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Abstract
Inspired by the visualization of dental plaque at the dentist’s office, this article proposes a novel visualization of redundancies
in relational data. Our approach is based on a well-principled information-theoretic framework that has seen limited practical
application in systems and tools. In this framework, we quantify the information content (or entropy) of each cell in a relation
instance, given a set of functional dependencies. The entropy value signifies the likelihood of recovering the cell value based
on the dependencies and the remaining tuples. By highlighting cells with lower entropy, we effectively visualize redundancies
in the data. We present an initial prototype implementation and demonstrate that a straightforward approach is insufficient
to handle practical problem sizes. To address this limitation, we propose several optimizations, which we prove to be correct.
Additionally, we present a Monte Carlo approximation with a known error, enabling computationally tractable analysis. By
applying our visualization technique to real-world datasets, we showcase its potential. Our vision is to empower data analysts
by directing their focus in data profiling toward pertinent redundancies, analogous to the diagnostic role of a plaque test at
the dentist’s office.

1. Introduction
Database normalization is a well-studied field, with the
theory of functional dependencies as a cornerstone, cf. [1].
There are several proposals to visualize functional de-
pendencies, such as sunburst diagrams or graph-based
visualizations [2]. Yet these approaches only visualize
the dependencies, irrespective of the data instance.

We propose a novel visualization that reveals the re-
dundancies captured by functional dependencies. We
refer to our approach as “plaque test”: Like a plaque test
at the dentist’s which colors dental plaque to reveal un-
wanted residue on patients’ teeth, our plaque test reveals
redundancies in relational data. The plaque test may be
applied in data profiling, when dependencies have been
discovered, before carrying out data cleaning tasks, or
when preparing towards schema normalization — in all
these scenarios, domain experts will want to explore the
redundancies resident in their data.

Formally, our approach leverages an existing informa-
tion-theoretic framework by Arenas and Libkin [3]. To
our knowledge, we are the first to implement and apply
this framework to a practical problem.

Next, we illustrate our concept of plaque tests.

Example 1.1. Figure 1a shows an example from the Ger-
man Wikipedia site on database normalization1. The
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1Retrieved from https://de.wikipedia.org/wiki/Normalisierung_
(Datenbank), last accessed July 2023.

relation manages a CD collection. Each CD has an identi-
fier (ID), an AlbumTitle, and was released in a given year
(RYear). The band who released the CD (Band) was also
founded in a given year (BYear). Each CD has several
tracks (Track) and each track has a title (TrackTitle).

We consider the following functional dependencies2:

ID Ñ AlbumTitle, Band, BYear, RYear

ID, Track Ñ TrackTitle and Band Ñ BYear

Figure 1b shows the plaque test applied to the instance
from Figure 1a, based on these dependencies: Each cell is
assigned an entropy value. Our plaque test then visual-
izes these entropy values by coloring the cells: the more
redundant the value, the smaller the entropy value and
the deeper the blue.

Specifically, let us consider the dependency “ID Ñ

AlbumTitle”. In the given data instance, the title “Not
That Kind” of the album with ID 1 is recorded redun-
dantly. If the title were lost in the first tuple, it could
still be recovered from the second or third tuple (and
vice versa). This is captured by an entropy of 0.8 and
blue color (denoting “plaque”). On the contrary, if the
title “Freak of Nature” of the album with ID 3 were lost,
it could not be recovered. Consequently, the cell has
entropy 1 and remains white (“no plaque”).

Let us next consider the dependency “Band Ñ BYear”,
stating that the band determines the year of foundation.
Since there are four tuples for the band Anastacia, the
year of the foundation is more redundant than the year
of the release of her album “Not That Kind” (recorded in
three tuples). Accordingly, the entropy values differ and
our plaque test colors the foundation years for Anasta-
cia’s band in a deeper blue.

Finally, let us consider the dependency “ID Ñ BYear”.
Since we have three entries for the album with ID 1 (“Not
2Note that this is not a canonical cover of the dependencies.
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ID AlbumTitle Band BYear RYear Track TrackTitle

1 Not That Kind Anastacia 1999 2000 1 Not Th. . .
1 Not That Kind Anastacia 1999 2000 2 I’m Out. . .
1 Not That Kind Anastacia 1999 2000 3 Cowboy. . .
2 Wish You Were Here Pink Floyd 1965 1975 1 Shine O. . .
3 Freak of Nature Anastacia 1999 2001 1 Paid my. . .

(a) The relational input data.

ID AlbumTitle Band BYear RYear Track TrackTitle

1 0.8 0.8 0.6 0.8 1 1
1 0.8 0.8 0.6 0.8 1 1
1 0.8 0.8 0.6 0.8 1 1
1 1 1 1 1 1 1
1 1 1 0.7 1 1 1

(b) Entropies for 6 unary FDs.

ID AlbumTitle Band BYear RYear Track TrackTitle

0.6 0.6 0.4 0.4 0.6 1 1
0.6 0.6 0.4 0.4 0.6 1 1
0.6 0.6 0.4 0.4 0.6 1 1
1 1 1 1 1 1 1
1 1 0.7 0.7 1 1 1

(c) Entropies for 23 unary FDs.

Figure 1: Plaque tests for the original relation (top) with
genuine functional dependencies (middle) and automatically
discovered functional dependencies (bottom). Cell color/hue
corresponds to entropy values.

That Kind”), and only one entry each for the albums with
ID 2 (“Wish You Were Here”) and ID 3 (“Freak of Nature”),
the band year is even more redundant for Anstacia’s
album “Not That Kind” (entropy value 0.6) than for her
album “Freak of Nature” (entropy value 0.7).

So far, we only considered genuine dependencies. Next,
we assume that the dependencies have been automati-
cally discovered during data profiling.

Example 1.2. The Metanome tool [4] discovers 23 depen-
dencies in this relation instance. This includes the cyclic
dependencies “Band Ñ BYear” and “BYear Ñ Band”.

Figure 1c shows the result of our plaque test, given
this new set of functional dependencies. Throughout,
the coloring of the cells is darker. Moreover, more cells
are colored. This reveals that the instance now contains
additional redundancies.

Notably, the entropy value for the band name “Anasta-
cia” is as low as 0.4, since it may be recovered from several
dependencies, such as “ID Ñ Band” and “BYear Ñ Band”.
Thus, plaque is additive when an attribute occurs on the
right-hand side of several functional dependencies.

As these examples illustrate, the plaque test visualizes
redundancies in a well-principled fashion. It is highly
sensitive to the set of functional dependencies and the
values that appear in the data instance.

Contributions
• We apply an existing information-theoretical frame-

work for a “plaque test” that visualizes redundancies
inherent in relational data.

• We show that a straightforward implementation for
computing the entropy values underlying our “plaque
test” does not scale beyond toy examples.

• Thus we propose several effective optimizations:
1. We discuss scenarios where entropy values can be

immediately assigned to 1, thereby skipping com-
putation, and where one can focus on a subset of
the data instance when computing entropy values.
We prove the correctness of these optimizations.

2. We present a Monte Carlo approximation to com-
pute entropy values. We provide the formula to
determine the number of iterations required to
achieve a given accuracy with a certain confidence.

• We present visual plaque tests for several real-world
datasets and discuss how the discovered “plaque” can
indeed be helpful for data exploration.

• We conduct run-time experiments with our implemen-
tation and explore the effect of our optimizations.

Reproducibility Our research artifacts, including our
prototype implementation, can be found at https://doi.
org/10.5281/zenodo.8220684.

Long version Further experiments and the full set of
proofs can be found in the long version of this article
at https://doi.org/10.48550/arXiv.2306.02890.

Structure We provide preliminaries on functional depen-
dencies, entropy, and information content in Section 2.
In Section 3 we introduce two lines of optimization, one
is an exact method, and the other an approximation. We
present our experiments in Section 4. We discuss related
work in Section 5 and conclude in Section 6.

2. Preliminaries
When introducing functional dependencies in Section 2.1,
we deviate from the common definition (cf. [1]) in that
we take into account the order of tuples. This allows us to
identify individual cells in a relation instance. The notion
of entropy-related information content originates from
the work by Arenas and Libkin [3] (Section 2.2). As a
first contribution, we present simplifications to compute
the corresponding entropy values (Section 2.3).

2.1. Functional Dependencies
Denote by N the set of positive integers, N :“ t1, 2, . . . u.

Definition 2.1. A relation 𝑅 of arity 𝑚 is specified by
a finite set sortp𝑅q :“ t𝐴1, . . . , 𝐴𝑚u of attributes 𝐴𝑖.
The domain of an attribute 𝐴 is denoted by Domp𝐴q.
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An instance 𝐼 of a relation 𝑅 is a partial map

𝐼 : N á
ą

𝐴Psortp𝑅q

Domp𝐴q

with finite domain of definition Defp𝐼q :“ t𝑗 P N |

𝐼p𝑗q is definedu.

The above definition of a relation instance allows for
duplicate tuples and preserves the order of the tuples.

To simplify the exposition, in this work we assume
that Domp𝐴q “ N for all 𝐴 P sortp𝑅q, i.e., each tuple
consists of positive integers. Thus an instance 𝐼 of a
relation 𝑅 of arity 𝑚 can be seen as just a partial map
𝐼 : N á N𝑚.

Definition 2.2. Let 𝑅 be a relation and 𝐼 an instance
of 𝑅. For a subset 𝐾 :“ t𝐴1, . . . , 𝐴𝑠u Ď sortp𝑅q of
attributes, we have the projection𝜋𝐾p𝐼q of the tuples in 𝐼
to the attributes in𝐾 . Moreover, for a subset 𝐽 Ď Defp𝐼q

we have the restricted map 𝐼|𝐽 : 𝐽 Ñ N𝑚 defined for all
indices 𝑗 P 𝐽 .

Given an instance 𝐼 of a relation 𝑅 we denote by
𝑡𝑗r𝐴𝑘s the value of the attribute 𝐴𝑘 in the 𝑗-th tuple
𝑡𝑗 :“ 𝐼p𝑗q of 𝐼 .

Similarly, for a subset 𝐾 “ t𝐴1, . . . , 𝐴𝑠u Ď sortp𝑅q

of attributes we denote by 𝑡𝑗r𝐴1 . . . 𝐴𝑠s the tuple of val-
ues 𝑡𝑗r𝐴1s, . . . , 𝑡𝑗r𝐴𝑠s, that is, the 𝑗-th tuple 𝜋𝐾p𝐼p𝑗qq

of the projection 𝜋𝐾p𝐼q.

Definition 2.3. A functional dependency in a relation 𝑅 is
a pair 𝑓 :“ pt𝐴1, . . . , 𝐴𝑠u, 𝐵q, where 𝐴1, . . . , 𝐴𝑠, 𝐵 P

sortp𝑅q are attributes. We write such a pair as
𝐴1 . . . 𝐴𝑠 Ñ 𝐵.

An instance 𝐼 of a relation 𝑅 is said to fulfill the func-
tional dependency 𝑓 (write 𝐼 |ù 𝑓 ) if for all 𝑗1, 𝑗2 P

Defp𝐼q it holds

𝑡𝑗1 r𝐴1 . . . 𝐴𝑠s “ 𝑡𝑗2 r𝐴1 . . . 𝐴𝑠s ñ 𝑡𝑗1 r𝐵s “ 𝑡𝑗2 r𝐵s.

Moreover, the instance 𝐼 fulfills a set 𝐹 of functional
dependencies (write 𝐼 |ù 𝐹 ) if 𝐼 |ù 𝑓 for all 𝑓 P 𝐹 .

We also consider relation instances having unspecified
values at some positions. Let var be a (countably infinite)
set of variables.

Definition 2.4. Let 𝐼 be an instance of a relation 𝑅 with
attributes sortp𝑅q “ t𝐴1, . . . , 𝐴𝑚u. A position in 𝐼 is
a pair p𝑗, 𝐴𝑘q with 𝑗 P Defp𝐼q and 𝑘 P t1, . . . ,𝑚u; it
represents the cell of the 𝑘-th attribute of the 𝑗-th tuple,
with value 𝑡𝑗r𝐴𝑘s. The instance obtained by putting the
value 𝑣 at position 𝑝 “ p𝑗, 𝐴𝑘q is denoted by 𝐼𝑝Ð𝑣 .

Let 𝑄 “ t𝑞1, . . . , 𝑞𝑘u be a set of positions, 𝑋 “

p𝑥1, . . . , 𝑥𝑘q distinct variables, and 𝑉 “ p𝑣1, . . . , 𝑣𝑘q

values in N. The instance obtained by replacing each po-
sition 𝑞𝑖 by the variable𝑥𝑖 resp. by value 𝑣𝑖 for 1 ď 𝑖 ď 𝑘
is denoted by 𝐼𝑄Ð𝑋 resp. 𝐼𝑄Ð𝑉 (hence, the instance

obtained by replacing the positions from 𝑄 by variables,
and then position 𝑝 by the value 𝑣, is p𝐼𝑄Ð𝑋q𝑝Ð𝑣).

An instance 𝐼 containing distinct variables at posi-
tions 𝑄 “ t𝑞1, . . . , 𝑞𝑘u fulfills a set 𝐹 of functional de-
pendencies (write 𝐼 |ù 𝐹 ) if there exists a set of values
𝑉 “ p𝑣1, . . . , 𝑣𝑘q such that 𝐼𝑄Ð𝑉 |ù 𝐹 . For one func-
tional dependency 𝑓 P 𝐹 we write 𝐼 |ù 𝑓 if 𝐼 |ù t𝑓u.

For 𝑓 :“ 𝐴1 . . . 𝐴𝑠 Ñ 𝐵 (and 𝐼 possibly containing
variables) we immediately obtain that 𝐼 |ù 𝑓 holds if and
only if for all 𝑗1, 𝑗2 P Defp𝐼q such that 𝑡𝑗1 r𝐵s R var
and 𝑡𝑗2 r𝐵s R var there holds

𝑡𝑗1 r𝐴1 . . . 𝐴𝑠s “ 𝑡𝑗2 r𝐴1 . . . 𝐴𝑠s ñ 𝑡𝑗1 r𝐵s “ 𝑡𝑗2 r𝐵s.

So the above definition requires a single functional de-
pendency to be fulfilled only for tuples without variables.
Indeed, since all variables are distinct, it is always possi-
ble to set values in their positions so that the functional
dependency is fulfilled.

For a set 𝐹 of functional dependencies, it can be shown
that 𝐼 |ù 𝐹 if and only if 𝐼 |ù 𝑓 for all 𝑓 P 𝐹˚, where𝐹˚

is the transitive closure of 𝐹 . This equivalence ensures
the same semantics as in the original work by Arenas
and Libkin [3] and we assume that the transitive closure
of functional dependencies is provided.

2.2. Entropy and Information Content
In the following, we deal with discrete probability spaces
𝒳 “ p𝑋,𝑃𝒳 q on finite sets 𝑋 , where 𝑃𝒳 p𝑥q for 𝑥 P 𝑋
denotes the probability of the event t𝑥u. The information-
theoretic entropy of the probability space 𝒳 is given by

𝐻p𝒳 q :“ ´
ÿ

𝑥P𝑋

𝑃𝒳 p𝑥q log𝑃𝒳 p𝑥q.

If 𝒜 “ p𝐴,𝑃𝒜q and ℬ “ p𝐵,𝑃ℬq are probability
spaces on finite sets 𝐴 and 𝐵 with joint distribution
𝑃𝒜ˆℬ , then the conditional probability of 𝑎 P 𝐴 given
𝑏 P 𝐵 is defined by

𝑃 p𝑎|𝑏q :“
𝑃𝒜ˆℬp𝑎, 𝑏q

𝑃ℬp𝑏q

provided that 𝑃ℬp𝑏q is non-zero.
Conversely, the conditional probabilities 𝑃 p𝑎|𝑏q with

the probabilities 𝑃ℬp𝑏q determine the joint distribution
𝑃𝒜ˆℬ by the above formula.
Definition 2.5. Let 𝒜 “ p𝐴,𝑃𝒜q, ℬ “ p𝐵,𝑃ℬq be prob-
ability spaces. The conditional entropy of 𝒜 given ℬ is

𝐻p𝒜 | ℬq :“ ´
ÿ

𝑏P𝐵

𝑃ℬp𝑏q
ÿ

𝑎P𝐴

𝑃 p𝑎|𝑏q log𝑃 p𝑎|𝑏q.

This value describes the remaining uncertainty in prob-
ability space 𝒜 given the outcome in ℬ. If the proba-
bility distributions of 𝒜 and ℬ are independent, then
𝑃 p𝑎|𝑏q “ 𝑃𝒜p𝑎q for all 𝑏 P 𝐵, and thus we obtain
𝐻p𝒜 | ℬq “ ´

ř

𝑎P𝐴 𝑃𝒜p𝑎q log𝑃𝒜p𝑎q “ 𝐻p𝒜q.



Consider now a relation instance 𝐼 of arity 𝑚 and
denote by Pos :“ Defp𝐼q ˆ t𝐴1, . . . , 𝐴𝑚u its set of
positions. Let 𝐹 be a set of functional dependencies
fulfilled by 𝐼 and 𝑝 P Pos a position. We define two
probability spaces as follows.

First, let ℬp𝐼, 𝑝q :“ p𝒫pPos zt𝑝uq, 𝑃ℬq, where 𝑃ℬ
is the uniform distribution on the set of all subsets of
Pos zt𝑝u. This space models the possible cases when
we lose a set of possible values from the instance 𝐼 on
positions other than the considered one 𝑝.

Then, for 𝑘 P N we let 𝒜𝑘
𝐹 p𝐼, 𝑝q :“ pt1, . . . , 𝑘u, 𝑃𝒜q,

where the conditional probability of 𝑣 P t1, . . . , 𝑘u given
𝑄 Ď Pos zt𝑝u is

𝑃 p𝑣|𝑄q :“

#

1{#𝑉𝑄 if 𝑣 P 𝑉𝑄,

0 otherwise,

with 𝑉𝑄 :“ t𝑣 P t1, . . . , 𝑘u | p𝐼𝑄Ð𝑋q𝑝Ð𝑣 |ù 𝐹 u. This
probability space models the possible values in t1, . . . , 𝑘u

to be put in at position 𝑝 for which we lost the value,
when 𝑄 is the set of positions of the other lost values in
the instance.
Definition 2.6. Let 𝐹 be a set of functional dependencies
for a relation 𝑅 and let 𝐼 be an instance of 𝑅 with 𝐼 |ù 𝐹 .
The information content of position 𝑝 with respect to 𝐹
in instance 𝐼 is given as

INF𝐼p𝑝 | 𝐹 q :“ lim
𝑘Ñ8

INF𝑘
𝐼 p𝑝 | 𝐹 q

log 𝑘
,

where INF𝑘
𝐼 p𝑝 | 𝐹 q :“ 𝐻p𝒜𝑘

𝐹 p𝐼, 𝑝q | ℬp𝐼, 𝑝qq is the
conditional entropy of the probability space modeling
the possible values for the considered position 𝑝 given
the space modeling the possible sets of other lost values
in the instance.

Unfortunately, when using the above formula for the
conditional entropy INF𝑘

𝐼 p𝑝 | 𝐹 q directly, the computa-
tion grows exponentially with the number of cells in the
given instance. Indeed, for each cell except the one at po-
sition 𝑝 the value can be deleted or not, so every subset of
Pos zt𝑝u is an elementary event in the probability space
ℬp𝐼, 𝑝q. Therefore, each additional cell in the instance 𝐼
doubles the number of events to be taken into account
for the computation of the information content.

2.3. Simplifications
We now provide more compact and simplified (but still
exponentially complex) formulas for the information con-
tent. The first result easily follows from the definition of
conditional entropy.
Proposition 2.7. Let 𝐹 be a set of functional dependencies
and 𝐼 an instance with 𝐼 |ù 𝐹 . Then the information
content of a position 𝑝 in 𝐼 with respect to 𝐹 is given by

INF𝐼p𝑝 | 𝐹 q “
1

2#Pos ´1

ÿ

𝑄ĎPos zt𝑝u

lim
𝑘Ñ8

log#𝑉𝑄

log 𝑘
,

where 𝑉𝑄 :“ t𝑣 P t1, . . . , 𝑘u | p𝐼𝑄Ð𝑋q𝑝Ð𝑣 |ù 𝐹 u.

The values INF𝐼p𝑝 | 𝐹,𝑄q :“ lim𝑘Ñ8
log#𝑉𝑄

log 𝑘
can

be seen as the information content of 𝑝 in 𝐼 with respect
to 𝐹 given a fixed subset 𝑄 Ď Pos zt𝑝u to be substituted
by variables. The next result shows that for these, there
are only two possible outcomes.
Lemma 2.8. Let 𝐹 , 𝐼 and 𝑝 be as above. For any
𝑄 Ď Pos zt𝑝u we have INF𝐼p𝑝 | 𝐹,𝑄q P t0, 1u.

Proof. Consider any “fresh” value 𝑎 P N, which does
not appear in the column of position 𝑝 in the relation
instance 𝐼 . It is easy to see that, whether the instance
p𝐼𝑄Ð𝑋q𝑝Ð𝑎 fulfills 𝐹 or not, does not depend on the
choice of those values 𝑎. Therefore, as 𝑘 Ñ 8 we either
have log#𝑉𝑄{ log 𝑘 Ñ 1 or log#𝑉𝑄{ log 𝑘 Ñ 0.

From this lemma and its proof, we deduce the following
simplification for computing information content.
Proposition 2.9. Let 𝐹 be a set of functional dependencies
and 𝐼 an instance with 𝐼 |ù 𝐹 . Let 𝑝 be a position in 𝐼
with attribute 𝐴, and let 𝑎 P N be any value that does
not appear in the column of attribute 𝐴. This yields:

INF𝐼p𝑝 | 𝐹 q “
#t𝑄 Ď Pos zt𝑝u | p𝐼𝑄Ð𝑋q𝑝Ð𝑎 |ù 𝐹 u

2#Pos ´1

Although we have simplified the computation of the
information content somewhat, one still needs to con-
sider all subsets of Pos zt𝑝u, leading to exponential com-
plexity. Therefore, we present in the following several
optimizations for this computation.

3. Optimizations
In this section, we provide optimizations to speed up
the computation of information content. In Section 3.1
we deal with exact methods and prove their correctness,
while in Section 3.2 we present an approximation.

3.1. Reducing the Problem Size
We give two shortcuts for computing the information
content in a relation instance. The first identifies the
positions where there cannot be any redundancy, so that
the information content equals 1.
Definition 3.1. Let 𝑝 “ p𝑗, 𝐵q P Pos be a position with
attribute 𝐵 in an instance 𝐼 and let 𝑓 be a functional
dependency 𝐴1 . . . 𝐴𝑠 Ñ 𝐵 with 𝐼 |ù 𝑓 . We say that
the value at 𝑝 is unique with respect to 𝑓 if for every
𝑗1

P Defp𝐼q there holds

𝑡𝑗r𝐴1 . . . 𝐴𝑠s “ 𝑡𝑗1 r𝐴1 . . . 𝐴𝑠s ñ 𝑗 “ 𝑗1

(so if 𝑗 ‰ 𝑗1, then 𝑡𝑗r𝐴1 . . . 𝐴𝑠s ‰ 𝑡𝑗1 r𝐴1 . . . 𝐴𝑠s).
For a set 𝐹 of functional dependencies with 𝐼 |ù 𝐹 ,

the value at 𝑝 is unique with respect to 𝐹 if it is unique
with respect to all 𝑓 P 𝐹 of the form 𝐴1 . . . 𝐴𝑠 Ñ 𝐵.



Note that in particular, a value at position 𝑝 with at-
tribute 𝐵 is unique with respect to 𝐹 in case the at-
tribute 𝐵 does not appear on the right-hand side of any
functional dependency in 𝐹 .
Proposition 3.2. Let 𝑝 P Pos be a position in an instance 𝐼 ,
where 𝐼 |ù 𝐹 for a set of functional dependencies 𝐹 .
Then INF𝐼p𝑝 | 𝐹 q “ 1 if and only if the value at 𝑝 is
unique with respect to 𝐹 .

Proof (of the “if” direction). Let 𝐵 be the attribute of po-
sition 𝑝 and let 𝑎 be a “fresh” value not appearing in the
column of attribute 𝐵 in the instance 𝐼 . By Prop. 2.9 it
suffices to show that for every subset 𝑄 Ď Pos zt𝑝u it
holds that p𝐼𝑄Ð𝑋q𝑝Ð𝑎 |ù 𝐹 . So let 𝑓 P 𝐹 be a func-
tional dependency 𝐴1 . . . 𝐴𝑠 Ñ 𝐵1. From 𝐼 |ù 𝑓 we
know that 𝐼𝑄Ð𝑋 |ù 𝑓 . Then we have to show that

p𝐼𝑄Ð𝑋q𝑝Ð𝑎 |ù 𝑓,

i.e., if 𝑡𝑗1 r𝐴1 . . . 𝐴𝑠s “ 𝑡𝑗2 r𝐴1 . . . 𝐴𝑠s for some 𝑗1, 𝑗2 P

Defp𝐼q it still holds that 𝑡𝑗1 r𝐵1
s “ 𝑡𝑗2 r𝐵1

s, even after
inserting value 𝑎 at position 𝑝.

Suppose first that 𝐵 ‰ 𝐵1. If 𝐵 R t𝐴1, . . . , 𝐴𝑠u (and
𝐵 ‰ 𝐵1

q the assertion above is clear for any value 𝑎,
since the statement is not affected. On the other hand, if
𝐵 “ 𝐴𝑖 for some 1 ď 𝑖 ď 𝑠, then by inserting the fresh
value 𝑎 the hypothesis becomes false, so the statement
remains valid.

Now consider the case 𝐵 “ 𝐵1 and let 𝑝 “ p𝑗, 𝐴𝑘q.
We may assume that one of 𝑗1, 𝑗2 equals 𝑗 and write 𝑗1 for
the other index. Then if 𝑡𝑗r𝐴1 . . . 𝐴𝑠s “ 𝑡𝑗1 r𝐴1 . . . 𝐴𝑠s,
then by the uniqueness property we infer that 𝑗 “ 𝑗1. So
the above statement still holds after inserting the value 𝑎,
since the tuple indices coincide.

In the second optimization, we reduce the considered
instance to the relevant tuples and attributes. This may
reduce the number of cells, and thus decrease the runtime
exponentially. After performing this step, we can apply
the first shortcut in the smaller table and use the outcome
for the original instance.

Let 𝐼 be a relation instance of arity 𝑚 and let 𝐽 Ď

Defp𝐼q, 𝐾 Ď t𝐴1, . . . , 𝐴𝑚u where the 𝐴𝑘 are the at-
tributes of the relation. The subinstance 𝐼p𝐽,𝐾q consists
of all tuples of the projection 𝜋𝐾p𝐼q with index 𝑗 P 𝐽 .
We also let Posp𝐽,𝐾q :“ 𝐽 ˆ 𝐾 Ď Pos be the corre-
sponding set of positions.
Proposition 3.3. Let 𝐹 be a set of functional dependencies
and 𝐼 an instance with 𝐼 |ù 𝐹 . Denote by 𝐽0 the set
of all indices 𝑗0 P Defp𝐼q such that for some position
𝑝 “ p𝑗0, 𝐴𝑘q P Pos the value at 𝑝 is not unique with
respect to 𝐹 . Denote by 𝐾0 the union of all attributes
t𝐴1, . . . , 𝐴𝑠, 𝐵u involved in any functional dependency
𝐴1 . . . 𝐴𝑠 Ñ 𝐵 in 𝐹 . Then for every 𝐽 Ě 𝐽0 and 𝐾 Ě

𝐾0 there holds

@𝑝 P Posp𝐽,𝐾q : INF𝐼p𝑝 | 𝐹 q “ INF𝐼p𝐽,𝐾qp𝑝 | 𝐹 q.
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Figure 2: Required iterations to achieve an accuracy (𝜀) with
a certain confidence (1´𝛿) in Monte Carlo approximation.

Example 3.4. Consider the instance

A B C D

7 2 8 4
5 2 8 6
7 2 8 6

and the set of functional dependencies 𝐹 :“ tA Ñ Cu.
Since the attributes A, B or D do not appear on the

right-hand side of the functional dependency, Prop. 3.2
implies that INF𝐼p𝑝 | 𝐹 q “ 1 for all 𝑝 “ p𝑗, 𝐴𝑘q

with 𝐴𝑘 ‰ C. Additionally, by Prop. 3.2 we obtain
that INF𝐼pp2,Cq | 𝐹 q “ 1, since the value at position
𝑝 “ p2,Cq is unique with respect to 𝐹 .

We can reduce the table using Prop. 3.3 by removing
the second tuple and the attributes B and D. The resulting
subtable is

A C

7 8
7 8

for which the number of subsets in Posp𝐽,𝐾qzt𝑝u is
reduced from 215 to 23, i.e., by a factor over 4’000.

Consider position 𝑝 “ p1,Cq and the subsets 𝑄 Ď

Posp𝐽,𝐾qzt𝑝u. For 𝑄 “ ∅, i.e., the values in all po-
sitions different from p1,Cq are present, the instance
p𝐼𝑄Ð𝑋q𝑝Ð𝑣 “ 𝐼𝑝Ð𝑣 fulfills the functional dependency
A Ñ C only if 𝑣 “ 8. For all other subsets 𝑄, i.e., at least
one more value is lost, we obtain p𝐼𝑄Ð𝑋q𝑝Ð𝑣 |ù 𝐹 for
all values 𝑣. Therefore, INF𝐼p𝑝 | 𝐹 q “ 7

8
“ 0.875. The

computation of INFpp3,Cq | 𝐹 q is similar, and we get

`

INF𝐼pp𝑗, 𝐴𝑘q | 𝐹 q
˘

“

¨

˝

1 1 0.875 1
1 1 1 1
1 1 0.875 1

˛

‚.

3.2. Monte Carlo Approximation
Next, we present an approximation of the information
content. This approach is complementary to the previ-
ous optimizations for computing exact values, e.g., by
identifying cells with full information content first, then



reducing the problem to a smaller subtable (if possible),
and finally computing the values on this subtable with
an approximation algorithm.

The approximation is computed with a randomized
algorithm, the Monte Carlo method, as introduced in [5].
Instead of considering all subsets of positions (minus the
considered one), we pick a sample of subsets uniformly at
random and take the average of the results. The following
tool is deduced from Theorem 4.14 of [5] and is useful
for estimating the accuracy of this method.
Proposition 3.5 (Hoeffding’s inequality). Let 𝑋1, . . . , 𝑋𝑛

be independent identically distributed random variables
such that 𝑎𝑖 ď 𝑋𝑖 ´ Er𝑋𝑖s ď 𝑏𝑖. Then for any 𝑐 ą 0 it
holds

Pr
´ 𝑛

ř

𝑖“1

p𝑋𝑖´Er𝑋𝑖sq ě 𝑐
¯

ď exp
´

´2𝑐2
ř𝑛

𝑖“1p𝑏𝑖 ´ 𝑎𝑖q2

¯

.

To approximate the information content, we consider
the probability spaceℬp𝐼, 𝑝q :“ p𝒫pPos zt𝑝uq, 𝑃ℬq from
Section 2 with uniform distribution 𝑃ℬ . Define random
variables

𝑋𝑖 : 𝒫pPos zt𝑝uq Ñ r0, 1s, 𝑄 ÞÑ lim
𝑘Ñ8

log#𝑉𝑄

log 𝑘
,

with 𝑉𝑄 :“ t𝑣 P t1, . . . , 𝑘u | p𝐼𝑄Ð𝑋q𝑝Ð𝑣 |ù 𝐹 u. Then
by Prop. 2.9 there holds Er𝑋𝑖s “ INF𝐼p𝑝 | 𝐹 q.

This motivates the next theorem on the randomized
approach to compute the information content with accu-
racy 𝜀 and confidence 1´𝛿.
Theorem 3.6. Let 𝑝 P Pos be a position in a relation
instance 𝐼 , where 𝐼 |ù 𝐹 for a set 𝐹 of functional
dependencies. Let 𝑋1, . . . , 𝑋𝑛 be independent identi-
cally distributed random variables as above and 𝑋 :“
1
𝑛

ř𝑛
𝑖“1 𝑋𝑖 their average. Then for all 𝜀, 𝛿 ą 0 it holds

Pr
`

|𝑋 ´ INF𝐼p𝑝 | 𝐹 q| ě 𝜀
˘

ď 𝛿

provided that 𝑛 ě 2 lnp2{𝛿q{𝜀2.

Proof. We have ´1 ď 𝑋𝑖 ´ Er𝑋𝑖s ď 1, so by apply-
ing Hoeffding’s inequality with

ř𝑛
𝑖“1p𝑏𝑖 ´ 𝑎𝑖q

2
“ 4𝑛

we find for Prp
ř𝑛

𝑖“1p𝑋𝑖 ´ Er𝑋𝑖sq ě 𝑛𝜀q the upper
bound expp´𝑛𝜀2{2q, so that Prp|𝑋 ´ Er𝑋𝑖s| ě 𝜀q ď

2 expp´𝑛𝜀2{2q ď 𝛿.

Example 3.7. Assume that for the approximation of in-
formation content for an instance 𝐼 at position 𝑝 with
respect to 𝐹 , we allow an error of at most 0.001 with
probability at least 99.9%. This can be achieved by
sampling 𝑄 Ď Pos zt𝑝u and computing 𝑋𝑖p𝑄q at least
2 lnp2{10´3

q{p10´3
q
2

ě 1.52¨107 times.
If a less exact approximation is sufficient, say with an

error of at most 0.01 with the same probability as be-
fore, then the required number of runs is lowered by a
factor 100, thus only 1.52¨105 samples are necessary. Fig-
ure 2 shows a plot of the iterations required for reaching
a certain accuracy (𝜀) and a certain confidence (1´𝛿).

4. Experiments
Our experiments target the following research questions:
RQ1 Is the plaque test useful for real-world datasets?
RQ2 Can we afford to compute exact entropy values or

do we need the Monte Carlo approximation?
RQ3 How does the runtime of the Monte Carlo approx-

imation scale with the number of iterations?
In the following, we report on our insights with a first

prototype and three real-world datasets.

Implementation Our prototype implements our algo-
rithms as a single-threaded Java implementation. As a
dispatcher, we use a Python script that also measures the
end-to-end runtimes.

Datasets We explore three real-world datasets. All func-
tional dependencies are left-reduced with a single at-
tribute on the right and were discovered by Metanome [4].

Our first dataset describes natural satellites and origi-
nates from the WDC Web Table Corpus3. Metanome finds
35 functional dependencies, we analyze the first 150 rows.
We study two additional datasets4: The adult dataset
(where we analyze the first 150 rows) with 78 functional
dependencies captures census data. The echocardiogram
dataset (all 132 rows) with 538 functional dependencies
describes heart attack patients.

Environment Our server has an Intel Xeon Gold 6242R
(3.1 GHz) CPU and 192GB of RAM, and runs Ubuntu 22.04
with Java 18.

Results We now address the research questions in turn.

RQ1 We computed the plaque tests for the three datasets
and show the results in Figure 3. Entropies are computed
with Monte Carlo simulation set to 100’000 iterations, an
accuracy of approx. 0.01, and a confidence of 99%.

Cells with an entropy value of 1 are shown in white,
and cells with values below 1 are colored in blue, where
darker shades indicate lower entropy values. Color scales
are calibrated individually, so colors cannot be compared
between datasets. We discuss each dataset.

Satellites. Figure 3a shows the plaque test applied to the
satellite dataset. Plaque is locally concentrated, as only
the column “Planet” and very few cells in column “Notes”
contain entropy values below 1.

We zoom in on a subset of the rows, omitting cells
with an entropy value of 1 and showing the values for
columns “MeanRadius”, “DiscoveredBy”, and “Planet”.

For tuples with a mean radius of 3.0, the entropy of
the attribute planet is the lowest. A mean radius of 3.0
occurs only for Saturn satellites. Closer inspection re-
veals that “MeanRadius” is on the left-hand side of several
functional dependencies (as discovered by Metanome),
including “MeanRadius, DiscoverdBy Ñ Planet”.
3http://webdatacommons.org/webtables/index.html#results-2015
4Retrieved from https://hpi.de/naumann/projects/repeatability/
data-profiling/fds.html, on June 02, 2023

http://webdatacommons.org/webtables/index.html#results-2015
https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html
https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html


(a) Satellites (150, Min: 0.61)

(b) Adult (150, Min: 0.50) (c) Echoc. (132, Min: 0.00)

Figure 3: “Plaque tests” applied to real-world data. The sub-
captions state the numbers of rows analyzed and minimum
entropy values computed (rounded). The color scale is normal-
ized individually with respect to the minimum entropy value.
The zoom-in in Subfigure (a) highlights a subset of rows.

By inspecting the causes for low entropy values in
this fashion, data analysts can gain insight into why au-
tomated tools discover certain dependencies. They can
then decide whether the dependency is genuine or merely
an artifact of the data.

Adult. Figure 3b shows the plaque test applied to
the census data. Only two columns, “education” and
“education-num” have entropy values below 1. More-
over, in each row, both columns have the same entropy
value. Closer inspection reveals that there are functional
dependencies “education-num Ñ education” as well as
“education Ñ education-num”. This causes the respec-
tive entropy values to agree.

In consequence, a data analyst might decide to decom-
pose this relation into the second normal form, by storing
the mapping between “education” and “education-num”
in a separate relation.

In fact, normalization theory was a main motivator
behind the original work by Arenas and Libkin.

Echocardiogram. Figure 3c shows the plaque test ap-
plied to the patient data. Among the three datasets, this
dataset has the highest number of columns with entropy
values below 1: This affects 11 out of 13 columns, but
mostly only sparsely.

One column stands out, where all entropy values are
zero. Inspection reveals that this is the column that origi-
nally contained the patient’s name, which was changed to
a single global string constant as a means of anonymiza-
tion. Consequently, for every attribute, there is an ob-

Table 1
Runtimes in seconds for computing exact entropy values w/
and w/o the optimizations from Section 3 for the first 𝑖 rows
of satellite data. Runs marked “-” were aborted after 24 hours.

#Rows Unoptimized Optimized
1 0.128 0.097
2 1.318 0.099
3 461.059 0.320
4 - 0.355
5 - 25’221.186
6 - -

vious functional dependency, with this attribute on the
right-hand side. Our plaque test correctly reveals that
this column literally has no informational value.

Results. We applied our visual plaque tests to standard
datasets used in dependency discovery research. The
plaque tests appear to be helpful in data exploration:
When “plaque” is detected, we can always find an intu-
itive explanation for its causes.

In the examples discussed, it highlighted a particularly
prominent functional dependency, it revealed a good
opportunity for schema normalization, and it exposed
data with no informational value.

Moreover, the plaque test is very selective: The test is
strongly positive for only a few attributes. This effect is
also observable for two further datasets that we analyzed
in the long version of this article.

This sparsity of cells that test strongly positive for
plaque is particularly notable in the case of the echocar-
diagram dataset, despite the over 500 automatically dis-
covered dependencies. Compared to this high number of
dependencies, the result of the plaque test is easily con-
sumable, and data analysts are visually directed towards
the most pertinent redundancies.

RQ2 Table 1 shows the runtime in seconds for computing
the entropy values on subsets of the satellite data. We
compute exact entropies and do not yet apply the Monte
Carlo approximation. We compare the algorithm with
the optimizations from Section 3 disabled/enabled.

The unoptimized algorithm can process only three
rows in 24 hours. Using the optimizations, up to five
rows could be computed in 24 hours.

Results. Although the optimizations are effective, such
runtimes are still too slow for practical purposes.

RQ3 We next explore the Monte Carlo approximation,
in combination with our optimizations from Section 3.

Figure 4 shows the runtimes in seconds for different
subsets of the satellite data and different numbers of
Monte Carlo iterations.

For reasonably large subsets, runtime scales linearly
with the number of iterations, while input size influences
runtime more heavily. Calculating the entropies for 150
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Figure 4: Runtime in seconds on the satellite dataset, for
different numbers of Monte Carlo iterations and subset sizes
of satellite data. Higher saturation indicates longer runtimes.

rows takes around 4.5 hours at 1’000’000 iterations. How-
ever, we reach an accuracy of approx. 0.01 with 99% con-
fidence at 100’000 iterations (see Figure 2), which takes
around 30 minutes to calculate.

Results. The approximation greatly improves the runtime
behavior. Since we use the entropy values as a basis for
visualization, small deviations in accuracy lead to equally
small deviations in the color scale. The differences will
most likely not be discernible to the human eye.

However, scalability to larger inputs remains a chal-
lenge and will require further improvements.

5. Related Work
Dependency discovery is an established and active field,
and we refer to [6] for an overview. Visualizing dependen-
cies is not as well studied, and existing approaches such
as sunburst diagrams or graph-based visualizations [2] do
not take the data instance into account. On the contrary,
our plaque test does not visualize the dependencies per
se, but the redundancies captured by them in the data.

In our visualization, we impose heat maps over rela-
tional data. Heat maps have also been explored elsewhere,
such as to visualize the frequency of updates [7].

We build on an information-theoretic framework de-
veloped by Arenas and Libkin [3], which aligns with
classic normalization theory. Notably, we are not aware
of any earlier implementations of this framework.

In an orthogonal effort, Lee [8] proposed entropies at
the instance level which are not tied to a set of functional
dependencies. Therefore, this approach does not lend
itself to the plaque test proposed here.

6. Outlook
We propose a plaque test to visualize redundancies in
relational data, based on functional dependencies. As our
discussion of real-world examples shows, the presence
of plaque reveals interesting redundancies in the data.

As we have seen, the plaque may single out prominent
dependencies, reveal the need for schema normalization,
or expose data as meaningless.

In our experiments, we work with data sets of only a
modest size. Scaling to larger datasets is a challenge for
future work, and we see optimization opportunities via
parallelization or linear programming.

Once we are able to scale to larger datasets, we will
need to address the consumability of our visualization.
For example, we may allow users to interactively cluster
cells with plaque for easy browsing and inspection.

We may allow users to examine the effect of individual
dependencies by excluding them from the visualization
in an exploratory manner. This raises the question of
whether the entropies can be computed incrementally.

We also plan to investigate the visualization of other
kinds of dependencies, such as join dependencies, since
they are also covered by the underlying information-
theoretic framework.
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