
Quantum Optimisation of General Join Trees
Manuel Schönberger1,∗, Immanuel Trummer2 and Wolfgang Mauerer1,3

1Technical University of Applied Sciences Regensburg, Regensburg, Germany
2Cornell University, Ithaca, NY, USA
3Siemens AG, Corporate Research, Munich, Germany

Abstract
Recent advances in the manufacture of quantum computers attract much attention over a wide range of fields, as early-stage
quantum processing units (QPU) have become accessible. While contemporary quantum machines are very limited in size
and capabilities, mature QPUs are speculated to eventually excel at optimisation problems. This makes them an attractive
technology for database problems, many of which are based on complex optimisation problems with large solution spaces.
Yet, the use of quantum approaches on database problems remains largely unexplored.

In this paper, we address the long-standing join ordering problem, one of the most extensively researched database
problems. Rather than running arbitrary code, QPUs require specific mathematical problem encodings. An encoding for
the join ordering problem was recently proposed, allowing first small-scale queries to be optimised on quantum hardware.
However, it is based on a faithful transformation of a mixed integer linear programming (MILP) formulation for JO, and
inherits all limitations of the MILP method. Most strikingly, the existing encoding only considers a solution space with
left-deep join trees, which tend to yield larger costs than general, bushy join trees.

We propose a novel QUBO encoding for the join ordering problem. Rather than transforming existing formulations, we
construct a native encoding tailored to quantum systems, which allows us to process general bushy join trees. This makes the
full potential of QPUs available for solving join order optimisation problems.

1. Introduction
Recent advances in the development of quantum com-
puting hardware have sparked increased interest in this
novel architecture from a plethora of research fields.
While the prototypical nature of contemporary quantum
hardware does not yet allow for achieving practical utility,
quantum processing units (QPU) are speculated to excel
at optimisation problems, which govern a large portion
of ongoing database research. However, despite the large
potential of QPUs to accelerate computation-intense in-
dustrial processes, the potential of using quantum sys-
tems on database-related issues remains largely unex-
plored.

Still, recent database optimisation research has pion-
eered in exploring first means to harvest this poten-
tial: Trummer and Koch [1] investigated the use of
quantum annealing on the multi query optimisation
(MQO) problem. Groppe and Groppe [2], and Bittner
and Groppe [3, 4], analysed QPU use for database (DB)
transaction scheduling. Finally, Schönberger et al. [5]

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — International Workshop on Quantum Data Sci-
ence and Management (QDSM’23), August 28 - September 1, 2023,
Vancouver, Canada
∗Corresponding author.
Envelope-Open manuel.schoenberger@othr.de (M. Schönberger);
itrummer@cornell.edu (I. Trummer); wolfgang.mauerer@othr.de
(W. Mauerer)
Orcid 0000-0002-6939-7582 (M. Schönberger); 0000-0002-7203-2349
(I. Trummer); 0000-0002-9765-8313 (W. Mauerer)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

presented a method to solve join ordering (JO) problems
on contemporary QPUs, by applying faithful transform-
ation of the mixed integer linear programming (MILP)
encoding for JO proposed by Trummer and Koch [6], into
a quadratic unconstrained binary optimisation (QUBO)
formulation. This encoding can be interpreted by QPUs,
which enabled the JO optimisation of first small-scale
queries on real QPUs.

However, by applying a transformation of the original
MILP encoding into QUBO, their JO-QUBO inherits the
limitations of the MILP encoding. Most strikingly, their
formulation only accounts for left-deep join trees. While
search space restriction to left-deep trees has historic-
ally been applied by JO methods, and offers the bene-
fit of substantially lowering the exploration complexity,
its downside quickly becomes apparent when consider-
ing empirical data comparing solution quality against
approaches without this restriction. For instance, Neu-
mann and Radke [7] conducted a comparison of various
JO algorithms, including methods for general bushy trees
and approaches restricted to left-deep ones. The former
consistently produced solutions superior in quality to
left-deep tree solutions. In extreme cases, the left-deep
solutions were up to a factor of 58 worse than bushy
solutions, illustrating the impact of restricting the search
space, which limits the practical utility of the existing
JO-QPU method.

Still, the prospect of using QPUs for JO optimisa-
tion remains attractive. Therefore, in this paper, we
address the drawbacks of the existing JO-QUBO formu-
lation: Rather than transforming an existing encoding
into QUBO, thereby inheriting its limitations, we propose

mailto:manuel.schoenberger@othr.de
mailto:itrummer@cornell.edu
mailto:wolfgang.mauerer@othr.de
https://orcid.org/0000-0002-6939-7582
https://orcid.org/0000-0002-7203-2349
https://orcid.org/0000-0002-9765-8313
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

a novel QUBO encoding for optimising general bushy
trees, while moreover retaining the ability to identify
cross product solutions. In contrast to many competing
JO methods, which either do not consider cross products
or restrict the join tree shape, our new encoding enables
QPUs to explore the complete, unrestricted search space
of the JO problem.

Contributions. In detail, our contributions are as fol-
lows:
1. We propose a novel, native encoding of join order-

ing as a QUBO problem (instead of transforming an
existing formulation and inheriting its limitations).

2. We enable QPUs to explore the most extensive class
of join ordering problems, allowing them to optimise
general, bushy join trees while also enabling the use of
cross products. Thereby, we exhaust the full potential
of quantum hardware for join order optimisation.

3. We substantially improve the resource-efficiency in
comparison to existing methods.

4. We identify architectural bottlenecks of contemporary
quantum systems, quantify their impact on join order
optimisation, and discuss means to address them by
tailoring quantum systems to problem requirements.

The remainder of this paper is structured as follows:
We provide fundamentals on quantum computing, includ-
ing the required QUBO formalism, in Sec. 2. We explain
our considered join ordering model in Sec. 3. We discuss
our novel encoding for bushy join trees in Sec. 4. Finally,
we discuss related work in Sec. 5 and conclude in Sec. 6.

2. Quantum Fundamentals
Unlike conventional CPUs, QPUs cannot be used for ex-
ecuting arbitrary code to run any algorithm. Instead, dis-
tinct programming paradigms are required for quantum
computation. The two prevailing paradigms required
for contemporary QPUs consist of gate-based quantum
computation, as implemented, e.g., by IBM-Q systems [8],
and quantum annealing, made accessible by D-Wave [9].
The latter exclusively solves optimisation problems, and
thereby inherently meets our requirements of using
QPUs for query optimisation, whereas gate-based QPUs
allow the execution of gate-based quantum optimisation
algorithms, most prominently the quantum approximate
optimisation algorithm (QAOA) [10].

We next discuss a problem encoding supported by
either approach. Based on this encoding, our method
does hence not depend on the specific paradigm. For our
purposes, the term QPU therefore includes both, gate-
based and annealing-based quantum approaches.

2.1. QUBO Formalism
QPUs can optimise problems formulated as quadratic un-
constrained binary optimisation (QUBO) problems [11, 12,
13], which (1) only allow quadratic interactions between
variables, (2) allow no explicit constraints, (3) limit vari-
ables to a binary domain and (4) encode optimisation prob-
lems. Physically, we may consider a QUBO encoding an
energy formula, where the minimum energy corresponds
to an optimal solution to the problem. Mathematically,
they are given by the multivariate polynomial

𝑓 (𝑥) = ∑
𝑖
𝑐𝑖𝑖𝑥𝑖 +∑

𝑖≠𝑗
𝑐𝑖𝑗𝑥𝑖𝑥𝑗, (1)

where 𝑥𝑖 ∈ {0, 1} are variables, and 𝑐𝑖𝑗 ∈ ℝ coefficients
(with 𝑐𝑖𝑗 = 𝑐𝑗𝑖).

The biggest hurdle in solving optimisation problems
on QPUs consists in determining problem formulations
conforming to the QUBO requirements. Firstly, we have
to identify validity constraints that must hold for every
valid solution to our problem, and encode these con-
straints implicitly, by specifying terms akin to Eqn. 1 that
evaluate to positive energy penalties for any constraint vi-
olation, thereby penalising invalid variable configurations.
Secondly, further QUBO terms are set to add energy in
accordance to the quality, or costs, of a solution. If built
correctly, minimising the overall energy formula will pro-
duce a variable configuration corresponding to a solution
that is both, valid and optimal.

2.2. Useful Patterns and Operators
To provide the reader with an understanding of the QUBO
encoding process, we illustrate the encoding principles
based on three recurring encoding patterns, or operators,
that will prove to be very useful in our quest of formu-
lating a JO encoding for bushy join trees.

2.2.1. N-Hot Encoding

The first recurring scheme concerns groups of semantic-
ally matching variables, out of which only a limited
amount 𝑛 may be active, or hot. As such, we refer to
this pattern as n-hot encoding. Typically, it is applied for
𝑛 = 1, and is usually called one-hot encoding. Expressed
as QUBO, its most basic form is given by

H1hot = (𝑛 − ∑
𝑥∈𝑋

𝑥)
2

,

where X denotes the set of binary variables. Expressing
a quadratic term, H1hot is clearly minimised iff the inner
term evaluates to 0, which requires 𝑛 = ∑𝑥∈𝑋 𝑥. There-
fore, minimising H1hot produces a variable configuration
where exactly 𝑛 out of all variables within 𝑋 are active.

More complex versions of the encoding may substitute a
linear term of variables and coefficients for constant 𝑛.

This scheme is useful for ensuring a valid assignment
of variables expressingmutually exclusive properties. For
instance, we later apply it for enforcing that a relation 𝑟
is initially joined by only one out of all possible joins.

2.2.2. Implication Operator

Further recurring encoding patterns involve logical oper-
ators. One of the most relevant operators is thereby given
by the implication operator. Given a binary variable 𝑎 and
a set of binary variables 𝐵, we express ∀𝑏 ∈ 𝐵 ∶ 𝑎 ⟹ 𝑏
in QUBO as

Himpl = 𝑎 (|𝐵| −∑
𝑏∈𝐵

𝑏) ,

where |𝐵| denotes the size of 𝐵. The ground state energy
of Himpl is given by 0, since clearly, neither 𝑎 nor |𝐵| −
∑𝑏∈𝐵 𝑏 can assume negative values. Hence, to minimise
Himpl , we require either 𝑎 = 0 or |𝐵| − ∑𝑏∈𝐵 𝑏 = 0. Since
|𝐵| − ∑𝑏∈𝐵 𝑏 = 0 requires 𝑏 = 1∀𝑏 ∈ 𝐵, minimising Himpl
activates all variables in 𝐵 if 𝑎 = 1.

In case of JO, the implication operator will prove useful
to us, e.g., for enforcing a relation 𝑟, initially joined by
join 𝑗, to be considered an operand for all joins including
and succeeding 𝑗.

2.2.3. And-Operator

Finally, given three binary variables 𝑎, 𝑏 and 𝑐, we can
express the logical and-operator 𝑎 ∧ 𝑏 = 𝑐 in QUBO, as
described in the D-Wave problem reformulation hand-
book [14]:

Hand = 𝑎𝑏 − 2𝑎𝑐 − 2𝑏𝑐 + 3𝑐.

If 𝑎𝑏 = 1 and 𝑐 = 0, only the term 𝑎𝑏 remains, inducing
an energy penalty of 1, whereas 𝑎𝑏 = 1 in conjunction
with 𝑐 = 1 causes Hand to evaluate to 0. Likewise, 𝑎𝑏 = 0
and 𝑐 = 0 lead to energy 0, whereas for 𝑎𝑏 = 0 and 𝑐 = 1,
only the term 3𝑐 remains, inducing a penalty of 3. Thus,
minimising the energy for Hand indeed produces variable
configurations in accordance to the and-operator.

We observe that we can use the and-operator to store
the result 𝑎 ∧ 𝑏 into a single variable 𝑐, which is useful to
maintain a degree of 2 for our polynomial, as required
by QUBO.

3. Join Ordering Model
Having laid out the fundamentals of encoding problems
as QUBO, we next describe our encoding targets, i.e., the
various elements constituting a JO problem.

3.1. Query Graph
The input to a JO problem is given by a query graph
𝐺 = (𝑉 , 𝐸), where the nodes 𝑣1, ..., 𝑣𝑅 ∈ 𝑉 represent the 𝑅
relations 𝑟1, ..., 𝑟𝑅 with cardinalities 𝑛1, ..., 𝑛𝑅 to be joined.
Further, an edge 𝑒𝑖𝑗 ∈ 𝐸 corresponds to the join predicate
𝑝𝑖𝑗 with selectivity 0 < 𝑓𝑖𝑗 ≤ 1.

Some JO algorithms require a strict adherence to the
query graph, only allowing joins between relations con-
nected by a predicate. In contrast, other approaches
consider joins between any pair of relations, including
such with no predicates. Such operations are typically
referred to as cross products. Alternatively, we may con-
sider a cross product a join with selectivity 1, and add
the missing edge in 𝐺 accordingly.

Clearly, including cross products can drastically en-
hance the set of allowed operations (in particular for a
sparse query graph), which motivates their exclusion by
many JO approaches, to limit the size of the search space.
In contrast, our method does not apply such restrictions,
allowing it to benefit from the use of cross products,
which can indeed be required by an optimal solution.
We moreover consider any query graph, without any re-
strictions on its shape (whereas some other approaches
require, e.g., the graph to be acyclic [15]).

3.2. Join Tree
In contrast to a query graph, which corresponds to the
input to the JO problem, a join tree represents a JO solu-
tion. Its leaf nodes thereby represent the base relations
to be joined, whereas its intermediate nodes correspond
to join operations. Edges are directed towards the root
of the tree (i.e., the final join). As each join requires two
operands, each join node has two predecessors, corres-
ponding to either a) a base relation, or b) another join,
whose result is to be further joined. The join result fur-
ther serves as an operand for another join, as expressed
by an outgoing edge connecting to its successor. The only
exception to this rule is given by the final join, which is
no operand for any further join.

While these requirements must hold for any join tree,
some JO methods further restrict the shape of join tree.
Much like the exclusion of cross products, such restric-
tions are motivated by the greater efficiency of exploring
a reduced search space. Most notably, some approaches
only consider left-deep join trees, which require each join
to take at least one base relation as an operand. Hence,
individually joining two pairs of relations is not possible,
since joining their results requires a join operating on
the results of two preceding joins. Instead, valid left-deep
join orders must correspond to a permutation of relations.

The restriction to left-deep trees was applied by the
MILP method by Trummer and Koch [6], and hence
moreover by the existing JO-QUBO proposed by Schön-

berger et al. [5], which faithfully transforms the MILP
formulation into QUBO. However, the negative impact of
this restriction on solution quality can be quite drastic, as
shown, for instance, by the empirical analysis conducted
by Neumann and Radke [7]. Therefore, our novel QUBO
encoding considers general1, or bushy join trees, which
are not limited by any further structural restrictions.

3.3. Cost Function
Finally, a cost function evaluates each join tree, by as-
signing it a cost value. For our method, we consider the
classic cost function 𝐶𝑜𝑢𝑡, which sums over the intermedi-
ate cardinalities of all joins of a join tree [16]. For a pair
of relations, their cardinalities and predicate selectivity,
it is given by 𝐶𝑜𝑢𝑡(𝑛𝑖, 𝑛𝑗) ∶= 𝑛𝑖𝑛𝑗𝑓𝑖𝑗. Hence, we require
product operations to express this cost function, which
poses an issue for determining a JO-QUBO encoding lim-
ited to quadratic terms. In the next section, we show how
to mitigate this issue, by applying the same strategy as
used by the MILP [6] and existing QUBO encoding [5].

4. QUBO Encoding
To solve JO with optimisation methods such as MILP and
QUBO, we have to encode variables and constraints in
such a way that we receive valid join trees as solutions.
However, unlike many other optimisation methods such
as integer linear programming, solution validity cannot
be enforced via explicit constraints for QUBO encodings.
Instead, as demonstrated on some common operators
in Sec. 2, the encoding needs to ensure that a variable
configuration minimising the QUBO formula inherently
corresponds to a valid solution.

To guide the reader, we first provide an overview of our
encoding methodology and preliminary considerations
in Sec. 4.1. Next, in Sec. 4.2, we show, in detail, how to
encode valid bushy trees in QUBO. Finally, we describe
our cost function encoding that assigns a cost value to a
join tree in Sec. 4.3.

4.1. Overview
In case of left-deep join trees, the structure of the tree is
identical for all possible solutions. This allows the use
of a priori knowledge about the tree structure for the
QUBO formulation. For instance, we may establish that
join 0 is a direct predecessor to join 1, and can use this
information to efficiently encode constraints, as done by
the existing MILP and QUBO formulations for left-deep
join trees [6, 5]. However, in case of bushy trees, the
relationship between joins is, in general, unclear: We

1To clarify, the term general refers to the unrestricted structure of
the join tree, and not to, e.g., details on join operators.

cannot make any a priori assertions about whether a join
𝑖 succeeds a join 𝑗, except for the final join, which is a
successor to all other joins.

To circumvent this issue, it is possible to operate on a
large tree structure that encompasses all possible bushy
trees, providing us with a priori knowledge about the
relationship between two joins, similarly to the left-deep
scenario. However, this requires an exponentially grow-
ing number of tree nodes, making such an approach in-
feasible due to scaling limitations. Therefore, we apply a
different formulation strategy for bushy trees. Instead of
operating on a tree provided as an input, our encoding
for bushy trees generates the join tree itself.

Thereby, we exploit global relationships that hold for
every possible join tree. For instance, each join takes ex-
actly two operands as inputs (which may either represent
a base relation, or the result of a prior join), and produces
precisely one result. Hence, each join has two incoming
edges, and either one (in case of intermediary joins) or
zero (in case of the final join) outgoing edges. As we later
show in detail, we can translate these relationships into
penalty terms, to enforce valid assignments for variables
representing the edges in the join tree.

In stark contrast to left-deep trees, enforcing such rela-
tionships is not straightforward for bushy trees, since we
lack a priori information about the relationship between
a join pair. Hence, we require more sophisticated meth-
ods to enforce these conditions for bushy trees. These
methods, in return, require the introduction of ancillary
variables. For instance, by determining the depth of all
relations and joins in the join tree, and saving this inform-
ation using ancillary variables, it is possible to prevent
the occurrence of cycles in the join tree. As we will show,
it is possible to enforce a valid configuration of variables
by introducing a number of ancillary variables that is
cubic in the number of relations.

Outline. Firstly, we show how to enforce an assign-
ment of variables conforming to valid bushy trees.
Hereby, in addition to the actual tree variables, we in-
troduce variables to capture the depth of tree nodes.
Thereby, we prevent the occurrence of cycles. Secondly,
to evaluate the quality of a join tree, we describe vari-
ables and penalty terms to encode the logarithmic costs
of a tree. Finally, we approximate the actual join order
costs based on the logarithmic values.

Our encoding requires a plethora of binary variables
with individual semantics. To guide the reader, Table 1
depicts an overview on the semantics of each variable
type, alongside further information such as the required
amount of variables.

Table 1
Overview of all variables, their semantics and required amounts for queries joining 𝑅 relations with 𝐽 joins, using 𝑃 predicates
and 𝑇 threshold values, at discretisation precision 𝜔. Finally, 𝑐𝑗max

denotes the maximum logarithmic cardinality for join 𝑗.

Vars Semantics # Variables # Ancillaries

rljrj Is relation r leaf for join j? 𝑅𝐽 /
jdsij Is join j a direct successor to join i? 𝐽 2 /
rdrd Does relation r have depth d? 𝑅𝐽 𝑅𝐽 2
jdjd Does join j have depth d? 𝐽 2 𝐽 3
rojrj Is relation r an operand for join j? 𝑅𝐽 𝑅𝐽 2
pajpj Is predicate p applicable for join j? 𝑃𝐽 /

trjtj Is threshold t reached by join j? 𝑇 (𝐽 − 1) 𝑇 ∑𝐽−1
𝑗=1 (⌊log2 (

𝑐𝑗max

𝜔
)⌋ + 1)

4.2. Encoding Valid Bushy Trees
We begin by introducing variables representing the join
tree joining 𝑅 relations with 𝐽 joins. Let the binary vari-
able rljrj (Relation is Leaf for Join), introduced for each
relation 𝑟 , 1 ≤ 𝑟 ≤ 𝑅 and join 𝑗, 1 ≤ 𝑗 ≤ 𝐽, indicate
whether 𝑗 uses the base relation 𝑟 as an operand. Further,
let the binary variable jdsij (Join is Direct Successor), ad-
ded for every join pair (𝑖, 𝑗), denote whether join 𝑗 is a
direct successor to join 𝑖.

We enforce a valid assignment of the newly introduced
variables so they represent one out of all possible bushy
trees. We exploit global constraints that must hold for
every join tree (providing semantics in brackets), namely:

(a) Each node has two incoming edges, excluding leaf
nodes, which have zero incoming edges (each join has
two operands); (b) each node has one outgoing edge, ex-
cluding the root node, which lacks outgoing edges (each
intermediate join produces an intermediate result used by
a subsequent join, and each relation is a leaf assigned to
one join); (c) no cycles may appear within a tree (each
join is only applied once).

In the following, we individually translate these con-
straints into QUBO terms, whoseminimisationwill hence
ensure the construction of a valid join tree.

(a) Incoming Edges. Each join requires two operands,
which may either be base relations or intermediate res-
ults produced by another join. As such, we enforce that
each join node has exactly two incoming edges, using a
two-hot encoding. In addition, the final join, which we
indicate by index 𝑓, must receive the intermediate results
of all preceding joins, and therefore have at least one join
as a predecessor2. As such, we additionally enforce that
at most one of the incoming edges connecting to the final
join comes from a base relation:

2Of course, this only holds for queries joining at least three relations,
using at least two joins, which we consider the minimum size for
meaningful JO optimisation.

𝐻𝑎 =
𝐽
∑
𝑖=1

(2 −
𝐽
∑

𝑗=1,𝑗≠𝑖
jdsji −

𝑅
∑
𝑟=1

rljri)
2

+ (𝑠 −
𝑅
∑
𝑟=1

rljrf)
2

.

The latter inequality requires the introduction of an ancil-
lary binary variable 𝑠, allowing a variable configuration
such that the term evaluates to 0 if no more than one
variable rljrf is active.

Example 4.1. Let us consider a query joining three rela-
tions 𝐴, 𝐵 and 𝐶 with two joins 𝑖 and 𝑗. Further, let jdsij = 1
indicate that 𝑖 is succeeded by 𝑗. To produce a valid tree, 𝑖
must join 𝐴 and 𝐵, or else any other pair of base relations,
whereas 𝑗 must join the emerging intermediate result and
the remaining base relation 𝐶. Thus, successful minim-
isation may yield the join order (𝐴 ⋈ 𝐵) ⋈ 𝐶, expressed
as rljAi = rljBi = rljCj = 1, avoiding a penalty by 𝐻𝑎 as
(2 − rljAi − rljBi)2 = 0 for join 𝑖 and (2 − jdsij − rljCj)2 = 0
for join 𝑗. The same applies mutatis mutandis for any other
join order permutation.
In contrast, consider when either join receives more or

less than two operands. For instance, let rljBj = 1 rather
than rljBi = 1, producing a penalty (2 − rljAi)2 = 1 for join
𝑖 and (2 − jdsij − rljBj − rljCj)2 = 1 for join 𝑗.

(b) Outgoing Edges. Similar considerations as for in-
coming edges apply to outgoing ones: Each join produces
one result, which may be the final result in case of the
final join 𝑓, or else serve as an input to another join.
Therefore, each intermediate join node has one outgoing
edge, which we enforce by a one-hot encoding. In con-
trast, the final join node has no outgoing edge. Hence,
each jdsfi for any join 𝑖 adds a penalty of 1. In addition,
we enforce that a relation may only be a leaf for a single
join, using a one-hot encoding:

𝐻𝑏 =
𝐽
∑

𝑖=1,𝑖≠𝑓
(1 −

𝐽
∑

𝑗=1,𝑗≠𝑖
jdsij)

2

+
𝐽
∑

𝑖=1,𝑖≠𝑓
jdsfi

+
𝑅
∑
𝑟=1

(1 −
𝐽
∑
𝑖=1

rljri)
2

.

Example 4.2. (cont’d) We continue our example for
a query joining three relations, where rljAi = rljBi =
rljCj = jdsij = 1, expressing the join order (𝐴 ⋈ 𝐵) ⋈ 𝐶.
This configuration satisfies our constraint: Relation 𝐴 is
initially joined only by join 𝑖, hence (1 − rljAi − rljAj)2 = 0.
The same applies mutatis mutandis for relations 𝐵 and
𝐶. Further, join 𝑖 is succeeded only by join 𝑗. Thus,
(1 − jdsij)2 = 0, whereas join 𝑗, as the final join, does not
have any outgoing edges, hence avoiding energy penalties.

In contrast, let us consider an invalid configuration with
missing leaf assignments, where rljAi = 0 rather than
rljAi = 1. Hence, (1−rljAi−rljAj)2 = 1 penalises the lack of
join assignment for relation 𝐴. The same energy penalty is
induced for rljAi = rljAj = 1, illustrating that 𝐻𝑏 penalises
both, insufficient and excessive amounts of outgoing edges.

(c) Preventing Cycles. So far, our constraints ensure
that each join node has the correct amount of incoming
and outgoing edges. To complete our set of constraints
for valid trees, we have to enforce one final property that
needs to hold for every tree: Each tree must be an acyc-
lic graph. Enforcing this property is significantly more
complex, as it concerns connections between an arbit-
rary number of tree nodes, while QUBO restricts variable
interactions to contain at most two variables. To solve
this issue, we may introduce a set of ancilla variables to
store and later retrieve node properties useful to enforce
this constraint. Our construction is thereby similar to
the cycle avoidance applied for encoding the directed
feedback vertex set problem as QUBO [17]. Specifically,
we will label each join node with a depth value, such that
join 𝑗 must have depth 𝑑 if preceded by a join 𝑖 of depth
𝑑 + 1. In case of at least one cycle, a well-defined and
unambiguous depth assignment becomes impossible, as
shown by Theorem 4.1.

Theorem 4.1. Enforcing an unambiguous, valid depth
assignment for each join tree node prevents cycles.

Proof. We consider a depth assignment valid if each join
is labeled by an unambiguous depth 𝑑 ≥ 0, and 𝑑𝑝 = 𝑑𝑠+1
holds for any join 𝑝 with depth 𝑑𝑝 that precedes join 𝑠
with depth 𝑑𝑠. Let us assume an acyclic join tree with
any set of joins (𝑗0, 𝑗1, ..., 𝑗𝑛), where 𝑗𝑛 denotes the final
join (i.e., the root of the tree), which we assign depth
𝑑𝑛 = 0. Then, each join 𝑝 directly preceding the root
is assigned depth 𝑑𝑝 = 𝑑𝑛 + 1 = 1. The same applies,
mutatis mutandis, for the remaining joins.

Let us now consider a configuration with two joins 𝑖
and 𝑗, where 𝑖 precedes 𝑗 by 𝑎 joins (i.e., for 𝑎 = 1, 𝑖 directly
precedes 𝑗, whereas for 𝑎 = 2, 𝑖 precedes an intermediate
join 𝑘, which finally precedes 𝑗), where 𝑎 ≥ 1, and 𝑗
precedes 𝑖 by 𝑏 joins, where 𝑏 ≥ 1, hence creating a
cycle. Assuming a depth labeling with depths 𝑑𝑖 and 𝑑𝑗 is
possible, 𝑑𝑖 = 𝑑𝑗+𝑎must hold, since 𝑖 precedes 𝑗 by 𝑎 joins.

However, since 𝑗 also precedes 𝑖 by 𝑏 joins, 𝑑𝑗 = 𝑑𝑖 + 𝑏
must moreover hold. Hence, 𝑑𝑖 = 𝑑𝑗 + 𝑎 = 𝑑𝑖 + 𝑏 + 𝑎,
contradicting our assumption, since 𝑎 ≥ 1 and 𝑏 ≥ 1.
Therefore, enforcing an unambiguous depth assignment
prevents the emergence of cycles.

A depth constraint enforcing an unambiguous depth
assignment for joins penalises any variable configuration
that contains cycles, since such a configuration cannot
conform to the constraint. Hence, we next introduce
the required variables and QUBO terms. We moreover
introduce variables and terms assigning depth values to
relations, which we require for subsequent steps.

Let the binary variables rdrd (Relation has Depth), in-
troduced for each relation 𝑟 , 1 ≤ 𝑟 ≤ 𝑅 and possible depth
𝑑𝑟, 1 ≤ 𝑑𝑟 ≤ 𝐽 (the largest possible depth equals the num-
ber of joins), and jdjd (Join has Depth), added for each
join 𝑗, 1 ≤ 𝑗 ≤ 𝐽 and possible depth 𝑑𝑗, 0 ≤ 𝑑𝑗 ≤ 𝐽 − 1,
indicate whether 𝑟 or 𝑗 have depth 𝑑𝑟 or 𝑑𝑗 respectively.

Using one-hot encodings, we first enforce that each
join and relation has an unambiguous depth:

𝐻𝑐 =
𝐽
∑
𝑗=1

(1 −
𝐽−1
∑
𝑑=0

jdjd)
2

+
𝑅
∑
𝑟=1

(1 −
𝐽
∑
𝑑=1

rdrd)
2

.

Next, we ensure that only the final join 𝑓may have depth
0, by inducing a penalty if jdf0 = 0 and jdj0 = 1 for any
𝑗 ≠ 𝑓:

𝐻𝑑 = (1 − jdf0) +
𝐽
∑

𝑗=1,𝑗≠𝑓
jdj0 .

We further ensure that no join of the maximum join depth
dmax = 𝐽 − 1 has a predecessor:

𝐻𝑒 =
𝐽
∑
𝑖=1

𝐽
∑

𝑗=1,𝑗≠𝑖
jdsij jdjdmax

.

Finally, we need to assign the correct depths in accord-
ance to the join tree expressed by jds and rlj. Specifically,
jdjd = 1 has to respectively imply jdi(d+1) = 1 if jdsij = 1
or rdr(d+1) = 1 if rljrj = 1. However, directly expressing
jdjd jdsij ⟹ jdi(d+1) is not possible for QUBO, as it
requires a degree 3 polynomial. To circumvent this issue,
we can first apply the and-operator to store the result of
jdjd ∧ jdsij in an ancillary variable sjdij as

𝐻𝑓 =
𝐽−2
∑
𝑑=0

𝐽
∑
𝑖=1

𝐽
∑
𝑗=1

jdjd jdsij − 2jdjdsjdij − 2jdsijsjdij + 3sjdij ,

allowing us to further implement the desired implication
operation:

𝐻𝑔 =
𝐽−2
∑
𝑑=0

𝐽
∑
𝑖=1

𝐽
∑
𝑗=1

sjdij(1 − jdi(d+1)).

Unfortunately, we require one ancillary variable for each
join depth 0 ≤ 𝑑 ≤ 𝐽 − 2 and join pair (𝑖, 𝑗). Therefore,
the number of needed ancillary variables is cubic in the
number of joins, which results in a significant variable
overhead in comparison to left-deep join trees.

Similarly, for each relation 𝑟, depth 0 ≤ 𝑑 ≤ 𝐽 − 1 and
join 𝑗, we add the constraints

𝐻ℎ =
𝐽−1
∑
𝑑=0

𝑅
∑
𝑟=1

𝐽
∑
𝑗=1

jdjdrljrj − 2jdjdsrrdj − 2rljrjsrrdj + 3srrdj ,

𝐻𝑖 =
𝐽−1
∑
𝑑=0

𝑅
∑
𝑟=1

𝐽
∑
𝑗=1

srrdj(1 − rdr(d+1)),

where srrdj denotes the required ancillary variable.

Example 4.3. (cont’d) To illustrate the prevention of
cycles, we continue our example with variable configur-
ation rljAi = rljBi = rljCj = jdsij = 1, where we further
consider jdsji = 1. The configuration now contains a cycle,
since join 𝑖 precedes join 𝑗 and vice-versa. In accordance to
Theorem 4.1, we can penalise such invalid configurations by
encoding an unambiguous assignment of depth labels for
each join tree node. Hence, we introduce depth variables jd
and rd for all joins and relations, with maximum join depth
dmax = 1, and add the newly discussed penalty terms.
Minimising the term 𝐻𝑑 assigns our final join 𝑗 depth

𝑑𝑗 = 0, by setting jdj0 = 1. Then, minimising 𝐻𝑓 and 𝐻𝑔
requires jdi1 = 1, since jdsij jdj0 = 1. However, as join 𝑗 now
precedes a join of the maximum depth dmax = 1, penalty
jdsjijdidmax

= 1 is added in accordance to 𝐻𝑒.
For the sake of illustrating the remaining terms, let us

assume the maximum depth dmax = 3, such that 𝐻𝑒 won’t
penalise the configuration, and further depth variables
beyond the maximum depth. Since jdi1jdsji = 1, we further
require jdj2 = 1 to minimise 𝐻𝑓 and 𝐻𝑔. However, this
begets the energy penalty (1 − jdj0 − jdj2)2 = (−1)2 = 1
in accordance to 𝐻𝑐, since depth assignment for join 𝑗 is
no longer unambiguous. Due to the cyclic relationship
between joins 𝑖 and 𝑗, minimisation of 𝐻𝑓 and 𝐻𝑔 further
activates their remaining depth variables, which begets
increasingly higher energy penalties that can only be
avoided by acyclic variable configurations. Minimising
the discussed terms hence ensures acyclic join trees.
For the remainder of our running example, we set

jdsji = 0, which begets the valid depth assignment
jdi1 = jdj0 = rdA2 = rdB2 = rdC1 = 1.

Finally, we combine all terms discussed in this section
into an overarching Hamiltonian for bushy join trees:

Hbushy = 𝐻𝑎 + 𝐻𝑏 + 𝐻𝑐 + 𝐻𝑑 + 𝐻𝑒 + 𝐻𝑓 + 𝐻𝑔 + 𝐻ℎ + 𝐻𝑖.

4.3. Encoding Join Order Costs
Next, we must assign each join tree a cost value. A num-
ber of cost encoding methods have been proposed: For

instance, Nayak et al. [18] include pre-computed costs
for all possible intermediate joins as coefficients into the
QUBO encoding. Given the large solution space, this re-
quires an exponential number of variables, and severely
impacts scaleability beyond small query sizes. For these,
dynamic programming obtains optimal solutions [7].

As we are interested in applying quantum optimisation
on larger queries, where conventional exhaustive search
approaches fail and are replaced by heuristic methods,
we have to rely on more variable-efficient cost encoding
methods. Similarly to Trummer and Koch [6] and Schön-
berger et al. [5], we therefore encode a cost function,
rather than costs themselves. Specifically, we consider
the classic cost function 𝐶𝑜𝑢𝑡 [19], which sums over the
sizes of intermediate join results. However, neither MILP
nor QUBO support the product operations required for
𝐶𝑜𝑢𝑡. For their MILP approach, Trummer and Koch [6]
therefore propose to substitute sums of logarithmic car-
dinalities and selectivities for these product operations, as
the logarithm of a product equals the sum of logarithms
of its factors. Based on the logarithmic intermediate
result sizes, Trummer and Koch approximate the actual
cardinalities using an arbitrary number of threshold val-
ues. Similarly to Schönberger et al. [5], who faithfully
transformed theMILP cost approximation into QUBO, we
show, in the following, how to apply this approximation
to our native QUBO formulation for bushy trees.

4.3.1. Cost Variables

Based on the variables expressing a valid bushy tree,
we derive a corresponding assignment of cost variables
needed for calculating the cost of the join tree joining
𝑅 relations with 𝐽 joins using 𝑃 join predicates. Let the
binary variable rojrj (Relation is Operand for Join), intro-
duced for each relation 𝑟 , 1 ≤ 𝑟 ≤ 𝑅 and join 𝑗, 1 ≤ 𝑗 ≤ 𝐽,
indicate whether 𝑟 is an operand for 𝑗. Further, let the
binary variables pajpj (Predicate is Applicable for Join), ad-
ded for each predicate 𝑝, 1 ≤ 𝑝 ≤ 𝑃 and join 𝑗, 1 ≤ 𝑗 ≤ 𝐽,
denote whether predicate 𝑝 can be applied for join 𝑗.

First, we need to derive a valid assignment of rojrj
variables based on the bushy join tree representation
introduced in Sec. 4.2. Our ultimate goal is to enforce
that, once joined by a join 𝑗, a relation 𝑟 serves as an
operand for every join succeeding 𝑗. Further, 𝑟 must not
appear as an operand for a join 𝑗 unless 𝑟 is initially joined
by 𝑗, or is an operand for any join preceding 𝑗.

We begin by enforcing that an activated leaf node vari-
able rljrj implies the corresponding variable rojrj to be
activated, using the implication operator:

𝐻𝑗 =
𝑅
∑
𝑟=1

𝐽
∑
𝑗=1

rljrj(1 − rojrj).

The next step enforces the goal that, once joined for
join 𝑗, a relation is also present for all joins succeeding

𝑗. In terms of variables, rojrj = 1 must imply rojri = 1 if
jdsji = 1 (i.e., join 𝑖 is a direct successor to 𝑗).

To avoid polynomials of degree 3, we first store the
result of rojrj ∧ jdsji in ancillary stij by

𝐻𝑘 =
𝑅
∑
𝑟=1

𝐽
∑
𝑖=1

𝐽
∑
𝑗=1

rojrj jdsji − 2rojrjstij − 2jdsjistij + 3stij ,

which allows us to implement the implication operation:

𝐻𝑙 =
𝑅
∑
𝑟=1

𝐽
∑
𝑖=1

𝐽
∑
𝑗=1

stij(1 − rojri).

This construction requires a cubic amount of ancillary
variables in the number of relations to be joined.

However, the constraints enforced so far are not yet
sufficient to produce a valid configuration of roj vari-
ables: While we do ensure that all required roj variables
are active, we must moreover enforce that no variable
rojrj is active unless required by the join tree. Specifically,
a relation must only serve as an operand for a join 𝑗 if it
is also an operand for either join preceding 𝑗, or else if it
is a base relation initially joined by 𝑗. Enforcing this con-
straint in the same manner as 𝐻𝑘 and 𝐻𝑙 is, however, very
expensive, as we require constraints for each relation 𝑡
and join triplet (𝑖, 𝑗, 𝑘) (since each constraint involves an
intermediate join 𝑖 and two potential predecessors 𝑗 and
𝑘), engendering an amount of ancillary variables that is
quartic in the number of relations.

To circumvent this issue, we can apply a different ap-
proach to ensure a variable rojrj remains inactive unless
required: We may apply a constraint that bounds the
number of allowed active roj variables by the correct
amount, such that any additional active variables induce
energy penalties. This requires us to determine the cor-
rect amount of joins considering a relation 𝑟 as an oper-
and, and therefore the number of roj variables allowed to
be active for 𝑟. Fortunately, we have already determined
the correct amount for each join in a previous step, since
this number corresponds to the depth of 𝑟 in the join tree,
as shown by Theorem 4.2.

Theorem 4.2. The number of joins that consider 𝑟 as an
operand is given by the depth 𝑑𝑟 of 𝑟 in the join tree.

Proof. Assume that a relation 𝑙 is initially joined by the
final join 𝑓. Since 𝑓 is the root of the tree, it has depth 0,
and any tree node connecting to 𝑓 has depth 1, including
the leaf relation 𝑙 and join 𝑖, which we assume precedes 𝑗.
It follows that any leaf relation and further join connect-
ing to 𝑖 has depth 2. This applies, mutatis mutandis, for
all further joins and leaf relations in the join tree.

It is clear that the depth 𝑑𝑘 of a join 𝑘 then corresponds
to the number of joins succeeding 𝑘. If 𝑘 initially joins a
relation 𝑟, 𝑟 has depth 𝑑𝑟 = 𝑑𝑘 + 1. Consequently, 𝑟 must
serve as an operand for exactly 𝑑𝑟 joins (i.e., join 𝑘 and all
joins succeeding 𝑘).

Making use of the existing depth variables, we apply an
n-hot encoding, where 𝑛 is given by each respective depth,
to achieve our goal of enforcing the correct number of
active roj variables:

𝐻𝑚 =
𝑅
∑
𝑟=1

(
𝑅
∑
𝑑=1

(𝑑 ⋅ rdrd) −
𝐽
∑
𝑗=1

rojrj)
2

.

Example 4.4. (cont’d) To demonstrate the assignment of
cost variables, we continue our example for a query joining
three relations, where rljAi = rljBi = rljCj = jdsij = jdi1 =
jdj0 = rdA2 = rdB2 = rdC1 = 1. We begin by adding cost
variables roj for all relations and joins, and all terms dis-
cussed above, where 𝐻𝑗 enforces rojAi = rojBi = rojCj = 1,
following from rlj variable assignments. Since jdsij = 1,
relations 𝐴 and 𝐵 are moreover required as operands for
join 𝑗, which is enforced by minimising 𝐻𝑘 and 𝐻𝑙, setting
rojAj = rojBj = 1. Thereby, our encoding has ensured all
required variables roj are active.
In addition, it must moreover prevent the activation

of roj variables unless required. For instance, cost
minimisation may activate rojCi = 1 even though
relation 𝐶 is not an operand for join 𝑖. However, since
rdC1 = 1, labeling relation 𝐶 with depth 1, 𝐶 must be an
operand for exactly one join, in accordance to Theorem 4.2.
This is ensured by term 𝐻𝑚, adding energy penalty
(1 ⋅ rdC1 − rojCi − rojCj)2 = (−1)2 = 1 if both, rojCi = 1
and rojCj = 1. Hence, minimising 𝐻𝑚 yields rojCi = 0.

Based on the correctly assigned roj variables, we derive
valid assignments for predicate variables paj. Specifically,
we need to enforce that pajpj = 1 only holds if both
relations associated with predicate 𝑝 are operands for join
𝑗, which we implement using the implication operator:

𝐻𝑛 =
𝑃
∑
𝑝=1

𝐽
∑
𝑗=1

paj𝑝𝑗(2 − roj𝑅𝑒𝑙1(𝑝)𝑗 − roj𝑅𝑒𝑙2(𝑝)𝑗),

where𝑅𝑒𝑙𝑖(𝑝), 1 ≤ 𝑖 ≤ 2, corresponds to the first or second
relation associated with 𝑝.
Example 4.5. (cont’d) To illustrate the inclusion of pre-
dicates, we continue our example for a query joining three
relations, where rojAi = rojAj = rojBi = rojBj = rojCj = 1.
We further consider two join predicates 𝑝1, associated
with relations 𝐴 and 𝐵, and 𝑝2, for relations 𝐵 and 𝐶.
Accordingly, we add variables paj1𝑖, paj1𝑗, paj2𝑖 and
paj2𝑗. To minimise the cost terms discussed below, any
minimisation method seeks to apply as many predicates
as possible. Ideally, paj1𝑖 = paj1𝑗 = paj2𝑖 = paj2𝑗 = 1.
However, predicate 𝑝2 may not be applied for join 𝑖, since
relation 𝐶 is not an operand. Accordingly, energy penalty
paj2𝑖(2 − rojBi − rojCi) = 1(2 − 1 − 0) = 1 is added to
the overall costs, in accordance to 𝐻𝑛. The configuration
paj2𝑖 = 0 is hence enforced by minimising 𝐻𝑛, assuming
a proper balance between validity and cost terms, as
discussed in Sec. 4.4, to ensure the energy penalty for
activating paj2𝑖 is larger than any potential cost savings.

4.3.2. Logarithmic Cost Calculation

Based on introduced cost variables, we now encode join
tree costs. Following the existing MILP and QUBO for-
mulations for left-deep trees [6, 5], we rely on an approx-
imation of logarithmic costs, which allows us to encode
the classic cost function Cout in QUBO. We express the
logarithmic intermediate cardinality for join 𝑗 as:

LogIntCard(j) =
𝑅
∑
𝑟=1

LogCard(r)rojrj+
𝑃
∑
𝑝=1

LogSel(p)pajpj ,

where LogCard(r) and LogSel(p) denote log-cardinality
for relation 𝑟 and log-selectivity for predicate 𝑝.

Example 4.6. (cont’d) To illustrate the logarithmic
cost calculation, we continue our example for a query
joining three relations, where rojAi = rojAj = rojBi =
rojBj = rojCj = paj1i = paj1j = paj2j = 1. Thereby, we
consider logarithmic input cardinalities 𝑛𝐴 = 𝑛𝐵 = 𝑛𝐶 = 2,
and logarithmic predicate selectivities 𝑠1 = 𝑠2 = −1.
Then, for join i, we obtain the logarithmic result size
LogIntCard(i) = 𝑛𝐴rojAi+𝑛𝐵rojBi+𝑠1paj1i = 2+2−1 = 3,
and LogIntCard(j) = 𝑛𝐴rojAj + 𝑛𝐵rojBj + +𝑛𝐶rojCj +
𝑠1paj1j + 𝑠2paj2j = 2 + 2 + 2 − 1 − 1 = 4 for join 𝑗.

We next approximate intermediate join cardinalities.

4.3.3. Cost Approximation

Following the MILP and QUBO approaches for left-deep
join trees [6, 5], a set of 𝑇 threshold values is added to
the model to approximate the actual intermediate join
cardinalities based on the logarithmic ones: Let the bin-
ary variables trjtj (Threshold is Reached by Join), added
for every threshold value 𝑡 , 1 ≤ 𝑡 ≤ 𝑇 and intermediate
join 𝑗, 1 ≤ 𝑗 ≤ 𝐽 −1 (we exclude the final join, whose cost
is invariant w.r.t. the join tree), indicate if cardinality of
the intermediate result produced by join 𝑗 exceeds the
logarithmic threshold log(𝜃𝑡). In this case, the threshold
𝜃𝑡 is added to the overall costs:

Hcost =
𝑇
∑
𝑡=1

𝐽−1
∑
𝑗=1

trjtj𝜃𝑡.

In the original MILP encoding, the following inequality
constraint activates trjtj if log(𝜃𝑡) is exceeded by the result
size produced by join 𝑗:

LogIntCard(j) − trjtj ⋅ ∞𝑡 𝑗 ≤ log(𝜃𝑡).

Specifically, if LogIntCard(j) > log(𝜃𝑡), the constraint can
only be satisfied by activating trjtj , which subtracts the
sufficiently large constant ∞𝑡 𝑗.

However, such inequality operations are not inherently
supported by QUBO. Following Schönberger et al. [5],

we hence convert the inequalities to equality constraints,
using a continuous variable 𝑠𝑡 𝑗:

LogIntCard(j) − trjtj ⋅ ∞𝑡 𝑗 + 𝑠𝑡 𝑗 = log(𝜃𝑡). (2)

However, QUBO only allows binary variables, rather
than the required continuous variable. Therefore, we
next approximate 𝑠𝑡 𝑗 as 𝑠𝑡 𝑗 ≈ 𝜔∑𝑛

𝑖=1 2𝑖−1𝑏𝑖, substituting
the continuous variable for multiple binary variables 𝑏𝑖.
We may tune the accuracy of this discretisation by choos-
ing the number of allowed decimal positions 𝑑. Then,
𝜔 = (0.1)𝑑 denotes a discretisation precision, and we
require 𝑛 = ⌊log2(𝑐𝑗𝑚𝑎𝑥/𝜔)⌋ + 1 binary variables for the
discretisation, where 𝑐𝑗𝑚𝑎𝑥 is the maximum logarithmic
cardinality possible for join 𝑗. For further details on this
approximation, we refer the reader to Schönberger et
al. [5]. The equality in Eqn. 2 is encoded as

𝐻𝑜 =
𝑇
∑
𝑡=1

𝐽−1
∑
𝑗=1

(LogIntCard(j) − trjtj ⋅ ∞𝑡 𝑗 + 𝑠𝑡 𝑗 − log(𝜃𝑡))
2 .

Example 4.7. (cont’d) We complete our running example
by illustrating the cost approximation for our query joining
three relations. Recall the logarithmic intermediate result
sizes LogIntCard(i) = 3 and LogIntCard(j) = 4 for joins 𝑖
and 𝑗 respectively, as calculated in Example 4.6. We con-
sider two thresholds 𝜃1 = 100 and 𝜃2 = 1000 for the cost
approximation, and hence introduce variables trj1i , trj1j ,
trj2i and trj2j . To minimise cost, a minimisation method
will seek to leave as many threshold variables inactive as
possible. Ideally, trj1i = trj1j = trj2i = trj2j = 0. How-
ever, since LogIntCard(i) = 3 > 2 = log(𝜃1), trj1i must be
active to avoid a penalty induced by 𝐻𝑜. The same holds
for trj1j , since LogIntCard(j) = 4 > 2 = log(𝜃1), and trj2j ,
since LogIntCard(j) = 4 > 3 = log(𝜃2). Hence, Hcost =
𝜃1trj1i+𝜃1trj1j+𝜃2trj2j = 100+100+1000 = 1200 adds cost
accordingly. We observe that the accuracy of the approxim-
ation strongly depends on the selected thresholds, and ap-
proximation quality increases as more thresholds are added.

Combining all terms leads to the overall Hamiltonian

Hval = Hbushy + 𝐻𝑗 + 𝐻𝑘 + 𝐻𝑙 + 𝐻𝑚 + 𝐻𝑛 + 𝐻𝑜.

4.4. The Complete Encoding
Based on the validity and cost Hamiltonians, we can now
construct the complete Hamiltonian H :

H = 𝐴Hval + Hcost .

Penalty weight𝐴 amplifies the penalty for violating valid-
ity terms, such that the added energy always outweighs
any potential cost savings resulting from the violation.
Setting 𝐴 arbitrarily large can lead to slowdowns [20].
Hence, we next derive a lower bound for 𝐴.

This lower bound depends on the smallest possible
penalty that may be engendered by any constraint viol-
ation due to 𝐻𝑣𝑎𝑙. Most of our penalty terms induce an
energy value of 1 when violated, with the exception of
𝐻𝑝 which enforces an activation of threshold variables
if the corresponding thresholds were exceeded. For de-
termining 𝐴, we hence focus on the term 𝐻𝑝, as it can
engender penalties less than 1: Following Schönberger
et al. [5], the smallest violation in 𝐻𝑝 depends on the dis-
cretisation precision 𝜔 . Specifically,𝐴 = 𝐶/𝜔2+𝜖, where
𝐶 = ∑𝑇

𝑡=1∑
𝐽−1
𝑗=1 𝜃𝑡 expresses the maximum value that may

be assumed by 𝐻𝑐𝑜𝑠𝑡, and 𝜖 is some small constant.

5. Related Work
While quantum computing remains largely unexplored
within database research, the aptness of QPUs was re-
cently analysed for a selection of database issues [21].
These problems include database transaction schedul-
ing [2, 3, 4] and multiple query optimisation [1]. How-
ever, their methods and encodings are problem-specific,
and hence cannot be re-used for JO optimisation.

The JO problem is one of the most fundamental and
well studied problems in query optimisation [22, 16, 23,
7, 6, 24]. Methods to handle this problem largely fol-
low one of two fundamental paradigms: Firstly, dynamic
programming (DP) approaches [25, 26, 15, 27, 28], yield-
ing optimal solutions, yet unable to scale to large quer-
ies, given the super-polynomial search space growth
of common JO classifications. Hence, heuristic meth-
ods [29, 30, 31, 32, 33, 34, 35] seek to optimise larger
queries, where DP methods fail, at the cost of no guaran-
tees on solution quality. This category includes both, the
baseline JO method for QPUs by Schönberger et al. [5],
and our novel method.

The JO problem was originally solved on QPUs by
Schönberger et al. [5]. A QUBO encoding for bushy join
trees has been proposed and analysed by Nayak et al. [18].
As discussed above, the exponential scaling of qubits sub-
stantially limits the scalability of their approach. Winker
et al. [36] explore the use of quantum machine learning
on JO optimisation [36], and the broader potential of
quantum machine learning for database research is ana-
lysed in [37], including JO optimisation. Their method
exploits information learned from prior joins. However,
it remains challenging to make such approaches robust
against frequent data updates, as required for databases,
to avoid inefficiencies engendered by repeated learning.

Our work heavily improves on the baseline encod-
ing by Schönberger et al. [5] in several ways: (1) While
the baseline encoding is a faithful transformation of the
JO-MILP method by Trummer and Koch [6], and hence
inherits MILP limitations, our novel encoding natively
encodes JO as QUBO, and is hence tailored to contempor-

ary QPUs. Further, (2) the baseline approach restricts its
solution space to left-deep join trees, which commonly
yield significantly higher cost than bushy join trees [7].
In contrast, our novel encoding applies no restrictions
on the JO solution space, enabling quantum optimisation
of general, unrestricted trees, in conjunction with the
ability to include beneficial cross products. Our encoding
can hence derive cheap plans unobtainable within more
restricted JO solution spaces.

Finally, our encoding substantially improves resource-
efficiency in comparison to Nayak et al. [18], mandating
a number of qubits that is cubic, rather than exponential,
in the number of relations.

6. Discussion and Conclusion
Our novel JO-QUBO encoding exhausts the full poten-
tial of quantum hardware for join ordering, allowing
QPUs to optimise general, unrestricted join trees. How-
ever, even for solution spaces restricted to left-deep trees,
current early-stage QPUs can only optimise small-scale
queries [5]. Therefore, we cannot expect contemporary
systems to yield meaningful results when optimising yet
more complex JO classifications.

Still, our novel encoding provides valuable architec-
tural insights: For instance, the reduction of degree 3
terms, required to conform to contemporary quantum
hardware, yields a variable overhead that is cubic in the
number of relations, which (1) substantially increases the
number of required qubits, and (2) severely enhances
the search space, to the detriment of scalability. We
hence identify the requirement for quadratic terms as
a clear limitation of current quantum systems, which
can be addressed by augmenting QPUs to allow degree
3 polynomials. Thereby, we can significantly enhance
the conformance of QPUs for JO optimisation. In addi-
tion, we plan to investigate the applicability of gate-based
quantum approaches like QAOA, which can trade qubit
requirements for increased algorithmic complexity in
other areas, on our novel encoding, as part of future re-
search. Hence, rather than merely waiting for the arrival
of mature quantum systems, it is necessary to specify
the requirements for such systems, by identifying, analys-
ing and optimising problem encodings, such that QPUs
tailored to those requirements can be crafted.

Acknowledgements MS andWMwere supported by the
German Federal Ministry of Education and Research (BMBF),
funding program “Quantum Technologies—from Basic Re-
search to Market”, grant number 13N15647. MS and WM also
acknowledge support by the High-Tech Agenda of the Free
State of Bavaria.

References
[1] I. Trummer, C. Koch, Multiple query optimiza-

tion on the D-Wave 2X adiabatic quantum com-
puter, Proceedings of the VLDB Endowment 9
(2016) 648–659.

[2] S. Groppe, J. Groppe, Optimizing transaction
schedules on universal quantum computers via
code generation for grover’s search algorithm, in:
25th International Database Engineering & Applic-
ations Symposium, IDEAS 2021, Association for
Computing Machinery, New York, NY, USA, 2021,
p. 149–156. URL: https://doi.org/10.1145/3472163.
3472164. doi:10.1145/3472163.3472164 .

[3] T. Bittner, S. Groppe, Hardware accelerating the
optimization of transaction schedules via quantum
annealing by avoiding blocking, Open Journal of
Cloud Computing (OJCC) 7 (2020) 1–21.

[4] T. Bittner, S. Groppe, Avoiding blocking by schedul-
ing transactions using quantum annealing, in:
Proceedings of the 24th Symposium on Interna-
tional Database Engineering &Applications, IDEAS
’20, Association for Computing Machinery, New
York, NY, USA, 2020. URL: https://doi.org/10.1145/
3410566.3410593. doi:10.1145/3410566.3410593 .

[5] M. Schönberger, S. Scherzinger, W. Mauerer, Ready
to leap (by co-design)? join order optimisation on
quantum hardware, in: Proceedings of the 2023
ACM International Conference on Management of
Data, ACM, Seattle, WA, USA, 2023.

[6] I. Trummer, C. Koch, Solving the join ordering
problem via mixed integer linear programming, in:
Proceedings of the 2017 ACM International Confer-
ence on Management of Data, ACM, New York, NY,
USA, 2017, pp. 1025–1040.

[7] T. Neumann, B. Radke, Adaptive optimization
of very large join queries, in: Proceedings of
the 2018 International Conference on Manage-
ment of Data, SIGMOD ’18, Association for Com-
puting Machinery, New York, NY, USA, 2018,
p. 677–692. URL: https://doi.org/10.1145/3183713.
3183733. doi:10.1145/3183713.3183733 .

[8] IBM Quantum, Cloud access to quantum com-
puters provided by IBM, 2022. URL: https://
quantum-computing.ibm.com.

[9] C. McGeoch, P. Farré, The D-Wave Advantage sys-
tem: An overview, Technical Report 14-1049A-A,
D-Wave Systems Inc, 2020.

[10] E. Farhi, J. Goldstone, S. Gutmann, A
quantum approximate optimization algorithm
(2014). arXiv:1411.4028 .

[11] Z. Bian, F. Chudak, W. Macready, G. Rose, The Ising
model: Teaching an old problem new tricks, Tech-
nical Report, D-Wave Systems Inc., 2010.

[12] M. Lewis, F. Glover, Quadratic unconstrained bin-

ary optimization problem preprocessing: Theory
and empirical analysis (2017). arXiv:1705.09844 .

[13] T. Krüger, W. Mauerer, Quantum annealing-based
software components: An experimental case study
with SAT solving, in: Proceedings of the IEEE/ACM
42nd International Conference on Software En-
gineering Workshops, ICSEW’20, Association for
Computing Machinery, New York, NY, USA, 2020,
p. 445–450. URL: https://doi.org/10.1145/3387940.
3391472. doi:10.1145/3387940.3391472 .

[14] D.-W. S. Inc., Problem-solving handbook, 2023.
URL: https://docs.dwavesys.com/docs/latest/
handbook_reformulating.html.

[15] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, T. G. Price, Access path selection in a
relational database management system, in: Pro-
ceedings of the 1979 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’79,
Association for Computing Machinery, New York,
NY, USA, 1979, p. 23–34. URL: https://doi.org/10.
1145/582095.582099. doi:10.1145/582095.582099 .

[16] G. Moerkotte, Building query compilers, 2020. URL:
https://pi3.informatik.uni-mannheim.de/~moer/
querycompiler.pdf.

[17] A. Lucas, Ising formulations of many NP problems,
Frontiers in Physics 2 (2014) 5.

[18] N. Nayak, J. Rehfeld, T. Winker, B. Warnke, U. Ça-
likyilmaz, S. Groppe, Constructing optimal bushy
join trees by solving qubo problems on quantum
hardware and simulators, in: Proceedings of the In-
ternational Workshop on Big Data in Emergent Dis-
tributed Environments, BiDEDE ’23, Association
for Computing Machinery, New York, NY, USA,
2023. URL: https://doi.org/10.1145/3579142.3594298.
doi:10.1145/3579142.3594298 .

[19] S. Cluet, G. Moerkotte, On the complexity of gener-
ating optimal left-deep processing trees with cross
products, in: Database Theory— ICDT ’95, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1995, pp.
54–67.

[20] B. O’Gorman, R. Babbush, A. Perdomo-Ortiz,
A. Aspuru-Guzik, V. Smelyanskiy, Bayesian net-
work structure learning using quantum annealing,
The European Physical Journal Special Topics 224
(2015) 163–188.

[21] U. Çalikyilmaz, S. Groppe, J. Groppe, T. Winker,
S. Prestel, F. Shagieva, D. Arya, F. Preis, L. Gru-
enwald, Opportunities for quantum acceleration
of databases: Optimization of queries and trans-
action schedules, Proc. VLDB Endow. 16 (2023)
2344–2353. URL: https://doi.org/10.14778/3598581.
3598603. doi:10.14778/3598581.3598603 .

[22] V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz,
A. Kemper, T. Neumann, Query optimization
through the looking glass, and what we found run-

https://doi.org/10.1145/3472163.3472164
https://doi.org/10.1145/3472163.3472164
http://dx.doi.org/10.1145/3472163.3472164
https://doi.org/10.1145/3410566.3410593
https://doi.org/10.1145/3410566.3410593
http://dx.doi.org/10.1145/3410566.3410593
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1145/3183713.3183733
http://dx.doi.org/10.1145/3183713.3183733
https://quantum-computing.ibm.com
https://quantum-computing.ibm.com
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1705.09844
https://doi.org/10.1145/3387940.3391472
https://doi.org/10.1145/3387940.3391472
http://dx.doi.org/10.1145/3387940.3391472
https://docs.dwavesys.com/docs/latest/handbook_reformulating.html
https://docs.dwavesys.com/docs/latest/handbook_reformulating.html
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
http://dx.doi.org/10.1145/582095.582099
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://doi.org/10.1145/3579142.3594298
http://dx.doi.org/10.1145/3579142.3594298
https://doi.org/10.14778/3598581.3598603
https://doi.org/10.14778/3598581.3598603
http://dx.doi.org/10.14778/3598581.3598603

ning the join order benchmark, The VLDB Journal
27 (2018) 643–668.

[23] T. Neumann, Query simplification: Graceful de-
gradation for join-order optimization, in: Proceed-
ings of the 2009 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’09, As-
sociation for Computing Machinery, New York, NY,
USA, 2009, p. 403–414. URL: https://doi.org/10.1145/
1559845.1559889. doi:10.1145/1559845.1559889 .

[24] X. Yu, G. Li, C. Chai, N. Tang, Reinforcement learn-
ing with tree-lstm for join order selection, in: 2020
IEEE 36th International Conference on Data Engin-
eering (ICDE), 2020, pp. 1297–1308. doi:10.1109/
ICDE48307.2020.00116 .

[25] A. Meister, G. Saake, GPU-accelerated dy-
namic programming for join-order op-
timization, Technical Report, 2020. URL:
https://www.inf.ovgu.de/inf_media/downloads/
forschung/technical_reports_und_preprints/2020/
TechnicalReport+02_2020-p-8268.pdf.

[26] G. Moerkotte, T. Neumann, Analysis of two existing
and one new dynamic programming algorithm for
the generation of optimal bushy join trees without
cross products, in: Proceedings of the 32nd Interna-
tional Conference on Very Large Data Bases, VLDB
’06, VLDB Endowment, 2006, p. 930–941.

[27] B. Vance, D.Maier, Rapid bushy join-order optimiza-
tion with cartesian products, in: Proceedings of the
1996 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’96, Association for
Computing Machinery, New York, NY, USA, 1996, p.
35–46. URL: https://doi.org/10.1145/233269.233317.
doi:10.1145/233269.233317 .

[28] G. Moerkotte, T. Neumann, Dynamic program-
ming strikes back, in: Proceedings of the 2008
ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’08, Association for
Computing Machinery, New York, NY, USA, 2008,
p. 539–552. URL: https://doi.org/10.1145/1376616.
1376672. doi:10.1145/1376616.1376672 .

[29] M. Steinbrunn, G. Moerkotte, A. Kemper, Heuristic
and randomized optimization for the join ordering
problem, The VLDB journal 6 (1997) 191–208.

[30] J.-T. Horng, C.-Y. Kao, B.-J. Liu, A genetic al-
gorithm for database query optimization, in: Pro-
ceedings of the First IEEE Conference on Evol-
utionary Computation. IEEE World Congress on
Computational Intelligence, 1994, pp. 350–355 vol.1.
doi:10.1109/ICEC.1994.349926 .

[31] N. Bruno, C. Galindo-Legaria, M. Joshi, Polynomial
heuristics for query optimization, in: 2010 IEEE
26th International Conference on Data Engineering
(ICDE 2010), 2010, pp. 589–600. doi:10.1109/ICDE.
2010.5447916 .

[32] Y. E. Ioannidis, Y. Kang, Randomized algorithms

for optimizing large join queries, volume 19, Asso-
ciation for Computing Machinery, New York, NY,
USA, 1990, p. 312–321. URL: https://doi.org/10.1145/
93605.98740. doi:10.1145/93605.98740 .

[33] A. Swami, A. Gupta, Optimization of large join
queries, volume 17, Association for Computing
Machinery, New York, NY, USA, 1988, p. 8–17. URL:
https://doi.org/10.1145/971701.50203. doi:10.1145/
971701.50203 .

[34] A. Swami, Optimization of large join queries: Com-
bining heuristics and combinatorial techniques, in:
Proceedings of the 1989 ACM SIGMOD Interna-
tional Conference on Management of Data, SIG-
MOD ’89, Association for Computing Machinery,
New York, NY, USA, 1989, p. 367–376. URL: https:
//doi.org/10.1145/67544.66961. doi:10.1145/67544.
66961 .

[35] I. Trummer, C. Koch, Parallelizing query optim-
ization on shared-nothing architectures, Proc.
VLDB Endow. 9 (2016) 660–671. URL: https:
//doi.org/10.14778/2947618.2947622. doi:10.14778/
2947618.2947622 .

[36] T. Winker, U. Çalikyilmaz, L. Gruenwald, S. Groppe,
Quantum machine learning for join order optimiz-
ation using variational quantum circuits, in: Pro-
ceedings of the InternationalWorkshop on Big Data
in Emergent Distributed Environments, BiDEDE
’23, Association for Computing Machinery, New
York, NY, USA, 2023. URL: https://doi.org/10.1145/
3579142.3594299. doi:10.1145/3579142.3594299 .

[37] T. Winker, S. Groppe, V. Uotila, Z. Yan, J. Lu,
M. Franz, W. Mauerer, Quantum machine learning:
Foundation, new techniques, and opportunities for
database research, in: Companion of the 2023 Inter-
national Conference on Management of Data, SIG-
MOD ’23, Association for Computing Machinery,
New York, NY, USA, 2023, p. 45–52. URL: https://doi.
org/10.1145/3555041.3589404. doi:10.1145/3555041.
3589404 .

https://doi.org/10.1145/1559845.1559889
https://doi.org/10.1145/1559845.1559889
http://dx.doi.org/10.1145/1559845.1559889
http://dx.doi.org/10.1109/ICDE48307.2020.00116
http://dx.doi.org/10.1109/ICDE48307.2020.00116
https://www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_und_preprints/2020/TechnicalReport+02_2020-p-8268.pdf
https://www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_und_preprints/2020/TechnicalReport+02_2020-p-8268.pdf
https://www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_und_preprints/2020/TechnicalReport+02_2020-p-8268.pdf
https://doi.org/10.1145/233269.233317
http://dx.doi.org/10.1145/233269.233317
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.1145/1376616.1376672
http://dx.doi.org/10.1145/1376616.1376672
http://dx.doi.org/10.1109/ICEC.1994.349926
http://dx.doi.org/10.1109/ICDE.2010.5447916
http://dx.doi.org/10.1109/ICDE.2010.5447916
https://doi.org/10.1145/93605.98740
https://doi.org/10.1145/93605.98740
http://dx.doi.org/10.1145/93605.98740
https://doi.org/10.1145/971701.50203
http://dx.doi.org/10.1145/971701.50203
http://dx.doi.org/10.1145/971701.50203
https://doi.org/10.1145/67544.66961
https://doi.org/10.1145/67544.66961
http://dx.doi.org/10.1145/67544.66961
http://dx.doi.org/10.1145/67544.66961
https://doi.org/10.14778/2947618.2947622
https://doi.org/10.14778/2947618.2947622
http://dx.doi.org/10.14778/2947618.2947622
http://dx.doi.org/10.14778/2947618.2947622
https://doi.org/10.1145/3579142.3594299
https://doi.org/10.1145/3579142.3594299
http://dx.doi.org/10.1145/3579142.3594299
https://doi.org/10.1145/3555041.3589404
https://doi.org/10.1145/3555041.3589404
http://dx.doi.org/10.1145/3555041.3589404
http://dx.doi.org/10.1145/3555041.3589404

	1 Introduction
	2 Quantum Fundamentals
	2.1 QUBO Formalism
	2.2 Useful Patterns and Operators
	2.2.1 N-Hot Encoding
	2.2.2 Implication Operator
	2.2.3 And-Operator

	3 Join Ordering Model
	3.1 Query Graph
	3.2 Join Tree
	3.3 Cost Function

	4 QUBO Encoding
	4.1 Overview
	4.2 Encoding Valid Bushy Trees
	4.3 Encoding Join Order Costs
	4.3.1 Cost Variables
	4.3.2 Logarithmic Cost Calculation
	4.3.3 Cost Approximation

	4.4 The Complete Encoding

	5 Related Work
	6 Discussion and Conclusion

