerpts of a local (left) and an external (right)
dataset. ℰ consists of all drugs in FDA-Approved Uses. If
𝑒 is Zoloft then the relevant tuple 𝑋(𝑒) in Off-Label Uses
is Sertraline.

Given a user-specified local entity 𝑒 ∈ ℰ , the mediator
must devise and submit a query to the interface to extract
𝑋(𝑒). The set of queries accepted by the given interface
is 𝒬. In this work, we consider keyword queries. A key-
word query 𝑞 is a string comprised of terms. The number
of terms in a query is its length ℓ. A querying policy is a



mapping from local entites to queries 𝜋 : ℰ → 𝒬. Ide-
ally, the policy should produce queries that effectively
extract external entities relevant to 𝑒. One such mea-
sure of effectiveness is reciprocal rank (RR) 1

𝑟
where 𝑟

is the position of the first relevant answer in the results.
Continuing our example, given 𝑒 = Zoloft, the mediator
must devise a keyword query to extract 𝑋(𝑒) = Sertra-
line. One can use the content of the input entity within
the output query. However, terms in Brand are likely
unique to the local dataset. Given this, assume the policy
ignores those terms and produces the keyword query
𝑞 ="serotonin depression panic". It submits 𝑞 to the query
interface over the external dataset in Figure 1, which
returns the ranked results (Paroxetine, Sertraline). The
RR of this query would thus be 1

2
.

3. LLM-Based Query Learning
Figure 1 illustrates a single interaction of online query
policy learning. The mediator’s policy is refined pro-
gressively over many interactions with the objective of
maximizing the mean reciprocal rank (MRR) of its queries.
As discussed in Section 1, an optimal method would over-
come two major obstacles. First, it would maintain user
engagement by producing effective queries in the short
run. Second, it would have the capacity to improve its
policy in the long run.

We use a pretrained LLM in help meet the aforemen-
tioned challenges. The model may benefit from the LLM’s
rich representations of tuples and terms, boosting the
model’s early performance while also allowing it to fit to
the diversity of local entities over time.
Encoding Tuples and Scoring Terms. Given an entity
𝑒, we concatenate its terms into a single string 𝑠 and pass
it through an LLM after standard byte-pair-encoding tok-
enization. The LLM produces a sentence-contextualized
representation ℎ𝑖 for each input token. Note that the
byte-pair-encoding may break terms into multiple inputs
or terms may appear multiple times in the entity, so to
produce feature ℎ𝑖 corresponding to term 𝑘𝑖, the output
encodings of all these instance are averaged. For con-
venience, we write this process as: ℎ1, ..., ℎ𝑛 = LM(𝑠).
These representations capture information about each
term given the context of all terms within the entity.
However, they lack contextual information about the
local data source. Thus, we add this information post-
encoding.

We define a feature vector 𝐴𝑡(𝑘𝑖, 𝑒), which contains
distributional and schematic features of terms relative
to the local source. One such feature is Inverse docu-
ment Frequency (IDF). Let Dataset Frequency (DF) of a
term denote the fraction of entities in the local dataset
in which the term appears. IDF of a term is the inverse
of its DF, and it quantifies how well that term identi-
fies the entity within the dataset. 𝐴𝑡(𝑘𝑖, 𝑒𝑡) is concate-

nated onto each corresponding representation forming
𝑐𝑖 = [𝐴𝑡(𝑘𝑖, 𝑒𝑡), ℎ𝑖] where [·, ·] denotes concatenation.
Vector 𝑐𝑖 is then passed through a small fully connected
layer to predict reciprocal rank 𝑟𝑖 for each term.

As discussed in Section 1, we desire parameter effi-
cient methods for adjusting the output of the LLM to our
specific task and data. We consider two such methods:
prefix tuning and attribute embeddings.
Prefix Tuning. We use prefix-tuning as an alternative
to updating all weights of the LLM [9]. Before passing
the base encoding of entity 𝑒 (i.e., 𝑠) through the LLM,
we prepend a prompt consisting of 𝑑 vectors onto 𝑠. This
contextualizes the output of all tokens in 𝑠 on this con-
tinuous prompt. Feedback is propagated back to these
𝑑 vectors, resulting in downstream representations that
are aligned with our objective.
Attribute Embeddings. To inject the structural infor-
mation of local entity 𝑒 within its downstream represen-
tation, we adjust the base encoding of 𝑠 prior to passing
it through the LLM [10]. Each attribute (column) within
the local dataset is encoded as a vector. These vectors are
then added to tokens to provide attribute information.
These encodings are updated based on feedback.
Selecting Queries and Updating. To encourage explo-
ration, we apply an 𝜖-greedy approach to query formula-
tion [11] — selecting either the next-highest-scoring term
or, with probability 𝜖, a random term until the desired
query length is achieved. User feedback (RR) is used as a
prediction target for all query terms appearing in the re-
turned external matches. Unobserved terms have targets
of 0 assigned. These term-entity-RR tuples are added to
a first-in-first-out buffer of examples for the last 30 ob-
served queries. We train the model by stochastic gradient
descent with batches of 8 samples from the buffer at each
interaction.

We use a pretrained Longformer model from the Hug-
gingface Transformers library. Parameters are trained
using Pytorch’s implementation of Adam with default
hyper-parameters.

4. Empirical Evaluation
Our datasets are listed in Table 1. Each one contains a
local and an external source. We include the entity count
and the average number of terms per entity. Each local
entity has at least one relevant external entity, but some
external sources have additional irrelevant entities that
can appear in results. Thus, we also specify the number of
relevant external entities. ChEBI is derived from sources
used in the NIH project discussed in Section 1. The local
source uses DrugBank data, which contains molecular
information about drugs [12]. The external source uses
ChEBI data, which contains molecular entities used to
intervene in the processes of organisms [13]. WDC is
derived from the English WDC Product corpus, contain-



Table 1
Details of datasets used in our evaluation.

dataset source avg. terms #entity #relevant

Drugs Local 108 13,725
External 168 46,976

413

WDC Local 67 57,109
External 72 55,247

55,247

ChEBI Local 178 5,483
External 73 189,467

5,753

CORD-19 Local 305 250,575
External 48 340,826

250,575

ing products scraped from many sites [14]. CORD-19
contains research records related to COVID-19 [15]. We
split CORD-19 into two sources: one containing abstracts
(local) and one containing the remaining attributes (ex-
ternal). Drugs contains reviews from Drugs.com (local)
[16] and descriptions of the same drugs in Wikipedia
(external).
Interactions. We simulate a series of interactions. Each
interaction is initiated by sampling a local entity. Given
the entity, the mediator generates a query of length ℓ and
submits it to the external source, which returns its top-20
results using BM25. The query is then scored based on
simulated feedback (i.e., ground truth).
Sampling. Entity preference tends to follow a Zipf dis-
tribution 1/𝑖𝑠 where 𝑖 popularity rank and 𝑠 ≈ 1 [17].
Thus, users request the 𝑖′𝑡ℎ most popular entity approx-
imately twice as often as the (𝑖 + 1)′𝑡ℎ most popular
entity. We simulate user preference by sampling local
entities from a Zipf distribution (𝑠 = 1). We randomly
assign popularity, which is held constant across methods.
Evaluation Metric. We compute MRR as a sliding av-
erage over the previous 500 interactions. We report the
average of three runs each comprising 2000 interactions.
We plot this average against the current interaction. We
include error bands around each line to show a 95% in-
terval for standard error across runs.
Hyperparameters. We treat query length as a hyper-
parameter and use ℓ ∈ {4, 16}. We use 𝑑 = 5 prefix
tokens for prefix tuning along with a moderate amount
of exploration (𝜖 = 0.05).
Static IDF. To help contextualize performance, we in-
clude a naive policy for comparison. Static IDF produces
queries using the top-ℓ terms in the content of 𝑒 based
on their IDF. As explained in Section 3, IDF quantifies
term specificity within a dataset.

4.1. Results
We seek to understand whether prefix tuning and at-
tribute encoding lead to more effective query policies.
Figure 2 compares the LLM-based model with and with-
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Figure 2: Longformer and IDF comparison for queries of
length 4 and 16. LLM+ uses both prefix tuning and attribute
encoding whereas LLM uses neither.

out prefix tuning and attribute encoding along with Static
IDF.

Our results indicate that these techniques may dras-
tically help the model for some datasets and keyword
lengths. For example, in Figure 2c, we observe LLM+
ℓ = 4 exceeding the performance of LLM ℓ = 4 by a large
margin. Since ChEBI has 21 attributes in total, it may
specifically benefit from the use of attribute encodings.
On the other hand, we observe these techniques produc-
ing worse results on CORD-19 and Drugs. In contrast to
ChEBI, the local sources for both Drugs and CORD-19 con-
tain one long textual field with few to no other attributes.
Besides the review text field, Drugs also contains drug-
Name and condition. Terms from drugName tend to be
effective and since drugName always appears before all
other attributes, the positional encodings learned by the
pretrained model may be enough to help LLM identify
terms originating from drugName.

Since CORD-19 contains a single abstract text field,



attribute encodings should have little to no effect on
performance. Thus, prefix tuning likely degraded the
initial performance of LLM+ ℓ = 4 in Figure 2d. It is
possible that prefix tuning requires more feedback to be
effective. If this is true, than it may be possible to balance
short run and long run performance by adjusting the
amount of parameters within the prefix.
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