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Abstract
Recently, converting classical data into quantum information brought considerably potential applications in improving
machine learning tasks. Particularly, a quantum feature map could provide a promising alternative kernel to enhance a
Support Vector Classifier (SVC). While there are very few existing guiding principles to design a high performing feature
map, a quantum circuit family called the Pauli feature map is arguably known to behave well. The family is characterized by
the occurrence of Pauli gates on the quantum circuits, while it still has several tunable parameters whose optimal values
are sensitive to the nature of the datasets. In this work, we present an automatic generation of such feature map using the
Genetic Algorithm (GA), aiming to maximize the accuracy of the model while keeping the circuit as simple as possible. We
applied the approach to both synthetic and real datasets. The resulting classification metrics and best circuits are discussed in
comparison with several classical and quantum kernel baselines. In general, the GA-generated feature maps perform better
than other baselines. Moreover, the results show that the evolutionary circuits tend to differ among various datasets, which
signify the usability of this generic scheme to determine the best customized quantum feature map for a specific dataset.
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1. Introduction
The progress of quantum information technologies opens
a new computational capability beyond classical compu-
tation. An important area that can be benefited by quan-
tum computation is artificial intelligence (AI), with main
focus on machine learning algorithms[1, 2, 3]. Many
studies have been conducted to replicate various classi-
cal machine learning models in the quantum computa-
tion framework. Several supervised classification mod-
els have quantum counterparts, for instances quantum
KNN[4], quantum decision tree[5] and quantum NN[6].
Whereas, there exist also some quantum algorithms for
unsupervised techniques, such as quantum PCA[7] and
quantum clustering[8]. As for more advanced models,
certain quantum versions also exist, for example quan-
tum CNN[9] and quantum GAN[10].
Most contemporary machine learning models face

challenges of requiring a huge computational resource
due to their need for a large amount of data and complex
model architectures. In this context, quantum machine
learning seeks to enhance the capabilities of machine
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learning algorithms by using the computational advan-
tages of quantum computing that are hard to simulate
classically. Under this situation, an approach called the
variational method emerges, in which a set of parameters
are applied in a quantum circuit whose values are to be
optimized in order to perform classification[11, 12].
On the other hand, there is also another approach

that is closely related to the concept of kernel method,
which had been very successful in classical machine learn-
ing[13]. This approach works particulary well when com-
bined with the well-established support vector machine
(SVM)[14] commonly known as the kernel trick. In the
quantum version of kernel, each data point is transformed
into Hilbert space in the hope that the targeted space
prospectively provides more expressive power to help
the SVM defines the linear decision boundaries[15, 16].

It is theoretically shown that an optimal quantum vari-
ational classifier is essentially a specific form of quantum
kernel method-based classifier[17]. Therefore, instead
of finding the best parametrized circuit, one could also
design a particular kernel to achieve the same result. This
motivates us to focus on the quantum kernel method that
is applied to the Support Vector Classifier (SVC). Our
work will mainly address the strategy to automatically
generate an optimal quantum kernel for SVC.

To build a quantum kernel is essentially to encode clas-
sical data (𝑥) into a useful quantum information (|𝜓 (𝑥)⟩)
that can be processed meaningfully by a quantum com-
puter. While this is notoriously difficult, a common ap-
proach is to design a specific quantum circuit known as
the quantum feature map. The most common quantum
feature map circuit for the quantum kernel SVM is to use
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the ZZ feature map[15]. This map contributes to some
considerably good results[18, 19, 20]. However, there is
no rigorous explanation of why such map is ideal for
the domain-specific works, implying that there might
be another better unexplored feature map option. In-
stead of finding the optimal feature map of all possible
quantum circuits, we try to tackle a more modest opti-
mization problem: to find the best Pauli feature map for
specific data (since ZZ feature map is a special case of
Pauli feature map family). Nevertheless, searching the op-
timal Pauli feature map is also considerably challenging.
Because, as the number of data features grows, the com-
binatorial possibilities of Pauli feature maps also grow
exponentially. Therefore, we need an efficient mecha-
nism to find the optimal Pauli feature map for the data.
To find the optimal Pauli feature map, we propose a

genetic algorithm design with specific encoding that is
compatible with Pauli feature map family. Genetic algo-
rithm is a well-established meta-heuristic optimization
for searching optimal solutions. This method is very ver-
satile and can be adapted to various types of complex
problem, including quantum circuit optimization.

The objectives of this work are threefold: (i) to imple-
ment the genetic algorithm strategy for automatic gener-
ation of the best Pauli feature map for specific datasets,
(ii) to investigate whether customized forms of Pauli fea-
ture map produce a better classifier than popular classical
and quantum counterparts (iii) to understand if there is
a consistent pattern among best circuit configurations in
varying natures of datasets.

The rest of this paper is organized as follows. In Sec-
tion 2, several related existing works are reviewed and
compared. Section 3 describes detailed explanation of our
proposed method to generate the Pauli feature map using
the evolutionary strategy. The datasets are described in
Section 4 while the results and further discussions are
presented in Section 5. Finally, Section 6 concludes the
paper along with some future outlooks.

2. Related Works
This work is a part of an optimization problem in which
the specific quantum circuit is optimized on the basis of
several criteria. The specific meta-heuristic optimization
frameworks that we employ is the genetic algorithm that
mimics the natural selection process to obtain the fittest
individual within generations representing the best so-
lution [21]. Genetic algorithms are used in extremely
diverse areas of classical optimizations. To name some
instances, it is applicable for path planning of a sensor-
based robot[22], job scheduling[23], and image process-
ing[24]. In the field of machine learning, the genetic
algorithm is also commonly utilized to find the best neu-
ral network architecture, for example one could review

its ubiquitous applications in[25].
Recently, genetic algorithms are also used to optimize

various quantum circuits for various purposes. The ap-
plication of genetic algorithm to automatically generate
a quantum feature map enhancing a SVC is first formu-
lated in 2021[26]. In the following year, the same authors
extend their method with some classical dimensional-
ity reduction strategies in order to accommodate more
complex datasets[27]. In their work, the evolutionary
design could freely choose the quantum gates structure
as well as the entanglement scheme, whereas we rather
constrain our design so that the resulting circuit is al-
ways under the Pauli feature map family. Although our
design seems to be less general, it is able to accommodate
any number of qubits. It also serves the main research
purpose with the best configuration, that is to under-
stand the performance of quantum kernels within the
underlying family of Pauli feature maps.

Later on, many other developments and variations on
this topic emerges. Apart from the SVC, the genetic al-
gorithm is also applicable for designing the best circuit
configuration in the context of Parametric Quantum Cir-
cuit (PQC)[28]. Moreover, a comparison between the
SVC enhanced by the evolutionary kernel and the vari-
ational ansatz method is also explored[29]. Besides the
genetic algorithm, several othermethods to automatically
generate the quantum circuit to enhance a classification
task also exist. In 2022, a Sequential Model-based Opti-
mization (SMBO) using Parzen estimator to find the best
ansatz circuit is proposed [30]. In a very recent paper,
a Bayesian approach to adaptively construct the feature
map for preparing an SVM task is presented[31].

3. Methods

3.1. Quantum Kernel Classification
Classification is a type of machine learning framework to
classify data based on labeled training examples. Labeled
training data consists of input data with associated output
labels or categories, and the algorithm learns to identify
patterns and relationships between the input data and
their corresponding labels. Once trained, the algorithm
can then be used to classify new unlabeled data into one
of the predefined categories.
A nonlinear classifier is needed when the data is too

complex and cannot be separated by a linear boundary
decision. One of the most common nonlinear classifier
is a kernel SVM[14]. Kernel SVM is capable of separat-
ing nonlinear data by mapping the original data using
a complex function into a higher-dimensional feature
space to enable better linear separation between differ-
ent classes. Specifically, a nonlinear kernel term is in-
serted into standard SVM prediction. The kernelized



binary prediction for data test 𝑥′ depends on the sign

of
𝑀
∑
𝑚=1

𝑐𝑚𝑦𝑚𝐾(𝑥𝑚, 𝑥′) + 𝑏, where 𝑐𝑚 and 𝑏 represent the

trainable parameters, 𝑦𝑚 is the data label, and 𝐾(𝑥𝑚, 𝑥′)
is the kernel between data training 𝑥𝑚 and data test 𝑥′.
In quantum kernel classification, the kernel function

is implemented using a quantum circuit which is capa-
ble of transforming low dimensional classical data into
high dimensional quantum states (i.e. Hilbert space),
allowing for the exploration of quantum interactions be-
tween data points. These quantum feature maps can
be tailored to capture specific patterns in the data, en-
hancing the classification performance. The key idea
behind quantum kernel is to compute the inner product
between pairs of quantum information efficiently. The
inner products can be used to obtain the feature kernel,
𝐾(𝑥, 𝑧) = |⟨𝜓 (𝑥) ∣ 𝜓 (𝑧)⟩|2. By performing quantum inner
product, the computational advantages of quantum com-
puting such as exponential speedup can be acquired[18].

3.2. Pauli Feature Maps
In traditional machine learning, feature maps are used to
transform raw input data into a higher dimensional fea-
ture space. Similarly, quantum feature maps are used to
transform classical data into a quantum state that can be
processed by a quantum computer. In a quantum feature
map, the input data is transformed using a quantum gates
operation to produce a new quantum state vector that
contains higher-order correlations between the original
data points (|𝜓 (𝑥)⟩ = 𝑉Φ(𝑥)|0⟩

⊗𝑁). The quantum feature
maps are able to efficiently generate complex transfor-
mation that are computationally hard to construct using
classical method. Moreover, the base quantum circuit op-
eration can also be repeated multiple times to construct
more complex feature maps.
Quantum feature maps have been shown to be effec-

tive in a variety of machine learning tasks, and ongoing
research is exploring new types of quantum feature maps
and their applications in practical machine learning prob-
lems[16, 18, 26]. ZZ feature map is the most common
proposed feature maps for kernel support vector machine
problem because of its simplicity and experimental per-
formance[15]. ZZ feature map itself is a second order
Pauli feature maps. In general, any Pauli feature maps
that transform input data with 𝑁 features 𝑥 ∈ R𝑁 into
quantum information in 𝑁 qubits |𝜓 (𝑥)⟩ can be described
as unitary operator below:

𝑉Φ(𝑥) = 𝑈Φ(𝑥)𝐻⊗𝑁⋯𝑈Φ(𝑥)𝐻⊗𝑁
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

# repetitions

(1)

𝑈Φ(𝑥) represents the Pauli expansion matrix:

𝑈Φ(𝑥) = exp (𝑖 ∑
𝑆⊆[𝑁 ]

𝛼𝜙𝑆(𝑥)∏
𝑗∈𝑆

𝑃𝑗) . (2)

with data mapping:

𝜙𝑆(𝑥) = {
𝑥𝑗 if 𝑆 = {𝑥𝑗}
∏
𝑗∈𝑆

(𝜋 − 𝑥𝑗) if |𝑆| > 1 (3)

where 𝑆 is some 𝑛-subset of the 𝑁 feature indices repre-
senting the connections between different qubits, 𝑃𝑗 ∈
{𝐼 , 𝑋 , 𝑌 , 𝑍 } represents the Pauli matrices and 𝛼 is a vari-
able to adjust the magnitude of Pauli rotation gates.
In this paper, we will optimize the combination of

Pauli sequence, number of repetitions, entanglement
type, and 𝛼. These parameters are arguments on the
PauliFeatureMap class in Qiskit Python package[32]. The
Pauli sequence represents the possible choices for 𝑃𝑗. The
number of repetitions represents how many times the
Pauli expansion circuit is repeated. The entanglement
type represents the entanglement structure among qubits.
In general, every qubit can be either entangled or not
with other qubits in various different graph structure. To
simplify the situation, we use only 4 possible schemes:
full, circular, linear, and reverse linear. In full entangle-
ment, all pairs of qubits are connected, while on all other
schemes, only consecutive qubits are entangled. The
difference is that in circular scheme, the last qubit is con-
nected to the first one, while the other two schemes does
not allow this. The distinction between the rest is that
the entanglement of the reverse linear is in the opposite
direction of that of the linear scheme. Originally, 𝛼 is
continuous variables. However, in our scheme, 𝛼 is con-
strained into 16 possible values only: { ℓ𝜋16 ∶ ℓ = 1,… , 16},
to simplify the combinatorial search space.
In this context, the ZZ feature map is only a special

case of Pauli feature maps with Pauli sequence [𝑍 , 𝑍𝑍],
no repetition, full entanglement, and 𝛼 = 1. This quan-
tum gates configuration can also be associated with Ising
interaction[15]. For 2 features (2 qubits), the Pauli expan-
sion matrix of ZZ feature map can be written as:

𝑈𝜙(𝑥) = exp (𝑖𝑥0𝑍0 + 𝑖𝑥1𝑍1 + 𝑖(𝜋 − 𝑥0)(𝜋 − 𝑥1)𝑍0𝑍1). (4)

The first two terms are equivalent with 𝑅𝑍 rotation gate
on each individual qubit. Specifically, exp(𝑖𝑥0𝑍0) =
𝑅𝑍(2𝑥0) and exp(𝑖𝑥1𝑍1) = 𝑅𝑍(2𝑥1). Furthermore, the
tensor product, exp(𝑖(𝜋 − 𝑥0)(𝜋 − 𝑥1)𝑍0𝑍1) is equivalent
with entangled gates: 𝐶𝑋 ⋅(𝐼 ⊗𝑅𝑍(2(𝜋 −𝑥0)(𝜋 −𝑥1))) ⋅𝐶𝑋.

3.3. Genetic Algorithm
In this work, we use a metaheuristic approach, namely
the Genetic Algorithm (GA) to determine the best feature
map to assist the SVC. For a classic overview of the algo-
rithm, one can consult [21]. The method is well known
for tackling the local minima problem by employing ran-
dom exploitation and exploration within the search space.



Figure 1: Overview of Genetic Algorithm with (𝜇 + 𝜆) strategy. The processes described by the black-colored boxes in the
chart are the only parts involving training and evaluation of Quantum SVC model.

In particular, GAwill automatically tune the quantum cir-
cuits configuration under the Pauli feature-maps family
to achieve the best quantum kernel. Whereas, the SVC
uses this kernel and internally optimises its parameters.

We provide an overview of the GA design with (𝜇 + 𝜆)
strategy, summarized in Figure 1, as follows. Initially, the
algorithm generates a population of random individuals
of size 𝜇, encoded by a 4-ary string each of which rep-
resents a certain instance of the Pauli quantum feature
map as a candidate for solution. For a certain number of
generations, the algorithm performs the fitness values
computation as well as with certain probabilities, some
genetic operators to each individual to filter out the fittest
individual representing the best solution for the optimiza-
tion problem. The more fitness value of an individual has,
the more chance of survival it gains within generations.
The genetic operators include the followings: selection
operator to perform exploitation while crossover and
mutation operators to perform exploration. These oper-
ators are applied in order to produce 𝜆 number of new
offsprings. These processes are repeated for a certain
(fixed) number of generations that is chosen as a hyper-
parameter of the GA. Finally, the fittest individual of the
last generation is taken to be the final solution and an
additional evaluation is performed using a predetermined
testcase to obtain the overall score of GA solution.

3.3.1. Genetic Encoding

To represent a quantum Pauli Feature Map, there are 4
key elements to encode: the sequence of Pauli strings,
the number of repetitions, the type of entanglement, and

the Pauli rotation factor. All these are represented using
a 4-ary string of length 25 whose alphabet is taken from
{0, 1, 2, 3}. The detailed explanation of the encoding is
provided in Figure 2. Note that the design of this Pauli
feature map encoding is applicable for any number of
features that the map would receive. However, if the
number of features is 𝑁 < 4, then the Pauli strings are
restricted to have length of at most 𝑁 by manipulating
the encoding rule for the string length control digits.

We list down some examples to help the reader under-
stand the genetic encoding as provided in Table 1. We
put some additional remarks on the examples as follows.
The Pauli sequence of the first example is explained in
the example box of Figure 2. As the 0-th digit of the
second example is 0, it means that the Pauli sequence
only has length 1 and thus the substring 𝑎6𝑎7…𝑎20 would
not contribute anything to describe the feature map. The
similar fashion also appears when the first digit of a block
of Pauli string control has value less than 3. For instance,
consider the substring 𝑎16𝑎17…𝑎20 in the first example
which controls the last Pauli string of the 4-length Pauli
sequence. The value 𝑎16 = 1 tells that the Pauli string
only has length 2 implying that the values of 𝑎19 and 𝑎20
play no role in describing the feature map.

3.3.2. Fitness Values

As the GA encoding is able to expressively represent var-
ious deep and highly entangled circuits, some of them
might provide a considerably good quality of classifi-
cation performance. However, at certain point, an ex-
tremely complex circuit would not be practical to deal



Figure 2: Description of Pauli Feature Map Encoding parameterized by a 4-ary string of length 25. (a) The first 21 digit control
the Pauli sequence where the first digit 𝑎0 defines the length of the sequence and the next 5(𝑎0 + 1) digits describes the (𝑎0 + 1)
Pauli strings in (𝑎0 + 1) blocks of 5-digit strings. (b) The last 4 digits of the encoding describe three other related parameters.

Table 1
Some Genetic Encoding Examples

no genetic code Pauli Sequence #repetitions entanglement alpha

1 3 20131 02132 32210 11303 0 1 03 [’IXZ’, ’Y’, ’YYXI’, XZ’] 1 circular 4𝜋
16

2 1 03221 21203 23301 11022 2 0 20 [’Z’, ’XYI’] 3 full 9𝜋
16

with the error correction of the near-term quantum com-
puters. Hence, in this work, the design of the fitness
function would balance between the good classification
performance and the complexity of the circuit.

Most of the fitness function design in this work is taken
from [29]. First, the complexity of a circuit is defined as

Complexity = 𝑁RGate + 2𝑁HGate + 5𝑁CNOTGate, (5)

where 𝑁RGate, 𝑁HGate, 𝑁CNOTGate are respectively the
number of 𝑅𝑃, 𝐻, and CNOT gates in the circuit. Hence,
the more gates a circuit has, its complexity increases.
Since the optimization’s objectives are to maximize

the accuracy of the SVC and to minimize the complexity
of the circuit, the fitness value is defined as follow with 𝑤
is some positive tunable constant to control the balance
between both objectives, determined experimentally.

Fitness = Complexity + 𝑤
Accuracy

. (6)

3.3.3. Genetic Operators

Figure 3 provide general explanation of how the genetic
operators work. Under the scheme of 𝑘-tournament se-

lection, at rounds, 𝑘 random individuals in the population
are selected to join the tournament at which the one hav-
ing the greatest fitness value wins the tournament and
thus proceed to the next genetic operators. Particularly,
this work uses 𝑘 = 5. Next, the parents selected by the
tournaments are randomly paired to undergo the 2-point
crossover scheme with some hyperparameter probabil-
ity. For the mutation, we use a slight modification of
the bitflip scheme: once a ’bit’ is decided to mutate, it
will randomly choose a new character from the 4-ary
alphabet uniformly.

4. Data

4.1. Dataset
4.1.1. Synthetic Dataset

We synthetically generate 3 datasets using the Scikitlearn
library[33]: the blobs, the noisy circles, and the noisy
moons datasets (Figure 4). These datasets are configured
to have binary labels, 2 features and 200 instances.



Figure 3: Workflow of the genetic operators: (a) 𝑘-Tournament Selection. (b) 2-point crossover (c) Bitflip mutation.

Figure 4: Three Synthetic Datasets for Classification.

Table 2
Real Dataset Specification

Dataset iris blood irish veteran

source [35] [36] [37] [38]
# features 4 4 5 7
# instances 150 748 500 137
# labels 3 2 2 2
include cate-
gorical data?

No No Yes Yes

4.1.2. Real Dataset

To ensure that the method also works well on real data,
we perform the same benchmarking on several well-
known datasets commonly used to evaluate classification
models. Table 2 provides some description of each dataset
used in this works. All of these datasets are obtainable
via OpenML Python Package[34].

4.2. Data Preprocessing & Validation
To set up the training, we normalize the data instances
and split them into 80% training set and 20% testing set.
To avoid the overfitting problem, we divide the training
set into 4 groups to perform the 4-fold cross-validation.

In each group, the model is trained and tested to obtain
two classification evaluation metrics: accuracy and f1-
score (macro-averaged). We include the f1-score since
it represents the balance between the other two well-
known metric scores, precision, and recall. The average
scores among those of the 4-fold groups will contribute to
the fitness values computed during the genetic algorithm.
By having the 4-fold scheme, the feature map obtained
during the training phase would not overly suit to a very
specific group of training set while behave very poorly
on another group. Finally, once the best feature map
is decided by the GA, we employ it to perform the last
training using all the 80% train set. The overall evaluation
score of the model is then determined by the last 20% test
set which has not been seen at all by the model during
the evolutionary training.

5. Results and Discussions
We apply the GA to generate quantum feature map to
both synthetic and real datasets in order to review its
effectiveness. All performance metrics presented in this
section are the ones obtained on the test dataset whose
instances are not included during the training.
The GA hyperparameters used in this work are pre-

sented in Table 3. These values are generally inherited



Table 3
GA hyperparameters used in the optimization process

Hyperparameter Value

Population Size (𝜇) 100
Offspring Size (𝜆) 60

Number of Generation 80
Crossover Probability 0.3

Individual Mutation Probability 0.7
Bitflip Mutation Probability 0.25

Figure 5: 4 Predetermined Quantum Feature Maps Baselines.

from [26] while also experimentally fine-tuned. We re-
mark that the relatively low number of generations cho-
sen in this work is determined based on experiments, to
avoid the GA to overfit the training data too much. This
is because as the number of generation goes up, while
the accuracy of the training set rises, at a certain point,
the performance on the test set starts to worsen. The
construction of the quantum circuit in this paper is im-
plemented using the Qiskit framework[32] (IBM Python
library for quantum computing) on classical computers.

As baselines, we pick three classical and four quantum
kernels to assist a support vector machine model. The
classical include the linear, polynomial, and radial based
kernels. For the quantum kernel baselines, we use four
circuits based on Pauli feature map families: the X, Y, Z,
and ZZ feature maps. One can observe some instances
of these circuits on small number of qubits in Figure 5.
We then compare their performances to the feature map
automatically obtained by the genetic algorithm.

5.1. Classification on Synthetic Datasets
We present the classification results on the synthetic
datasets in Table 4. The best metric score for each dataset
are written in bold while the best scores among each
baseline group are also emphasized in italic. The Pauli
feature map circuits produced by the GA best individual
for each dataset are provided in Figure 6. The detailed
description of each feature map is accessible in Table 5.

While the blobs dataset seems not challenging enough
to discriminate between the classical and quantum fea-

Figure 6: The Pauli feature map circuits produced by the
best individual of the GA for the synthetic datasets. Detailed
parameters of each circuit can be observed in Table 5.

ture maps, the other two datasets are able to show better
performances of the GA-generated feature map over the
other baselines. It is reasonable since the blobs dataset is
basically linearly separable, while the other two have non
linear decision boundaries. For the noisy-moons dataset,
the quantum baselines perform worse than the classi-
cal ones, in particular the RBF kernel could do a perfect
task. Note that the same quality also achievable by the
quantum feature map provided by the GA. Meanwhile,
the quantum kernels are also generally outperformed
by the classical kernels for noisy-circles. However, the
GA-generated quantum feature map provides a better
performance than the best classical baseline. It shows
that ZZ feature map is too complex for simple data.
The best Pauli circuits for the synthetic datasets are

mostly dominated by the Z expansion sub-circuit in their
components, while there is no Y expansion sub-circuit
appears on the circuits. This is also consistent with the
fact that the Y Pauli feature map performs very poorly on
these 3 datasets compared with other baselines. However,
this might not be a general fact since we will see later
on the next subsection that the Y expansion sub-circuit
would play a significant role in a better classification
performance on certain datasets.

5.2. Classification on Real Datasets
For real datasets, the classification results can be reviewed
in Table 6. Similarly, bold scores denote the overall best
metric scores for each dataset while the italic represents
the best among each baseline group. The Pauli feature
map circuits encoded by the best individual of the GA for
each dataset are presented in Figure 7 with each detailed
description presented in Table 5.

From the metrics presented there, it is evident that the
model enhanced by the GA-generated quantum feature
maps generally works the best among all other base-
line models. While on iris dataset, the best performance
of each group of baselines is no worse than the GA-
generated one, on the other three datasets, the quantum-
GA kernel properly dominates all the baseline kernels.



Table 4
Classification Evaluation on Synthetic Datasets (using Accuracy and F1 Score)

Metric Score ACC F1

Type Model \Dataset blobs noisy_circles noisy_moons blobs noisy_circles noisy_moons

classical SVC linear 1.0000 0.3500 0.9500 1.0000 0.3484 0.9500
SVC poly 1.0000 0.8000 0.9250 1.0000 0.7980 0.9249
SVC rbf 1.0000 0.9000 1.0000 1.0000 0.9000 1.0000

quantum QSVC X 1.0000 0.7500 0.9250 1.0000 0.7396 0.9249
QSVC Y 0.4750 0.4750 0.4750 0.3220 0.3220 0.3220
QSVC Z 1.0000 0.8750 0.9250 1.0000 0.8743 0.9249

QSVC ZZ 1.0000 0.8000 0.9000 1.0000 0.7954 0.9000

quantum_GA GA-QSVC 1.0000 0.9500 1.0000 1.0000 0.9499 1.0000

Table 5
Best Individuals Circuit Parameters for all Datasets

group dataset pauli_sequence num_reps entanglement alpha

Synthetic noisy_circles [’Z’] 4 circular 2.748894
Synthetic noisy_moons [’XI’, ’Z’, ’Z’] 2 reverse_linear 1.767146
Synthetic blobs [’Z’] 1 circular 1.374447

Real Data iris [’Z’, ’IIIZ’] 2 circular 1.767146
Real Data blood [’YI’, ’IZ’] 1 circular 1.963495
Real Data irish [’Z’, ’Y’, ’Z’, ’Z’] 4 circular 0.196350
Real Data veteran [’IY’, ’YI’, ’IX’] 1 reverse_linear 0.981748

We observe that the existence of categorical features
on a dataset could give a significant discrimination be-
tween the classical and quantum feature maps. On the all-
numerical-valued features such as blood and iris datasets,
it seems that the quantum baselines do not significantly
outperform the classical kernels while the one assisted
by GA could slightly perform better. On the other hand,
when there are categorical features on the dataset, which
are the Irish and Veteran datasets, the quantum-GA fea-
ture maps give a significantly better result than all clas-
sical baselines. In particular, the occurrence of the Y ex-

pansion sub-circuit plays a considerable role to achieve
a better score, for example in veteran dataset.
From these results, apparently there is no definitive

generic choice of Pauli sequence which could fit all types
of dataset. There are better alternatives of Pauli sequence
combination rather than ZZ feature map. While at a
glance, the choice of Z expansion sub-circuit may seem
to be ubiquitous on the best choice of many datasets, it
is not an absolute fact. For example, the best circuit of
the veteran dataset possesses no Z expansion sub-circuit
at all. Hence, the automatic nature of this evolutionary

Table 6
Classification Evaluation on Some Real Datasets (using Accuracy and F1 Score)

Metric Score ACC F1

Type Model \Dataset blood iris irish veteran blood iris irish veteran

classical SVC linear 0.7333 0.9667 0.8298 0.7143 0.4673 0.9585 0.8295 0.6190
SVC poly 0.7400 0.9333 0.7553 0.7143 0.4491 0.9190 0.7551 0.5130
SVC rbf 0.7400 0.9667 0.7660 0.6786 0.4706 0.9585 0.7621 0.4043

quantum QSVC X 0.7400 0.9333 0.7660 0.6786 0.4491 0.9190 0.7621 0.4043
QSVC Y 0.7333 0.2000 0.5426 0.7500 0.4231 0.1111 0.3517 0.4286
QSVC Z 0.7400 0.9667 0.7660 0.6786 0.4491 0.9585 0.7621 0.4043

QSVC ZZ 0.7333 0.8333 0.9043 0.7143 0.4463 0.8216 0.9042 0.4167

quantum_GA GA-QSVC 0.7600 0.9667 0.9149 0.7500 0.6153 0.9585 0.9149 0.6040



Figure 7: The Pauli feature map circuits produced by the best individual of the GA realization for the real datasets. Detailed
parameters of each circuit can be observed in Table 5

design of feature map could provide a generic way to ob-
tain the best circuit that suits the specific dataset without
falling into overfitting issue. Moreover, we can observe
that all best circuits has no entanglement and also there
are diverse range of alpha and repetitions parameters.
This result is consistent with some other works [26, 39].

6. Conclusion
In this work, we have explored the design of quantum
feature maps optimization for the quantum kernel clas-
sification using the evolutionary algorithm framework.
In all choices of datasets, the evolutionary design has
the best accuracy. In fact, the GA-quantum feature map
tends to perform significantly better when the dataset has
categorical features, which is not a natural habitat of the
classical kernels. Overall, the best feature map obtained
by the evolutionary algorithm tends not to converge into
specific characteristics. This marks the significance of
this method, which is able to find diverse designs of fea-
ture map customized to the nature of the dataset.
Several possible improvements are left for future

works. Further investigation is needed on how the
quantum kernel particularly tends to perform better in
datasets with categorical features. Moreover, although
currently the entanglement type is only encoded using
1 character among the 4-ary genetic code, some modifi-
cations may contribute significantly to the complexity
of the circuit. For the next work, it is possible to refine
the style of the entanglement into many other options
so that the small changes of the digits would not lead
to huge difference in circuit complexity. Furthermore,
this scheme can also be implemented in real quantum

computers environment when the technology is ready.
Finally, this scheme of evolutionary feature map gen-
eration can also be applied in other quantum machine
learning optimizations.
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