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Abstract
Accurate forest monitoring data are essential for understanding and conserving forest ecosystems. However, the remoteness
of forests and the scarcity of ground truth make it hard to identify data quality issues. We present two state-of-the-art forest
monitoring datasets, Annual Forest Change (AFC) and GEDI, and highlight their data quality problems. We then introduce a
novel method that leverages GEDI to identify data quality issues in AFC. We show that our approach can identify subsets
with three times more errors than a random sample, thus prioritizing expert resources in validating AFC and allowing for
more accurate deforestation detection.
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1. Introduction
Data-intensive models are only as good as their training
data. As a result, the past two decades have seen a great
deal of research and industry effort toward monitoring
and improving data quality. Solutions exist for dedu-
plication, missing data imputation, and identifying and
repairing incorrect data [1]. However, as data-intensive
systems gain traction in new application areas, new data
quality problems arise, complicating the task of identify-
ing incorrect data.

We present a novel approach to finding data errors
in one such application area: forest monitoring. Forests
have a significant impact on the Earth’s climate and bio-
diversity [2, 3], but they have been severely damaged
by deforestation and climate change [4]. To create ef-
fective conservation policies, it is crucial to accurately
map forest change (e.g., deforestation or degradation) on
a global scale. Forest change maps help scientists under-
stand the impacts of deforestation [5, 6] and are used in
government policymaking and reporting [7].

Many forest change maps are created from satellite im-
ages [8, 9], leading to new data quality problems related
to sensor limitations, cloud cover, and low resolution.
For instance, these images lack forest height information,
which is useful in detecting deforestation [9]. Evaluating
the accuracy of these maps is also a complex and costly
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task due to the limited availability of ground truth data,
as collecting forest condition data through field visits is
expensive and does not scale. As a result, there is no
simple way of identifying errors in forest change maps.

To identify errors in a widely-used forest change map,
we use GEDI [10], a recent spaceborne LiDAR dataset that
provides information about the 3D structure of forests not
available in optical images. Specifically, we identify non-
forested areas, either deforested or non-forest vegetation,
that are incorrectly labeled as tropical forests. Despite
GEDI’s limited spatial and historical coverage, we show
that GEDI’s estimates of canopy height (the height of the
top of the forest) can identify parts of the forest change
map that are three times more likely to contain errors
than a random sample. Our approach can be used to
prioritize resources for validating a forest change map
and assist in more accurate detection of deforestation.

Our contributions are as follows:

• We describe data quality issues associated with
two datasets: a state-of-the-art forest change map
(AFC) [8] (Section 2), and GEDI [10] (Section 3).

• We propose and evaluate a method that leverages
GEDI data to identify potential errors in AFC
(Section 4, 5).

We review related work in Section 6 and conclude in
Section 7.

2. Annual Forest Change Data
The Annual Forest Change (AFC) dataset (Figure 1a)
tracks annual changes in tropical moist forests (TMFs)
from 1990 to 2021 [8]. It segments different land cate-
gories, such as TMFs, water bodies, and grasslands, as
well as identifying changes in land cover, such as degra-
dation and deforestation.
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(a) An illustration of the Annual Forest Change (AFC) map,
December 2021.

(b) A Satellite image. Landsat L9, January 2022. The bottom
right corner of the image shows an example of missing data
due to cloud coverage.

Figure 1: The AFC map and a satellite image from the same location.

Structure AFC maps the annual boundaries and sta-
tus of TMFs. An AFC map is a 2D grid of pixels, each
corresponding to a 30 m × 30 m (0.09 ha) area on the
Earth’s surface at the equator. It classifies each pixel into
one of six categories: Undisturbed TMF, Degraded TMF,
Deforested land, TMF Regrowth, Water, and Other Land
Covers.
Source AFC maps are derived from optical satellite

imagery of the Landsat satellites [11] (Figure 1b). A Land-
sat satellite captures images of the Earth’s surface from
705 kilometers above, revisiting each location every 16
days. These images are taken by cameras onboard the
satellites that capture different wavelengths of light in-
cluding, visible light, infrared, and other wavelengths.
Vegetation types are recognized by how they absorb or
reflect light.

Methodology The AFC dataset is based on per-pixel
classifications of Landsat images. Each pixel is classified
using expert rules as either potential moist forest, poten-
tial non-forest, or invalid (cloud, shadows, noise). Each
pixel is then assigned a final class (from the above six
categories) based on the changes over time.
Accuracy AFC is reported to be 91.4% accurate but

underestimates forest disturbance by 11.8% [8]. This
corresponds to over 38 million hectares of land, which is
a significant area [8].
Data Quality Challenges Forest maps, including

AFC, face the following challenges.

• Missing Data: There could be gaps in satellite
observations for several reasons, including cloud
cover and atmospheric conditions (Figure 1b), sen-
sor limitations or failures, and intentional pauses

in data collection.
• Noisy Data: Satellite imagery is prone to sensor

noise, miscalibration, and atmospheric noise.
• Spatial and Temporal Resolution: The resolu-

tion of a forest map is determined by the resolu-
tion of the source data. For instance, AFC cannot
tell the precise location of disruptions or changes
smaller than 0.09 hectares.

• Spectral Mixing: Satellite images often have
mixed pixels containing different land cover types
(e.g., half forest and half deforested). This issue
occurs frequently in complex vegetation covers
or at the boundaries between different land cover
types.

• Spectral Confusion: This occurs when different
types of land cover have similar appearance when
viewed from space. For instance, Figure 2 shows
how a cocoa agroforest looks similar to a forest
in optical satellite imagery [12].

• Lack of 3D Information: Optical satellite im-
ages lack 3D information such as forest height,
limiting their ability to distinguish between some
land cover types. For example, height informa-
tion can distinguish forests from grasslands.

• Limited Ground Truth: Collecting data by vis-
iting forests ranges from expensive to impossible
(for remote and inaccessible locations). As a re-
sult, experts rely on remote sensing to create a
reference dataset.

We introduce a method that directs experts’ attention
toward a subset of samples that are more likely to contain
errors. To achieve this goal, we use a new forest height



Figure 2: Spectral confusion [12]. The cocoa agroforest looks
identical to a forest in optical satellite imagery.

dataset, described below, with its own unique data quality
issues and challenges.

3. Forest Height Data
Global Ecosystem Dynamics Investigation (GEDI) is a
LiDAR (Light Detection and Ranging) instrument that
collects data about the Earth’s forests from space [10].
LiDAR emits laser beams and measures the time it takes
for the light to return to the sensor. GEDI LiDAR is
designed to penetrate the canopy, allowing scientists to
study the 3D structure of forests. GEDI operated on
the International Space Station (ISS) from 2019 to 2023.
Figure 3 illustrates a GEDI return waveform.

Structure A GEDI observation corresponds to a frag-
ment of the Earth’s surface with a 25 m diameter called a
footprint (Figure 3). GEDI was estimated to collect over
10 billion cloud-free observations in two years [10].

Data Products Raw GEDI waveforms are processed
into higher-level data products that describe the 3D fea-
tures of forests. For example, GEDI Level 2A data include
measurements of ground elevation and relative height
(RH) [13]. RH is the height above ground at which a cer-
tain quantile of cumulative energy was returned (Figure
3), and the RH95 (95% quantile) has been shown to esti-
mate canopy height (height of the top of the forest) [14].
These products are used to create 1 km × 1 km gridded
maps.

Accuracy GEDI was calibrated and validated using a
ground truth dataset in which the evergreen broadleaf
forests of South America were well represented [10].
Studies show that GEDI can accurately estimate RH95
with RMSE of 2.08 m [15].

Data Quality Challenges Similar to other data col-
lected from space, GEDI data has the following data qual-
ity issues:

• Noisy Data: As a laser-based technology, GEDI
is sensitive to atmospheric conditions, including

Figure 3: GEDI return waveform [10]. The waveform (left)
captures the reflected energy at different elevations from the
25 m diameter footprint (right).

cloud cover and moisture. Sensor noise and mis-
calibration also contribute to errors in the data.

• Spatial and Temporal Resolution: GEDI foot-
prints cover a limited portion of the Earth (around
4% in two years of operation) [10], and gridded
maps have a relatively coarse resolution of 1 km.
Additionally, operating from 2018 to 2023, GEDI
does not offer extensive historical information. Fi-
nally, there are no guaranteed revisits of the same
location, making it difficult to monitor changes.

• Terrain: Sloped or complex terrain introduces
additional errors in GEDI data [16].

• Geolocation Error: Slight geolocation uncer-
tainties ( 0 m mean, 10 m standard deviation exist
in the reported coordinates. This uncertainty can
significantly affect RH metrics in mixed canopies
and forest edges [17].

GEDI’s spatiotemporal limitations prevent scientists
from creating high-resolution forest change maps based
solely on GEDI data. Nevertheless, GEDI can help ad-
dress the lack of 3D information, spectral confusion, and
limited ground truth problems in AFC. GEDI offers 3D
information for remote unreachable forests. Therefore,
GEDI data (like canopy height) can help distinguish for-
est covers that may look the same in optical satellite
imagery. While the spatial limitations of GEDI prevent
us from evaluating the entire AFC dataset, we present a
novel method to identify data quality issues in AFC more
efficiently than random sampling while accounting for
geolocation error and noise in GEDI data.

4. Approach
Forests commonly consist of tall green trees: the formal
definition of a forest requires canopies to be at least 5
metres tall [18]. Therefore, areas with shorter canopies



Figure 4: An illustration of dataflow. (a) Data Fusion. The grid is the AFC map, and the circles are GEDI shots. The nearest 3 ×
3 windows are highlighted for each shot. (b) Finding Outliers. Samples with 𝑅𝐻95 < ℎ are selected. (c) Clustering Outliers.
Nearby outliers are clustered. (d) Filtering Clusters. Smaller clusters are filtered to increase reliability.

are more likely to be instances of deforestation or other
land covers such as grasslands.

We define areas with an undisturbed label in AFC and
short canopy height in GEDI as conflicts or outliers. We
suggest these conflicts can be more effective in identi-
fying errors in the AFC dataset than randomly selected
samples. Note that these conflicts represent potential
errors that could arise from noise in either the GEDI or
AFC data. Thus, several challenges need to be addressed:

• Integrating the two datasets, the AFC map and
GEDI footprint data, while accounting for geolo-
cation errors.

• Accounting for the noise in GEDI data and finding
samples that are more trusted.

• Prioritizing some outliers when dealing with
thousands of conflicts, as manually examining
all of them is too time-consuming.

We propose a four-step process to utilize GEDI canopy
heights (RH95) to identify forests labeled as undisturbed
but having conflicting (short) canopy heights. Figure 4
shows the dataflow.
Step 1: Data Fusion. We identify the nine nearest

AFC pixels to each GEDI shot. These pixels form a 3 × 3
window on the AFCmap, with the center pixel containing
the GEDI shot center (Figure 4). We only consider GEDI
shots within homogeneous windows. This accounts for
potential geolocation errors in the GEDI shot.

Step 2: Finding Outliers. We select GEDI shots with
𝑅𝐻95 < ℎ, where ℎ is a tuneable parameter. These shots
are undisturbed TMFs with an abnormally short canopy.
The parameter ℎ can be selected based on expert knowl-
edge or the RH95 distribution.
Step 3: Clustering Outliers. We merge nearby out-

liers into clusters using hierarchical clustering for two
reasons:

• Reducing data noise. Several nearby conflicting

observations are more trusted than a single out-
lier.

• Conflicts occurring close together can belong to
the same area and cover type, corresponding to
spatially correlated errors [19]. For instance, two
consecutive GEDI shots are only 60 m apart, and
both may be from a grassland misclassified as an
undisturbed TMF in AFC. Using clustering, we
avoid reporting these points separately.

Hierarchical clustering has two parameters: linkage and
distance threshold. Linkage determines how the distance
between two clusters is calculated; e.g., single-linkage
uses the minimum distance between members of the two
clusters. The distance threshold determines if clusters
should be combined, merging only those closer than the
threshold.
Step 4: Filtering Clusters. Clusters with few con-

flicts are less likely to represent areas with AFC errors
than ones with many conflicts. Hence, we prioritize
clusters larger than a certain threshold, 𝑐. Additionally,
clusters containing GEDI shots from multiple satellite
orbits are more reliable and less susceptible to systematic
errors. This is because consecutive shots within a single
orbit could all be incorrect due to atmospheric conditions
or sensor issues.

There are three parameters in this method: height
threshold (ℎ), clustering distance (𝑑), and minimum clus-
ter size (𝑐). We discuss the effects and trade-offs of these
parameters in Section 5.

5. Evaluation
We used our method to find data quality issues in the 2021
AFC map of the Brazilian Amazon region. We used RH95
from quality-filtered GEDI shots, as detailed in Burns
et al. [20], collected during the second half of 2021. In
this section, we describe two results. The first relied on



ground truth from a validated forest cover map, while
the second was from our own visual interpretation of
high-resolution satellite images.
Study Region We focus on the Brazilian Amazon

rainforest, which plays a vital role in global climate sta-
bility, and is home to unique plant and animal species.
The availability of numerous forest maps and freely ac-
cessible satellite data makes the Brazilian Amazon an
ideal region for our studies.
Parameters Height Threshold (ℎ) is a tradeoff be-

tween precision and recall. A lower threshold reduces the
number of outliers, which can reduce false positives but
may affect recall. A lower Clustering Distance Threshold
(𝑑) leads to smaller clusters that may represent correlated
errors. A higher distance threshold can merge unrelated
clusters or create clusters of multiple noisy samples. Min-
imum Cluster Size (𝑐) also impacts precision and recall.
Although small clusters are more likely to be false posi-
tives, choosing a large 𝑐 affects the recall of small-scale
errors.

Based on empirical fine-tuning, we selected ℎ = 3.44
meters to mark 0.3% of the GEDI shots in undisturbed
TMFs as outliers. A lower threshold (e.g., 2 meters) elimi-
nated some evident AFC errors, whereas a higher thresh-
old (e.g., 4 meters) included many shots that were am-
biguous as to whether they were AFC errors. We apply
single-linkage hierarchical clustering with a distance of
𝑑 = 700 meters to group outliers that are from the same
GEDI orbit. We also filter clusters with fewer than 𝑐 = 8
shots.
MapBiomas Evaluation MapBiomas [21, 22] is an

annual dataset of Brazil’s land cover maps from 1985
to 2021 at a 30-metre resolution. It uses a hierarchical
classification system with four levels to categorize land
covers. At Level 1, land covers are classified into six cate-
gories: forest, non-forest, farming, non-vegetated, water,
and not observed. Level 2 expands Level 1 classes into
22 subcategories. MapBiomas is created from Landsat
images, primarily using a Random Forest classifier, and
it is validated annually on over 75,000 samples. Level 1
and 2 classification error is estimated to be 7.5% and 9.3%,
respectively [21].

In this analysis, we use MapBiomas as a ground truth
dataset. Specifically, we assume that if an outlier shot is
labeled as undisturbed TMF in the AFC map but classi-
fied as non-forest in MapBiomas, then we consider Map-
Biomas to be correct, meaning that the outlier is an error
in the AFC map. We report two validation metrics: (1)
the percentage of outliers with non-forest Mapbiomas
labels and (2) the percentage of clusters with at least one
such outlier.

Visual Interpretation After finding outlier clusters,
we randomly select one GEDI shot per cluster. Then, we
determine if this represents an AFC error by analyzing
the 3 × 3 surrounding AFC pixels in a cloud-free image.

We use higher-resolution satellite images with approx-
imately 4 m per pixel resolution from the Planet NICFI
data program [23, 24]. Specifically, we used the last cloud-
free Planet images of 2021. Each cluster is assigned one
of three validation labels: Ambiguous (if no cloud-free
observations are available or if it is unclear whether the
area is an AFC error), AFC Error, or False Positive (if the
pixels are correctly classified in AFC). Analyzing 3 × 3
windows of themap is similar to AFC’s validationmethod
[8].
Results We identified 23,306 conflicts (i.e., marked

undisturbed forest in AFC with 𝑅𝐻95 < 3.44m) in Step 2.
After filtering clusters in Step 4, 5,740 samples remain, of
which 1.88% are labeled non-forest in MapBiomas. This
gives 240 clusters, 12.08% of which have at least one
outlier with a non-forest MapBiomas label. Since manual
evaluation is time-consuming, we evaluate 100 random
clusters out of the 240 clusters using Planet images. Out
of the 100 clusters, 33 were found to be AFC errors, 63
were Ambiguous, and 4 were False Positives (see Figure
5 for examples). Assuming that all Ambiguous cases are
False Positives, the precision of our method is at least 33%,
which is almost three times greater than the precision of
random sampling reported by [8].
Discussion Visual interpretation revealed cases

where both AFC and MapBiomas were inaccurate. This
can be because of MapBiomas limitations due to the lack
of 3D information in Landsat images. While MapBiomas
has the advantage of evaluating every pixel in AFC, GEDI,
despite its limited coverage, uncovers errors that Map-
Biomas may not detect. Additionally, there are some
vegetation types that should be classified as non-forest
covers in AFC but are considered forests in MapBiomas.
For instance, MapBiomas assigns wooded savannah and
tropical evergreens to the same class, while AFC refers to
the former as other land covers. Therefore, per-pixel eval-
uation cannot identify AFC errors in wooded savannahs,
but using canopy height can.

It is useful to study where AFC made errors. We found
many outlier clusters in the Brazilian Amazon’s north-
west region, with a vegetation cover known as camp-
inarana that can be difficult to distinguish in satellite
images [25]. This region is remote and challenging to
access, making it difficult to obtain field data. Various
types of campinarana include forest, wood, shrub, and
grass on sandy infertile soil [26]. Forest campinaranas
are up to 20 meters tall, whereas canopy height in the
non-forest classes does not exceed 4 meters [26]. Shrub
campinarana appears green in satellite images which
might lead to AFC errors.

Some False Positives were located near shores and wa-
ter that could potentially be covered by mangroves (Fig-
ure 5d). Mangroves have a distinct structure that differs
from evergreen or semi-evergreen forests. However, all
three types are categorized as TMFs in AFC. Excluding



such areas from the analysis could improve precision.
We also attempted to identify TMFs misclassified as

deforested by filtering deforested samples with 𝑅𝐻95 >
20 metres. However, we were unsuccessful for several
reasons. First, this approach does not reflect the complex
nature of forests. Seeing a few square meters of trees
does not indicate the presence of a forest. Second, the
lack of historical height data prevents us from analyzing
changes to distinguish primary forests from replacing
tree plantations. Furthermore, 𝑅𝐻95 is prone to obstacle
noise, such as from a flock of birds.

6. Related Work
Holcomb et al. [27] recently discovered discrepancies
between GEDI biomass (amount of organic matter in
a forest) data and AFC label. They observed instances
where areas with near-zero biomass were classified as
regrowing forests (6+ years old), and other regions with
substantial (> 200 Mg/ha) biomass, were classified as
young (< 3 years old) regrowing forests after deforesta-
tion.

In this study, we used canopy height to find data qual-
ity issues in a forest change map. A recent study ex-
plored the use of canopy height to distinguish forested
and unforested tropical wetlands [28]. They used a global
canopy height map with a 30 metre resolution, created by
combining GEDI RH metrics and Landsat images [14]. In
contrast, our approach relies solely on raw GEDI height
measurements.

In addition to creating a forest change map that esti-
mates the year of forest loss, Hansen et al. [9] studied
the relationship between loss year and canopy height us-
ing an older spaceborne LiDAR dataset. They observed
that samples from undisturbed forests, on average, had
greater canopy height than disturbed forests. This is
consistent with our work.

Assessing the pixel-level agreement of two forest
change maps is another way to find errors. However,
this can be challenging due to variations in the map leg-
ends and differences in resolution. Moreover, two maps
based on Landsat optical images can be subject to the
same data quality problems. Cohen et al. compared seven
forest change maps based on Landsat at pixel level, re-
vealing a low level of agreement [29]. On the other hand,
GEDI allows us to leverage 3D information that does not
exist in Landsat.

7. Conclusions
We described AFC and GEDI, two important forest moni-
toring datasets, and their data quality issues. Although
GEDI alone cannot be used to create a forest change map,
it provides 3D information about forests missing from

optical satellite imagery. We proposed a novel approach
to find data quality issues in AFC using GEDI data, specif-
ically, areas marked as TMF in the AFC map but with low
RH95. Our findings show that this information can be
used to create more accurate forest change maps.

Since no ground truth data were available, we used
ancillary data in our evaluation [26, 22]. This process was
limited by the interpretation of a single evaluator, and
future studies could benefit from using a voting technique
and involving experts. Our method could be used to
identify errors in other land cover classification maps
by finding inconsistencies between GEDI data and the
target class. For instance, we can apply this method to
find errors in forest/non-forest maps. Furthermore, GEDI
data products provide additional measurements, such as
various RH metrics and Leaf Area Index (LAI). Exploring
these metrics in future work can reveal other data quality
errors in existing datasets.
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(a) AFC Error. The colour difference, texture difference, and geometric shape suggest that this area is not an undisturbed TMF.

(b) False Positive. This sample appears to belong to a highly dense forest cover.

(c) Ambiguous. The available context is insufficient to determine whether this sample is an error.

(d) False Positive. This area could potentially be covered by mangroves, which are classified as TMF.

Figure 5: Four instances of evaluation decisions. The images on the left are higher-resolution Planet imagery. Images on the
right visualize the AFC map in the same location.
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