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Abstract
The data-driven culture is based on the importance of data analysis in supporting decision-making. In particular, machine
learning technologies and tools are evolving quickly and becoming increasingly popular as an effective means to gain insights
from raw data. However, it should be considered that Machine Learning (ML) models often generate uncertain results due
mainly to their imperfect and statistical nature. In this paper, we focus on the fact that data preparation techniques can
introduce additional uncertainty. Errors, missing values, and inconsistencies are frequently addressed using techniques that
correct data using estimates and thus add further uncertainty. Focusing on the specific problem of incomplete data, this paper
(i) investigates the effect of imputation techniques on the results’ uncertainty, and (ii) identifies the techniques that minimize
such an issue.
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1. Introduction
In the modern era of the data-driven culture, data analy-
sis is critical in providing useful information to support
companies’ decisions. In particular, Machine Learning
(ML) models help users effectively gain insights from
raw data. However, dealing with ML requires managing
uncertainty.

There are many sources of uncertainty in an ML-based
analysis. Still, the main one concerns the imperfect na-
ture of any models developed considering high variance
data or samples. More formally, we need to distinguish
between (at least) two different sources of uncertainty:
aleatoric, and epistemic uncertainty [1, 2, 3]. Aleatoric
uncertainty refers to the variability in the outcome of an
experiment, which is due to inherently random effects
(e.g., flipping a fair coin): no additional source of infor-
mation but Laplace’s daemon— i.e., “An intelligence that,
at a given instant, could comprehend all the forces by
which nature is animated and the respective situation
of the beings that make it up” [4, p.2]— can reduce such
variability. Data Quality plays a crucial role in managing
this uncertainty: reliable and consistent data helps iden-
tify and quantify the inherent variability and randomness

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — the 12th International Workshop on Quality
in Databases (QDB’23), August 28 - September 1, 2023, Vancouver,
Canada
Envelope-Open cinzia.cappiello@polimi.it (C. Cappiello);
federico.cerutti@unibs.it (F. Cerutti); camilla.sancricca@polimi.it
(C. Sancricca); riccardo.zanelli@mail.polimi.it (R. Zanelli)
Orcid 0000-0001-6062-5174 (C. Cappiello); 0000-0003-0755-0358
(F. Cerutti); 0000-0002-3820-7870 (C. Sancricca)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

in the data itself. This allows for more accurate model-
ing and prediction of outcomes, helping decision-makers
assess and manage the associated risks.
Epistemic uncertainty refers to the agent’s epistemic

state using the model, hence its lack of knowledge that—
in principle— can be reduced based on additional data
samples. One example of the impact of epistemic un-
certainty can be seen in climate change research. In
its assessment reports, the Intergovernmental Panel on
Climate Change (IPCC) [5] explicitly acknowledges and
quantifies uncertainties associated with climate projec-
tions. These uncertainties arise from factors such as lim-
ited historical data, incomplete understanding of climate
processes, and modelling assumptions. By considering
epistemic uncertainty, researchers and policymakers gain
a more realistic understanding of potential outcomes, en-
abling them to make informed decisions and develop
appropriate mitigation strategies. In this paper, we focus
on this type of uncertainty.
We must also consider that an ML model’s perfor-

mance strictly depends on the quality of input data. Data
Quality (DQ) is often defined as “fitness for use,” i.e., the
ability of a data collection to meet user requirements [6].
It might be affected by several aspects, such as syntactic
or semantic errors, inconsistencies, or missing values.
These issues can be addressed and/or mitigated by using
data preparation techniques. Such techniques, on the
one hand, improve the data quality level but, on the other
hand, can contribute to increasing epistemic uncertainty.
To validate such a statement, we started considering the
case in which a data set contains missing values. One
way to address such an issue is to fill in the missing data
in some form, and once the data are complete, feed them
to the model. The available imputation methods are vari-
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Figure 1: Pipeline of the experiments

ous: they go from traditional techniques in which null
values are substituted with statistical information (e.g.,
mean, median, mode) to more complex processes based
onML (e.g., clustering and distance-based algorithms [7]).
All these methods are imputing estimates, and therefore
they add epistemic uncertainty.
This work investigates (i) the effect of this portion

of uncertainty introduced by the data preparation pro-
cess on the data analysis results and (ii) if the goal of
mitigating uncertainty can be exploited to find the best
preparation action within a specific context (i.e., data and
ML model characteristics).
The paper is organized as follows: Section 2 explores

similar literature contributions and highlights the novel
aspects of the presented paper. Section 3 describes the
method that we used to investigate the impact of data
preparation on the uncertainty of ML results; Section
4 presents the conducted experiments and discuss the
obtained results, while Section 5 concludes the paper and
presents future work.

2. Related Work
The problem of missing data has been increasingly spread
in a variety of domains. For this reason, a lot of research
contributions aim to define methods for efficiently per-
forming data imputation and replacing the missing data
with values that are as accurate as possible [7, 8].

Several papers propose implementing accurate and
efficient data imputation methods by exploiting ML tech-
niques. For example, the method presented in [9] pro-
poses a novel k-Nearest-Neighbors (kNN) imputation
method that iteratively imputes missing data selecting
the kNN via calculating the Gray distance, i.e., a tech-
nique used in the Gray system theory, rather than tradi-
tional distance metrics. Such a distance metric can deal
with both numerical and categorical attributes.

Other methods [10, 11] make use of neural networks.
The work presented in [10] builds a deep latent variable
model to impute missing-at-random data. This model is
based on autoencoders and has been proven to provide

accurate single imputations, being competitivewith other
state-of-the-art methods. Finally, the method shown in
[11] adapts the Generative Adversarial Networks (GAN)
framework to impute the missing data. This method has
been tested on various datasets and outperforms some
state-of-the-art methods.

Some of the data imputation methods described above
were also considered in the experiments of this paper.

Moreover, some studies have tried to put together sev-
eral imputation methods. For example, the work in [12]
proposes an adaptive iterative imputation framework
that automatically finds, for each dataset column, the
best data imputation model and configures it with the
appropriate hyperparameters. The best single-column
imputation method is computed by trying several meth-
ods until an imputation-stopping criterion, based on the
incremental change in imputation quality, is met.
Within the same domain, several contributions have

conducted comparisons between the different imputation
methods present nowadays in the literature. For example,
[13] depicts a comprehensive benchmark on six differ-
ent methods involving standard, classical ML, and novel
deep learning approaches to perform data imputation.
The experiments were done on a huge set of real-world
datasets, including three missingness patterns, i.e., miss-
ing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR). In [14], the
authors show a comparison between multiple existing
data imputation techniques that are based on deep learn-
ing; moreover, they propose a set of improvements for
each analyzed method.

In these cases, the data imputation methods are evalu-
ated on their imputation quality, without considering the
uncertainty that they can introduce in the performance
of a ML model that will be executed on them.
A recent approach [15] focuses on studying the im-

pact of data preparation on the ML model performance.
This study investigates the impact of data cleaning ac-
tions on ML classification models. The authors consider
different data cleaning methods for correcting outliers,
duplicates, inconsistencies, mislabels, and missing val-



ues. The goal was to assign, for a specific setting (error
type, data cleaning action, and ML application), a P (pos-
itive), N (negative), or S (insignificant) flag indicating the
impact of the data cleaning on the ML performance.

Also in this case, the impact of data cleaningmethods is
evaluated on the basis of the final MLmodel performance,
without considering the ML uncertainty.

Some contributions focused on creating their data im-
putation methods for particular contexts and then tried
to validate them from the point of view of the introduced
uncertainty [16, 17]. In particular, the work proposed
in [16] aims to provide a tool to predict hospital read-
mission among Heart Failure patients and develops a
new methodological framework to address the missing
data using a Gaussian process latent variable model. In
contrast, the method shown in [17] focuses on well logs,
commonly used in geoscience, and proposes an approach
to customize the hyper-parameters of a random forest
model to predict the missing values.
However, none of the cited works considered using

uncertainty to select the best data imputation method
to apply in a given analysis context. Our work aims to
explore this open issue.
Finally, a paper that implements a similar approach

w.r.t. our method is [18]. However, the authors focus
on a totally different purpose: they systematically inject
errors, e.g., missing values and encoding errors, into the
input data to estimate the prediction quality of a ML
model. Their goal was to estimate the output quality of
ML models on unseen, unlabeled serving data, in order
to automate the validation of black boxes.

3. Measuring the Impact of Data
Preparation on the Decision
Uncertainty

This section presents the pipeline— illustrated in Fig-
ure 1— implemented to investigate the impact of data
preparation, whose application introduces approximate
data, on the uncertainty of ML outcomes.
In this work, we focus on the Completeness DQ di-

mension i.e., the degree to which a given data collection
includes the data describing the corresponding set of real-
world objects [6]. It is affected by missing values and
can be improved by applying data imputation techniques.
Note that the considered input dataset is free of DQ prob-
lems. For this reason, we have to inject missing values
to perform the data imputation techniques.

The Experiment Pipeline As Figure 1 depicts, the
input of the pipeline is a Data Source, which is split into
two datasets: the Training Set and the Test Set. Each
dataset is the input of the Data Analysis phase. This

splitting is done before injecting the DQ errors: in this
way, dirty instances of the Training Set are created, an
ML model is trained on them, and it is finally evaluated
on the same original instance of the Test Set.
The Missing Values Injection phase generates five in-

stances of the Training Set at different levels of quality by
injecting a different percentage of missing values (from
50% to 10%, with a decreasing step of 10%) uniformly.
The targeted class is excluded from the injection and is
not corrupted.
Following this procedure, the injected missing val-

ues are Missing Completely At Random (MCAR), i.e.,
the probability of a data point being missed is indepen-
dent of the observed and unobserved data. An injection
above 50% of DQ errors has not been performed in our
experiments since the variance of the model performance,
trained with so many mistakes, was too high and was no
longer considered reliable.
The obtained five dirty datasets are the input of the

Data Imputation phase, in which a data imputation tech-
nique is applied to fill the missing values. In this phase,
several imputation methods have been compared.
The five cleaned datasets obtained as the output of

the Data Imputation are fed to the Data Analysis phase,
where an ML model is trained on them. The resulting
five ML models are finally evaluated on the same Test
Set, computing their prediction performance and related
epistemic uncertainty. Two sets of scores are the output
of this phase: five scores (each one related to the ML
model executed on one of the five cleaned datasets) re-
lated to the model performance and another set of scores
for the uncertainty. The method is repeated for all the se-
lected data source/ML algorithm/data imputationmethod
combinations.

The Pipeline with Feature Selection The same
pipeline is also performed with an additional step of
feature selection. In this case, the input dataset is first
analyzed through a feature selection method. The output
is a subset of the original dataset that keeps only the four
most relevant features. The resulting dataset is the input
Data Source of this set of experiments.

4. Experiments & Results
This section describes the setup used to run the exper-
iments and the results obtained following the method
proposed in Section 3.



4.1. Experimental Setup
Different data sources have been selected to run the exper-
iments: Boston,1 Wine,2 California,3 House,4 Concrete.5

Table 1 lists their main characteristics. All these datasets
have a numeric target label, and regression ML models
were adopted to perform the Data Analysis phase (see
Section 3). For this reason, the CatBoost algorithm from
the catboost Python library [19] and the Gaussian Process
regressor from the scikit-learn Python library [20] have
been selected as ML analysis algorithms. In addition, the
Boruta [21] method for feature selection has been adopted.
It is an ML-based method that evaluates each feature’s
importance in a dataset and returns the most relevant
ones.

In order to include a diversified set of data imputation
techniques, we consider seven types of them, divided
into four macro-categories. For each category, we select
one or more representative methods, even though it is
known that some are less effective than others. The
considered methods are the following:

(1) Single-column imputation with aggregated
values computes an aggregated value like the mean, the
median, or the most frequent to substitute the missing
ones.

ML-based imputation exploits ML algorithms,
such as: (2) k-Nearest Neighbours (KNN) [9] esti-
mates each sample’s missing value with the mean value
of its nearest neighbours; (3) Generative Adversarial
Imputation Nets (GAIN) [11] uses generative adver-
sarial networks (GANs) for estimating missing values by
training a GAN, which consists of two neural networks:
a generator network, which generates the missing data,
and a discriminator one, to distinguish between the real

1https://www.kaggle.com/datasets/avish5787/boston-data-set (on
29th May 2023).

2https://www.kaggle.com/datasets/shelvigarg/wine-quality-dataset
(on 29th May 2023).
3https://www.kaggle.com/datasets/dhirajnirne/
california-housing-data (on 29th May 2023).

4https://www.kaggle.com/datasets/lespin/house-prices-dataset (on
29th May 2023).

5https://www.kaggle.com/datasets/rithikkotha/concrete-dataset (on
29th May 2023).

Target class Categoric f.Numeric f.FeaturesTuples

numeric01313506boston

numeric1891,000california

numeric4634801,460house

numeric0881,030str

numeric111121599wine

Table 1
Data sources profile

data and the ones that were just generated; (4) MIWAE
[10] uses an autoencoder, a neural network trained to
encode the observed data into a lower-dimensional
space. This allows the autoencoder to learn a compact
representation of the data, which can be used to predict
the missing values.

Multiple imputation creates copies of the origi-
nal data and estimates the missing values through
an iterative process. We consider the (5) Multiple
Imputation by Chained Equations (MICE) [22]
technique: (i) random imputation is applied to each
missing column; (ii) the missing values are set back one
feature at a time; (iii) an ML model is fitted to impute
the values using the rest of data as training set; (iv) the
training set is updated with the predicted column. For
the experiments, the selected ML model is KNNRegressor
from scikit-learn Python library [20].

Statistics-based imputation considers Matrix
Factorization (MF) techniques. We select two of them:
(6) basic MF and (7) Singular Value Decomposition
(SVD) [8]. These processes assume that input data are
noisy observations produced by a linear combination
of a small set of principal components. They estimate
the missing data by splitting them into two or more
low-dimensional matrices and reconstructing the
original one based on a linear combination.

To evaluate the accuracy and the uncertainty of
the results, we used the following evaluation metrics.
The Root Mean Squared Error (RMSE), i.e., a measure
of the average difference between the predicted and
actual values, has been used to evaluate the prediction
accuracy.
Moreover, one common approach for estimating the

(epistemic) uncertainty of ML models is to use the stan-
dard deviation of the algorithm prediction, i.e., a measure
of the variation of the predicted values with respect to
their average. A high standard deviation indicates that
the predicted values are more variable and, therefore, less
reliable.

The standard deviation of the results was estimated di-
rectly by the CatBoost and Gaussian Process algorithms.
For example, for CatBoost, the value of the uncertainty
was extracted from the model evaluation function, which,
in this case, was set to RMSEWithUncertainty—an eval-
uation metric provided by the catboost Python library
[19].

The method presented in Section 3 has been executed
16 times with different random seeds for each com-
bination of data source/Ml algorithm/data imputation
method.

https://www.kaggle.com/datasets/avish5787/boston-data-set
https://www.kaggle.com/datasets/shelvigarg/wine-quality-dataset
https://www.kaggle.com/datasets/dhirajnirne/california-housing-data
https://www.kaggle.com/datasets/dhirajnirne/california-housing-data
https://www.kaggle.com/datasets/lespin/house-prices-dataset
https://www.kaggle.com/datasets/rithikkotha/concrete-dataset
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Figure 2: Distributions of RMSE (a) and Standard Deviation (b) of using KNN, MIWAE, MF, MICE, SVD on the house dataset
when analyzing it with CatBoost, varying the completeness.

4.2. Results Evaluation
This section shows the preliminary results we obtained
applying the method described in Section 3. Experiments
have been conducted for the data sources, ML algorithms,
and data imputation techniques listed in Section 4.1.

From the experiments’ results, the role of uncertainty
introduced by data preparation arises: it can be used as a
support in identifying the best data preparation method
to apply in a specific analysis context, i.e., a combination
of the data source and the ML algorithm selected for its
analysis. When applying two data imputation methods
leads to equivalent analysis results (in terms of perfor-
mance), the best one can be identified by evaluating their
uncertainty.
Figure 2 depicts an example of the aggregated results

obtained for the combination CatBoost/house dataset. In
particular, Figure 2a plots the model performance (RMSE)
and Figure 2b the uncertainty distribution for the five
imputation methods that give the best analysis results,
varying the completeness. The y-axes represent values as-
sumed by the RMSE and uncertainty, respectively, while
the x-axis pictures the Completeness level.

From visual inspection of Figure 2, it emerges that ap-

plying k-Nearest Neighbours (KNN), Multiple imputation
(MICE), Matrix Factorization (MF), and Singular Value
Decomposition (SVD) yields MLmodel performance (RM-
SEs) that are very similar to each other, and it becomes
difficult to determine which one is better. However, by
analyzing the uncertainty, one can argue that MF outper-
forms the others since—on average— it leads to lower
values.

Moreover, we rank the data imputation methods based
on the analysis performance and the uncertainty they in-
troduced. For each analysis context, we compute the ML
model performance and related uncertainty for the se-
lected ML algorithms using the original (cleaned) dataset,
and we use this value as a baseline. Then, for each com-
bination of dataset/ML algorithm/data imputation tech-
nique, we (i) run our method (see Section 3) several times,
(ii) aggregate the results by the median, and (iii) compute
the median distance between the five extracted scores
(both for RMSE and uncertainty) and the baseline.

Data imputation methods were sorted in ascending or-
der of their median distance from the baseline to extract
the rankings. The closer the score is to the original values,
the more reliable the data imputation method is. Table



Rankings with feature selectionRankings without feature selection

Uncertainty-distanceRMSE-distanceUncertainty-distanceRMSE-distanceCatBoost

7e-05
0.00011
0.00011
0.00014
0.00018

KNN
MF
MIRACLE
MICE
SVD

0.13111
0.13252
0.16652
0.19912
0.20864

KNN
MICE
MEDIAN
GAIN
MEAN

5e-05
6e-05
6e-05
7e-05
9e-05

KNN
MICE
MF
SVD
MIRACLE

0.11884
0.13992
0.15831
0.16375
0.16489

MF
SVD
KNN
MEDIAN
MICE

1
2
3
4
5

boston

2e-05
2e-05
3e-05
5e-05
8e-05

KNN
MICE
MF
SVD
GAIN

0.24315
0.24458
0.25869
0.26749
0.27179

MF
GAIN
MIRACLE
MIWAE
KNN

2e-05
2e-05
2e-05
3e-05
5e-05

GAIN
MF
SVD
MIRACLE
KNN

0.18043
0.21464
0.22342
0.23966
0.24033

MF
SVD
MICE
KNN
MEAN

1
2
3
4
5

california

1e-05
1e-05
3e-05
3e-05
4e-05

KNN
MIRACLE
MICE
MF
SVD

0.17602
0.17849
0.18807
0.20437
0.20977

MICE
KNN
SVD
MF
MEDIAN

1e-05
2e-05
4e-05
4e-05
5e-05

MF
MIRACLE
KNN
MICE
SVD

0.139
0.14301
0.14648
0.14697
0.1483

KNN
MICE
MF
MIWAE
SVD

1
2
3
4
5

house

0.00019
0.00023
0.00023
0.00024
0.00024

MEDIAN
GAIN
MIRACLE
MEAN
MIWAE

0.17407
0.1839
0.18537
0.18547
0.20672

MICE
MEAN
MEDIAN   (*)
MF
SVD

0.00011
0.00013
0.00013
0.00015
0.00015

MEAN
MEDIAN
MIWAE
MF
SVD

0.09704
0.16057
0.16117
0.16877
0.17426

GAIN
MF
MIWAE
SVD
MICE

1
2
3
4
5

wine

7e-05
8e-05
9e-05
9e-05
9e-05

SVD
MICE
KNN
MEDIAN
MIWAE

0.20749
0.21162
0.21179
0.21313
0.2134

MEAN
MF
KNN
MICE
MIWAE

3e-05
4e-05
9e-05
0.00012
0.00016

KNN
MF
SVD
MICE
GAIN

0.15369
0.15676
0.15934
0.17455
0.17532

MF
MICE
MIWAE     (†)
SVD
KNN

1
2
3
4
5

concrete

Gaussian Process

0.39494
0.46441
0.48834
0.52218
0.58669

KNN
MICE
MF
GAIN
SVD

0.15131
0.17001
0.18452
0.1909
0.19812

KNN
MICE
SVD           (‡)
GAIN
MEDIAN

0.45759
0.47994
0.4841
0.50455
0.57109

KNN
GAIN
MF
MICE
SVD

0.17893
0.19831
0.20524
0.23681
0.24607

SVD
GAIN
MF
MIWAE
KNN

1
2
3
4
5

boston

0.36205
0.37373
0.45056
0.46501
0.49432

MICE
KNN
MF
SVD
GAIN

0.20394
0.26859
0.26934
0.27192
0.29764

MF
MIWAE
MEAN
MICE
GAIN

0.52332
0.5583
0.56757
0.57137
0.67285

KNN
MICE
GAIN
MF
SVD

0.19445
0.2031
0.23877
0.24154
0.24468

SVD
MF
MEAN
MICE
KNN

1
2
3
4
5

california

0.24427
0.25389
0.30185
0.44806
0.68732

KNN
MF
MICE
SVD
GAIN

0.18913
0.20438
0.20585
0.20631
0.20789

KNN
MICE
MF            (#)
MEAN
SVD

0.20324
0.25711
0.30113
0.32236
0.32672

MIRACLE
MF
KNN
SVD
MICE

0.16725
0.17225
0.17235
0.17635
0.19969

SVD
MICE
KNN
MF
GAIN

1
2
3
4
5

house

0.83604
0.89423
0.98518
1.04923
1.20151

MICE
KNN
MF
SVD
GAIN

0.17269
0.1749
0.18762
0.19375
0.20993

KNN
SVD
MEAN
MICE
MF

0.30437
0.67813
0.80923
0.80974
0.87162

MIRACLE
MF
MICE
KNN
SVD

0.0742
0.10617
0.10943
0.11109
0.12256

SVD
MICE
KNN
MF
GAIN

1
2
3
4
5

wine

0.47709
0.48248
0.55295
0.55554
0.61117

MICE
MEDIAN
KNN
MF
SVD

0.23003
0.25437
0.25936
0.2618
0.27333

MICE
KNN
MEDIAN
MF
SVD

0.67996
0.68979
0.74398
0.8873
1.04528

MF
KNN
MICE
SVD
GAIN

0.19415
0.20085
0.20471
0.20947
0.22111

MF
SVD
MICE
KNN
MEAN

1
2
3
4
5

concrete

Table 2
Data imputation methods rankings based on the RMSE/uncertainty median distance from the baseline (i.e., the RMSE/uncer-
tainty computed with the original dataset).

2 lists the extracted rankings and their related distances.
We performed a Kruskal-Wallis [23] nonparametric test
to determine if there are statistically significant differ-
ences between the methods in each ranking. White cells
in Table 2 are statistically significant (𝑝 < 0.01) results
according to the Kruskal-Wallis test. Among the non-
statistically significant ones—in grey—the following cou-

ples are statistically significant (𝑝 < 0.01) according to
a pairwise analysis performed using the Mann-Whitney
test [24]: (*) MICE ≠ SVD; (†) MICE ≠ {MIWAE, KNN};
(‡) KNN ≠ {SVD, MEDIAN}; (#) KNN ≠ {MEAN, SVD}.

From Table 2, we can appreciate, again, that uncer-
tainty can be used to discriminate between different
imputation methods with absolute values of distance



from the baseline very close considering the ML model
performance achieved. From these tables, it is evident
that whenever two imputation methods have median
distances from the baseline that are very close, the un-
certainty they introduce is always different and can be
sorted accordingly.
For example, for the combination of CatBoost algo-

rithm/concrete dataset, the first two imputation methods
are very close to each other, i.e., MF and MICE; however,
the uncertainty introduced by MF is much smaller than
the other one. We can conclude that the first method is
better than the second one. The above statement applies
to all the tested analysis contexts.

We also aggregate the rankings results in the following
manner: (i) aggregating all results together; (ii) aggregat-
ing, for each dataset, results obtained applying the two
algorithms with and without feature selection; (iii) ag-
gregating, for the 4 combinations of CatBoost-Gaussian
Process/with-without feature selection all dataset-related
results. For each aggregation, we sum the median dis-
tances reported in Table 2 and sort the imputation meth-
ods in ascending order of that sum, creating aggregated
rankings.

From the aggregated results, we can state that:

(i) Considering all the results together, the best-4
methods turned out to be MICE, MF, SVD, and
KNN. Moreover, their aggregated distance values
are very close to each other both for RMSE and
uncertainty. SVD imputation has slightly higher
uncertainty than the others.

(ii) The best-4 methods found in (i), in general, ap-
pear in the first four positions of the rankings
obtained for each dataset aggregation. There may
be variations in the third and fourth positions of
the aggregated rankings, where other imputation
methods can appear. However, the uncertainty
of the latter methods is always higher than the
best-4 methods.

(iii) The best-4 methods are coherent for all
algorithms/with-without feature selection
aggregations. However, the position of these
methods changes based on the considered
combination. We can notice that CatBoost and
Gaussian Process algorithms have very similar
RMSE-related rankings (1) with feature selection,
in which the first 3 positions are the same, and
(2) without feature selection.

It is possible to draw some conclusions from the con-
ducted experiments. First of all, there is no absolute
“best” imputation method that fits all situations: identi-
fying the imputation method to prefer depends on the
analysis context. However, it is possible to observe that

the imputation methods that outperform the others are
KNN, MICE, and MF.

From a more general perspective, it is also possible to
state that neural network-based imputation techniques,
in some cases, are the best ones. However, they have very
high uncertainty and are less reliable. This is especially
the case of data sources with low dimensionality, i.e., the
number of tuples and features, as neural networks need
much more data to build a reliable ML model.
As regards the single-column imputation with aggre-

gated values techniques, it is possible to highlight that
the uncertainty introduced by these methods is higher
for lower completeness values. This happens since sub-
stituting an aggregated value introduces a higher approx-
imation concerning the other methods.

5. Conclusions and Future Work
The paper presents a set of experiments to evaluate the ef-
fects of data imputation techniques on ML-based analysis
uncertainty. The obtained results highlight that besides
performance, uncertainty can be an additional metric
to consider for defining the data preparation method to
prefer. Future work will focus on extending the experi-
ments considering the other DQ dimensions. Our vision
is to exploit these experimental results and experience
already gained in similar contexts to design a self-service
environment that supports data scientists in finding and
recommending data preparation techniques to maximize
the results’ accuracy while minimizing uncertainty.
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