
Empirical evaluation of a quantum accelerated approach
for the central path method in linear programming⋆

Vijay Adoni1,∗,†, Sajad Fathi Hafshejani1,† and Daya Gaur1,†

1Department of Math and Computer Science, University of Lethbridge, Lethbridge, AB, Canada

Abstract
The central path method is a crucial technique for solving a wide range of optimization problems. The method relies on
an equation solving step, which hits its limit for very large instances in practise. This paper proposes to explore the use of
quantum approaches to enhance the central path method’s performance when solving very large linear programs. We will
go through the potential benefits and limitations of replacing the iterative equation-solving step with the HHL quantum
algorithm. We experiment with several instance types using each proposed algorithm and evaluate their effectiveness through
numerical simulations to find a promising approach for the central path method.

Keywords
Quantum Algorithms, Central Path Method, Interior Point Methods.

1. Introduction
Linear programming (LP) is a crucial tool in both theoret-
ical and practical science and engineering domains. It has
been extensively used to solve optimization problems in
various areas, including operations research, engineering,
economics, or even in more abstract mathematical areas
such as combinatorics. LP has applications in machine
learning and numerical optimization. Some of the exam-
ples of application of LP are ℒ1-regularized support vec-
tor machines (SVMs) [1], basis pursuit (BP) problems [2],
sparse inverse covariance matrix estimation (SICE) [3],
non-negative matrix factorization (NMF) [4], MAP infer-
ence [5], and adversarial deep learning [6, 7]. Fung et al.
[8] introduced a technique for learning a kernel function
that is a linear combination of other positive semi-definite
kernels. They demonstrated how diagonal dominance
constraints can be utilized to obtain an approximate ker-
nel through linear programming. This method can be
employed for feature selection using a blend of kernels.
This is an important use of linear programming in com-
puting Kernels for support vector machines. The results
mentioned in this paragraph are illustrative of the utility
of linear programming in solving optimization problems

Joint Workshops at 49th International Conference on Very Large Data
Bases (VLDBW’23) — International Workshop on Quantum Data Sci-
ence and Management (QDSM’23), August 28 - September 1, 2023,
Vancouver, Canada
⋆

∗Corresponding author.
†
These authors contributed equally.
Envelope-Open vijay.adoni@uleth.ca (V. Adoni); sajad.fathihafshejan@uleth.ca
(S. F. Hafshejani); daya.gaur@uleth.ca (D. Gaur)
GLOBE https://gaurdr.github.io (D. Gaur)
Orcid 0000-0002-5731-8234 (S. F. Hafshejani); 0000-0001-6876-6000
(D. Gaur)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

arising in machine learning and data science.
When it comes to solving linear problems, there are

a variety of techniques available [9]. Depending on the
specifics of the problem at hand, different methods may
be more appropriate than others. Factors like problem
size and structure, desired level of accuracy, and compu-
tational efficiency all come into play when determining
which method to use. Regardless of which technique is
employed, the ultimate goal is to identify the feasible
solution space and then optimize the objective function
within that space efficiently. LP problems can be complex
and time-consuming to solve strictly, so n-approximation
algorithms are used to determine the proximity of the
solution to optimal. Another way to reduce the time it
takes to solve an LP is to use quantum computations for
the expensive steps instead of the traditional classical
algorithm, resulting in a possible speed-up, the object to
study in this paper.

Quantum computing is a new and exciting way to pro-
cess information that utilizes the principles of quantum
mechanics. Unlike traditional computing, which uses
bits to represent data and relies on binary logic, quantum
computing uses qubits that can be in a superposition of
states possibly entangled. In November 2022, IBM cre-
ated the largest quantum computer, Osprey, with 433
qubits capable of holding 2433 states simultaneously. On-
going research is making quantum computing practical
for solving certain problems in optimization and simu-
lation, which are difficult or impossible with classical
methods. As the field continues to develop and advances
are made in hardware and software, quantum methods
are becoming more practical for a wide variety of appli-
cations. One of the most promising quantum methods
for solving linear equations is the HHL algorithm [10],
created by Harrow, Hassidim, and Lloyd, which offers an
exponential speedup compared to classical algorithms

mailto:vijay.adoni@uleth.ca
mailto:sajad.fathihafshejan@uleth.ca
mailto:daya.gaur@uleth.ca
https://gaurdr.github.io
https://orcid.org/0000-0002-5731-8234
https://orcid.org/0000-0001-6876-6000
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

under certain critical assumptions. This algorithm is use-
ful for solving sparse systems of linear equations, where
the number of non-zero entries in the matrix is much
smaller than the total number of entries.

The following section will review related work in this
area. It will also examine the evolution of the methods
used to solve LP problems and a few quantum computing
techniques needed for solving linear equations.

This review will provide a foundation for our proposed
approach and help to establish the significance of our
work in this field described in Section 3.

2. Related Work
Over the years, the complexity of solving linear programs
has substantially improved due to algorithm design tech-
niques and computational hardware advancements. The
key developments that have played a crucial role in this
improvement will be discussed in this section. Algo-
rithms used for solving linear optimization programs
date back to 1939 with the introduction of the graphi-
cal method. However, the simplex method, introduced
by Dantzig [11], has become a more prominent and fre-
quently used method. Karmarkar [12] proposed interior
point methods (IPMs) and showed that they could solve
linear programs much faster than the simplex method in
the worst-case. This led to extensive research on interior
point methods, resulting in the development of many
other algorithms since then.

The existence of an interior path, known as the central
path, that converges to an optimal solution paved the
way for efficient algorithms that find the optimal solu-
tion quicker than the simplex method. There have been
several successful attempts at traversing this central path.
Methods where the solutions lie in the interior of the fea-
sible region at each iteration while maintaining feasibility
at each step are known as feasible interior point methods
(see Roos et al. [13]). Methods where the solutions are
strictly positive, with an initial solution outside the feasi-
ble region, and which converge to an optimal are known
as infeasible IPMs. One of the seminal papers on such
methods is by Wright [14], which shows a sub-quadratic
complexity can be achieved given that the starting point
is a positive infeasible solution and the problem has a
strict complementarity solution. Comparisons have been
made between feasible and infeasible interior point meth-
ods. In [15], Wright states that although feasible IPMs are
theoretically faster than infeasible IPMs by a factor of 𝑛,
where 𝑛 is the size of the input, in practice, both methods
can be highly effective for solving linear programs.
IPMs have been implemented with great success in

recent years. In fact, major optimization software such
as CPLEX and Gurobi provide the ability to use IPM to
solve LPs. For the purposes of this paper, we use the

feasible interior point method as described in [9] and
discuss it in further detail in Subsection 4.1.
Quantum computing was first experimented with in

the late 1990s, and by the early 21st century, the first scal-
able quantum computer was developed. The simulation
of molecular and chemical systems was the first success-
ful application of quantum computing, demonstrating its
potential in solving complex problems. Quantum com-
puting is also utilized in cryptography, optimization, and
machine learning. Its promise to solve complex problems
faster than the classical counterparts makes it an interest-
ing technology for various industries, including finance,
healthcare and manufacturing.
While quantum computers that outperform classical

computers in solving equations do not currently exist,
research into potential breakthroughs is deemed neces-
sary to achieve quicker processing times. Over the years,
many proposals for quantum computers that can solve
linear systems of equations have been made. One of the
earliest practical implementations was done by Barz et al.
[16], achieving a solution vector fidelity of 64-98%. Cai
et al. [17] later surpassed this achievement around the
same time, with a fidelity ranging from 82.5% to 99.3%.
Finally, in 2018, Wen et al. [18] demonstrated the first
implementation for solving an 8x8 linear system of equa-
tions.

Quantum linear system algorithms (QLSAs) have been
applied to optimization problems since the early 2020s.
One such application is the development of quantum in-
terior point methods (QIPMs), which various researchers
have introduced. In 2020, Casares et al. [19] proposed
a polylog algorithm for a feasible interior predictor-
corrector algorithm using QLSAs. This algorithm cor-
rects a prediction of the optimal solution iteratively and
starts from an initial point in the feasible region. In
2022, Mohammadhossein et al. [20] investigated several
QIPMs and proposed an infeasible interior point method
that outperforms some feasible IPMs. More recently, in
2023, Zeguan et al. [21] proposed a feasible IPM with
improved complexity bounds for solving ℓ1 norm soft
margin support vector machine problems. These devel-
opments demonstrate the potential of QLSAs in optimiza-
tion and highlight the ongoing efforts to develop efficient
QIPMs for practical applications.

3. Motivation and Contributions
Most IPMs employ iterative techniques that solve com-
plex and time-consuming linear systems of equations as
an intermediate stage. Solving such systems with nu-
merous variables and constraints becomes particularly
challenging. Consequently, a demand exists for more ef-
fective and precise approaches to address these problems.
Our objective is to alleviate the computational burden

associated with solving linear equations in the classi-
cal domain by leveraging quantum algorithms. This is
achieved through the use of the HHL algorithm.

Our contributions include,

• Implementation of a novel modification to the
feasible Interior Point Method for solving LPs.
The modification replaces the equation-solving
step with the quantum HHL method.

• Provide extensive analysis of the modification to
IPM using simulation in qiskit.

• To establish a baseline for comparison, we con-
sider basic IPM, IPM which uses the full Newton
system (with the non-linear terms) and a lineariza-
tion using McCormick relaxations. The simula-
tion results for the baseline using McCormick
relaxation are not reported here. Please see the
thesis by Adoni [22] for details on the baseline
algorithms.

4. Preliminaries
In this section, we will discuss two important concepts
that are referred to frequently in this paper. The first
is the feasible IPM, as introduced in [9]. This is used to
solve a maximization problem given below:

max 𝑐𝑇𝑥
s.t. (1)

𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

In this problem, 𝐴 ∈ ℝ𝑚𝑥𝑛, 𝑥 ∈ ℝ𝑛 represents the
primal variable, 𝑐 ∈ ℝ𝑛, and 𝑏 ∈ ℝ𝑚.
Later on, we will provide a brief description of the

HHL algorithm, which is used to solve a set of linear
equations.

4.1. Feasible IPM
Feasible Interior Point Methods (IPMs) are techniques
employed to solve linear optimization problems when an
initial point and a path leading to the optimal solution
exist within the solution space. In order to begin the
process, the Lagrangian of the log-barrier problem (2) is
analyzed, as explained in [9].

𝐿(𝑥, 𝑑, 𝑦) = 𝑐𝑇𝑥 + 𝜇(∑
𝑗
log 𝑥𝑗 +∑

𝑖
log 𝑑𝑗)

+ 𝑦𝑇(𝑏 − 𝐴𝑥 − 𝑑) (2)

where, 𝑦 is a vector of dual variables, 0 < 𝜇 ≤ ∞, and 𝑑, 𝑞
are a vector of slack variables. Critical points are points

where the first order derivatives vanishes. The following
equations are satisfied by critical points.

𝜕𝐿
𝜕𝑥𝑗

= 𝑐𝑗 + 𝜇 1
𝑥𝑗

−∑
𝑖
𝑦𝑖𝑎𝑖𝑗 = 0 ∀𝑗 = 1, 2, ..., 𝑛

𝜕𝐿
𝜕𝑑𝑖

= 𝜇 1
𝑑𝑖

− 𝑦𝑖 = 0 ∀𝑖 = 1, 2, ..., 𝑚

𝜕𝐿
𝜕𝑦𝑖

= 𝑏𝑖 −∑
𝑗
𝑎𝑖𝑗𝑥𝑗 − 𝑑𝑖 = 0 ∀𝑖 = 1, 2, ..., 𝑚

The equations above can further be simplified to,

𝐴𝑥 + 𝑑 = 𝑏 (3)

𝐴𝑇𝑦 − 𝑞 = 𝑐 (4)

𝑋𝑄𝑒 = 𝜇𝑒 (5)

𝑌𝐷𝑒 = 𝜇𝑒 (6)

where we substitute 𝑞 = 𝜇𝑋−1𝑒 and 𝑋, 𝑌 are diagonal
matrices given by vectors 𝑥, 𝑦 respectively. In feasible
IPM, we start with an arbitrary point (𝑥, 𝑦 , 𝑑, 𝑞) that is
either primal or dual feasible. It is essential that each
vector in the point (𝑥, 𝑦 , 𝑑, 𝑞) is non-negative. The next
step involves determining the direction (Δ𝑥, Δ𝑦, Δ𝑑, Δ𝑞)
that the point must traverse to converge towards the 𝜇-
centre on the central path. This step brings the new point
(𝑥 + Δ𝑥, 𝑦 + Δ𝑦, 𝑑 + Δ𝑑, 𝑞 + Δ𝑞) closer to the 𝜇-center. To
do this, we modify equations 3 - 6 by replacing 𝑥 with Δ𝑥
and the other variables as necessary. Finally, solve the
resulting set of equations to obtain the direction.

⎡
⎢
⎢
⎢
⎣

𝐴 0 𝐼 0
0 𝐴𝑇 0 −𝐼
𝑍 0 0 𝑋
0 𝑊 𝑌 0

⎤
⎥
⎥
⎥
⎦

×
⎡
⎢
⎢
⎢
⎣

Δ𝑥
Δ𝑦
Δ𝑤
Δ𝑧

⎤
⎥
⎥
⎥
⎦

= −
⎡
⎢
⎢
⎢
⎣

𝐴𝑥 + 𝑤 − 𝑏
𝐴𝑇𝑦 − 𝑧 − 𝑐
𝑋𝑍𝑒 − 𝜇𝑒
𝑌𝑊 𝑒 − 𝜇𝑒

⎤
⎥
⎥
⎥
⎦

(7)

where we substitute a variable, 𝜌 in place of 𝑏−𝐴𝑥 −𝑤,
𝜎 in place of 𝑐 − 𝐴𝑇𝑦 + 𝑧, and 𝛾 in place of 𝑧𝑇𝑥 + 𝑦𝑇𝑤.
Computing a solution to Equation 7 is known as the

Newton step. The Newton step has a classical worst-case
time complexity of𝑂(𝑛𝑠𝜅 log(1𝜖)), where 𝜅 is the condition
number of the input matrix and 𝜖 is the desired output
precision and 𝑠 is the sparsity of the matrix. Standard
methods used to solve the linear set of equations require
storing the entire matrix of coefficients in memory, along
with intermediate results obtained during multiple passes
through the matrix. This leads to a significant growth
in memory requirement when using classical algorithms.
A Newton step can be executed more efficiently using
the HHL algorithm. This is provided we can load the
right-hand side efficiently and the solution vector (or a
near approximation) can be recovered efficiently. The
first assumption is not limiting; however, the second
assumption is strong and requires more progress.

Figure 1: HHL Circuit Diagram

4.2. HHL
Given a linear system of equations 𝐺𝑞 = 𝑟, we represent
𝑞, 𝑟 by a super positions |𝑞⟩ , |𝑟⟩. The solution is encoded
in state |𝑞⟩ and is given by the following equation,

|𝑞⟩ = 𝐺−1 |𝑟 ⟩

Writing the matrix 𝐺 and vector 𝑟 in the eigenbasis of
𝐺, the equation can be rewritten as,

|𝑞⟩ =
𝑁−1
∑
𝑖=0

𝜆−1𝑖 𝑟𝑖 |𝑢𝑖⟩ (8)

where N is the size of vector 𝑟 and 𝑢𝑖 denotes the 𝑖𝑡ℎ
eigenvector of 𝐺.
To solve a linear system of equations, we require a

circuit that can determine and invert the eigenvalues of
matrix 𝐺. This circuit will produce a state that matches
the solution to the system of equations. Figure 1 shows
one circuit that can accomplish this.

To start, we run the quantum phase estimation (QPE)
algorithm. This step is crucial in obtaining the eigen-
values of the matrix 𝐺 and storing them in the auxiliary
register. The resulting state will be in the eigenvector
basis of 𝐺. The second stage of the HHL algorithm is the
inversion stage. In classical algorithms, computing the in-
verse of a matrix is a time-consuming task, especially for
matrices of large size. However, in quantum algorithms,
matrix inversion can be performed much more efficiently
using an 𝑅𝑌 gate conditioned on the eigenvalues.

[cos 𝜓/2 − sin 𝜓/2
sin 𝜓/2 cos 𝜓/2]

where 𝜓 = 2 arcsin 𝐶
𝜆 ; for some constant 𝐶 bounded

by the smallest eigenvalue 𝜆. A measurement of 1 in
the auxiliary bit after applying the 𝑅𝑌 gate gives us the
inverse eigenvalues.

𝑅𝑌𝜃(|0⟩) =
𝑁−1
∑
𝑗=0

𝑟𝑗 |𝜆𝑗⟩ |𝑢𝑗⟩ (
√
1 − 𝐶2

𝜆2𝑗
|0⟩ + 𝐶

𝜆𝑗
|1⟩)

To complete the description of the HHL algorithm,
the result, which is in the eigenvector basis, needs to be
converted to the computational basis by applying the
inverse Fourier transform. The inverse quantum phase
estimation (IQPE) block shown in Figure 1 achieves this
step. In case the measurement outcome is not equal to 1
after implementing the 𝑅𝑌 gate, the entire process should
be repeated to ensure accurate results.

5. Quantum Accelerated Central
Path Method

The series of steps in the central path method are out-
lined in Algorithm 1. We begin with a feasible interior
point (𝑥, 𝑦 , 𝑤, 𝑧) > 0 and continue to solve the Newton
step using the HHL algorithm until we reach an approxi-
mate optimal answer with a tolerance of 𝜖. To ensure no
point receives a negative value, we select a step size 𝜃. It
should be noted that we use different step sizes for primal
variables 𝜃1 and dual variables 𝜃2 in our implementation,
as this leads to faster convergence.

In order to use the HHL algorithm for solving a linear
system of equations, it’s important to provide the correct
type of input. There are a few key things to keep in mind,
such as:

Algorithm 1: Quantum Accelerated Central
Path Algorithm
Input: 𝑐 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚
Output: 𝑥
Set: (𝑥, 𝑦 , 𝑤, 𝑧) > 0

1 while 𝛾 ≥ 𝜖 do
2 Set: 𝜌 = 𝑏 − 𝐴𝑥 − 𝑤
3 Set: 𝜎 = 𝑐 − 𝐴𝑇𝑦 + 𝑧
4 Set: 𝛾 = 𝑧𝑇𝑥 + 𝑦𝑇𝑤
5 Set: 𝜇 = 𝛿 𝛾

𝑛+𝑚 , 0 < 𝛿 < 1
6 Compute step directions (Δ𝑥, Δ𝑤, Δ𝑦, Δ𝑧)

using HHL (8)
7 Compute step size using
8 𝑥 = 𝑥 + 𝜃1Δ𝑥
9 𝑤 = 𝑤 + 𝜃1Δ𝑤

10 𝑦 = 𝑦 + 𝜃2Δ𝑦
11 𝑧 = 𝑧 + 𝜃2Δ𝑧

1. Matrix type: The input matrix should be Her-
mitian because it must have real eigenvalues to
perform phase estimation accurately. This also
allows for simulation of the Hamiltonian.

2. Matrix condition number: The condition num-
ber of the matrix is an important consideration.
A well-conditioned matrix with a low condition
number is easier to invert using the HHL algo-
rithm. In contrast, a poorly conditioned matrix
can result in more auxiliary qubits and longer
runtimes.

3. Number of registers available: The HHL algo-
rithm provides an approximate solution with a
precision that depends on the number of auxiliary
qubits and the accuracy of the phase estimation
step.

4. Matrix sparsity: The sparsity of the matrix𝐴with
only a few non-zero entries. It also affects the
number of gates required for the algorithm and
the overall runtime.

We can control the type and the number of registers.
However, the sparsity pattern and the condition number
are not under our control, and affect the run time of HHL.

5.1. Complexity Analysis
To determine the runtime of the algorithm, we can cal-
culate the number of iterations required by the IPM and
the complexity of the HLL algorithm in each iteration,
which is expressed below.

Theorem 5.1. Consider the linear optimization problem
defined by 1. The complexity to get an 𝜖-solution, i.e., a

solution that satisfies 𝑧𝑇𝑥 + 𝑦𝑇𝑤 ≤ 𝜖, is

𝑂(𝑁𝑠2𝜅2

𝜖
(log𝑁)2)

where 𝑁 is the size of the input vector, 𝑠 is the maximum
sparsity of the matrix in any Newton step. Similarly, 𝜅 is
the largest condition number seen in any Newton step and
𝜖 is the desired accuracy.

Proof. The proof for this theorem stems from the fact
that the bound for the number of iterations required by
central path method is given by [23],

𝑂(𝑁 log 𝑁
𝜖
)

The complexity of the HHL method [24] is

𝑂(log(𝑁) 𝜅
2𝑠2

𝜖
)

where 𝜅, 𝑠 are for the matrix in (3)–(6). Therefore the
complexity is 𝑂(𝑁 𝑠2𝜅2

𝜖 (log𝑁)2). ■

If 𝑆 is dense then we can use a version of HHL [25]
with complexity 𝑂(√𝑁(log𝑁)𝜅2/𝜖) to obtain a bound as
above.

5.2. Discussion
Before delving into the section on experiments, we will
address some limitations and suggest modifications for a
more practical implementation of the new central path
approach. Here are some essential points to consider:

• QPE precision and computation time have a trade-
off relationship. Increasing the precision may
result in longer computation time and vice versa.

• The HHL algorithm has restrictions on input, so it
is crucial to start with optimal instances to ensure
favourable outcomes. This is especially important
for practical applications.

• Generating a time-evolved matrix from Hermi-
tian input is difficult in practical settings. So far,
only local and sparse Hamiltonians have been
identified as satisfying the necessary criteria.

• QPE has a range from 0 to 2𝑡. Input values outside
of this range cannot be used for the QPE process.
It is important to consider the range of values to
effectively utilize the QPE method.

6. Measures of Performance
In the HHLmethod of Qiskit, we set the circuit’s accuracy
as 𝜖 = 10−3 in the constructor. Furthermore, we outline
several metrics that will be examined in the outcomes.

6.1. State Fidelity
State fidelity is a way to measure how similar the actual
state of a quantum system is to the desired target state.
It helps us evaluate how well quantum operations and
algorithms are performing. State fidelity values range
from 0 to 1, with a score of 1 indicating an exact match
between the actual and target states. If the score is less
than 1, there is some deviation from the desired state. We
can use the built-in state_fidelity() method in Qiskit
to calculate this value.

6.2. SSE
We assess the effectiveness of the HHL approach using
the Sum of Squared Estimate of Errors (SSE) metric. This
measures the difference between the actual data and the
estimation model. To calculate the SSE, we subtract the
estimated data from the actual data, square the difference,
and add up all the squared differences. The SSE serves as
a numerical indicator of how accurately the HHL method
solves the linear system of equations. The smaller the
SSE, the higher the accuracy of the HHL method, and
conversely.

𝑆𝑆𝐸 =
𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑓 (𝑥𝑖))2

where 𝑦𝑖 is a given value and 𝑓 (𝑥𝑖) is the result (output)
of the Quantum Central Path Method.

We will establish naming conventions for the different
types of Central Path Methods used. To ensure clarity,
we will refer to the Central Path Method that utilizes
Newton’s method as the ”Linear Central Path Method.”
The approach that uses the non-convex solver provided
by Gurobi will be called the ”Nonlinear Central Path
Method.” Lastly, we will refer to the Central Path Method
that implements the quantum HHL algorithm as the
”Quantum Central Path Method.” This way, we can easily
distinguish between the different methods being consid-
ered.

7. Experimental Setup
We rely on specialized software packages to ensure the
effective implementation and operation of the Central
Path Method. The Julia programming language is the
foundation for our work due to its compatibility with
other languages and systems, making it easy to integrate
with tools such as Qiskit. Additionally, Julia has a grow-
ing ecosystem of packages dedicated to linear optimiza-
tion and mathematical programming, including the pop-
ular JuMP library for modelling and solving optimization
problems. There are several reasons why this library is
essential for this work, including its user-friendly syntax,

flexibility in changing solvers, and ability to communi-
cate with most solvers in memory, eliminating the need
for intermediary files. Benchmarking shows that JuMP
can create problems at similar speeds to special-purpose
modelling.
The JuMP library is an excellent tool that works well

with different solvers. We’ll be using the Gurobi solver
because it has a wide range of parameters that allow you
to control how it works. Two parameters that stand out
as particularly useful are ”Method” and ”NonConvex.” For
example, by setting the ”Method” parameter to 2, you can
instruct the solver to use interior point methods when
solving linear programming problems. Doing this makes
comparing results obtained from the in-built optimizer
with the Central Path Method easier. Moreover, setting
the ”NonConvex” parameter to 2 allows Gurobi to tackle
nonlinear problems more efficiently by introducing Mc-
Cormick relaxations.
To experiment with the HHL algorithm, we used the

Qiskit 0.36.1 library in Python instead of creating our
implementation in Julia. We integrate with the Qiskit
package in our Julia code using the ”PyCall” package.
We can then use the HHL circuit as a black box for our
experimentation.
Simulation of the Quantum Central Path Method can

be computationally demanding. This is true for com-
plex problems requiring large intermediate memory and
intricate constraints. Clusters, on the other hand, are
specifically designed to handle large and complex calcu-
lations. They have specialized hardware and software
that enable highly parallel and efficient processing. In
this paper, we utilize the Cedar supercomputer provided
by Alliance Canada to tackle these challenges.
To maximize the resources and save time, we submit

jobs on Cedar as job arrays using the SLURM workload
manager. Each job is limited to a maximum of 7 days and
has access to 500 GB of memory. Job execution occurs
on one of the 96 available nodes in this memory category.
This approach allows for effective parallel processing and
management of tasks, as they share many similarities.

We summarize the CPU usage statistics in Table 1. The
table shows that 8.08 core years were used, equivalent
to continuously running computations on a single CPU
core for about eight years. These experiments require a
high level of computational demand. Therefore, utilizing
a cluster is essential.

7.1. Instance Generation
In this study, we focus on tridiagonal matrices, which
have non-zero elements only on the main, lower, and
upper diagonals. These matrices have well-studied al-
gorithms for various operations, such as solving linear
equations, finding eigenvalues and eigenvectors, and in-
verting matrices. We refer to them as ”efficient” instances

Resource Total CPU Usage
(in core years)

Projected CPU Usage
(in core years)

cedar-compute 8.08 9.27

Table 1
Compute Canada Usage Statistics

because they allow for a more accurate simulation of the
HHL algorithm in Qiskit.
Instances for the Linear and Nonlinear Central Path

Methods are as follows:

• Efficient Instances: The input matrix is tridiago-
nal, the vector 𝑏 and the slack variables are vectors
of ones. We start with a matrix size of 2 × 2 and
go up to a size of 25 × 25.

Instances for the Quantum Central Path Method take
the following form,

• Efficient Instances: The input matrix is tridiago-
nal, the vector 𝑏 and the slack variables are vectors
of ones. We start with a matrix size of 2 × 2 and
go up to a size of 5 × 5.

8. Results and Discussion
Our main goal is to evaluate the performance of the
quantum-accelerated HHL algorithm. To do this, we
will compare it with the classical method of solving the
Newton step. For the baseline results for the non-linear
Newton step and the use of McCormick relaxations see
[22]. We will analyze each method regarding accuracy,
efficiency, and scalability. We will conduct numerical
experiments on different test instances to gain further
insights into their strengths and limitations. Our study
will provide valuable information for future research on
developing new mathematical methods and quantum al-
gorithms that involve solving linear systems of equations.
Table 2 displays the outcomes of the Linear Central

Path Method for efficient instances. Column 2 displays
the number of iterations completed. Columns 3,4 are
for the objective function value and time as computed
by the Gurobi’s built-in IPM solver. column 5 shows
the optimal, and the final column, column 6, shows the
amount of time taken by the Linear Central Path Method
as implemented by us. We modify this reference imple-
mentation and replace the equation solving step with the
HHL algorithm.
The data shown in Table 2 reveals that the Linear

Central Path Method needs more iterations as the in-
stance size grows. This implies that solving larger and
more complex instances may need more computational
resources. Nevertheless, the optimal values obtained
from IPM Optimal are identical to those of the optimal.

Table 3 displays the results of the nonlinear Newton
step on efficient instances. The first column lists the
instances, while the next three columns show the number
of iterations, objective function value, and the time it
takes for Gurobi’s built-in interior point solver. The last
two columns reveal the objective value and the time taken
by our implementation of the nonlinear Newton step
when Gurobi is used to solve the nonlinear program (with
option non-convex=2), which is explained in detail in [22].
However, compared to the results obtained using the

Linear central path method, this method’s computation
time and optimal solution are less favourable. For in-
stance, for a matrix size of 12 × 12, the Nonlinear Central
Path Method took almost 10 hours to find a solution of
value 6, while the optimal solution is 4. The last row
of the table shows that when solving a 14x14 matrix, a
large number of feasible solutions were searched and
over 500 GB of memory was consumed. To improve the
performance of the Nonlinear Central Path Method, im-
plementing stricter bounds could potentially address this
issue.
The Quantum Central Path method was used to an-

alyze efficient instances and the results are presented
in Table 4. The data indicates that the SSE values are
low and the gap values are small, demonstrating the re-
liability and precision of the method. It is important to
note that the 5x5 instance reached its maximum runtime
limit of 7 days, but the final iteration values were still
recorded. However, the results for the efficient instances
are promising. The simulation of HHL is computationally
expensive due to the input matrix not being Hermitian
and the size not being a power of 2. To address this issue,
a reduction is used to make it Hermitian and of the right
size, which increases the state space that needs to be
explored by the simulation. Table 5 shows that the state
space for a 5x5 input is 264.

In Table 5, we can find detailed information about the
computing resources used by the Quantum Central Path
Method. As the instance size increases, the input matrix
size required for the HHL algorithm also increases. This
is because the matrix needs to be changed into a Hermi-
tian matrix. Our experiments have found that the largest
matrix size used was 64 × 64, which required approxi-
mately 50GB of memory. The CPU Efficiency column
shows how long it would take to run the job with the
given resources. For instance, for the 5x5 instance, the
job took about 37 days to run.

Instance Iterations
Optimal
Value

Optimal
Time (s)

IPM
Optimal

IPM
Time (s)

2 × 2 7 1 3.13 1 2.451
3 × 3 7 1 3.133 1 2.459
4 × 4 7 2 3.013 2 2.443
5 × 5 7 2 3.01 2 2.419
6 × 6 8 2 3.075 2 2.473
7 × 7 9 3 3.019 3 2.457
8 × 8 8 3 3.039 3 2.424
9 × 9 9 3 2.995 3 2.46
10 × 10 9 4 3.044 4 2.441
11 × 11 9 4 3.229 4 2.487
12 × 12 9 4 3.056 4 2.446
13 × 13 10 5 3.084 5 2.394
14 × 14 9 5 2.957 5 2.403
15 × 15 10 5 3.087 5 2.427
16 × 16 10 6 3.038 6 2.449
17 × 17 9 6 3.091 6 2.407
18 × 18 10 6 2.95 6 2.303
19 × 19 10 7 2.886 7 2.27
20 × 20 10 7 3.396 7 2.47
21 × 21 10 7 3.128 7 2.445
22 × 22 10 8 3.151 8 2.454
23 × 23 10 8 3.259 8 2.453
24 × 24 10 8 3.114 8 2.413
25 × 25 11 9 3.125 9 2.459

Table 2
Linear Solutions to Efficient Instances

Instance Iterations
Optimal
Value

Optimal
Time (s)

IPM
Optimal

IPM
Time (s)

2 × 2 7 1 3.13 1 0.818
3 × 3 9 1 3.133 2 0.886
4 × 4 9 2 3.013 2 8.602
5 × 5 9 2 3.01 3 1.378
6 × 6 15 2 3.075 3 34.641
7 × 7 10 3 3.019 4 8.669
8 × 8 21 3 3.039 4 653.515
9 × 9 10 3 2.995 5 83.122
10 × 10 29 4 3.044 5 5762.589
11 × 11 10 4 3.229 6 477.242
12 × 12 29 4 3.056 6 33905.434
13 × 13 10 5 3.084 7 8655.362
14 × 14 0 5 2.957 MEMLIMIT

Table 3
Nonlinear Solutions to Efficient Instances

Instance
Duality
Gap

Optimal
Value IPM Optimal

IPM
Time (s)

Minimum
Fidelity SSE

2 × 2 -0.272872201 1 1.112556415 6212.561031 0.999697 0.531
3 × 3 -0.459883783 1 2.083048712 19043.03069 0.999017 1.081
4 × 4 -0.257149333 2 2.027472051 107388.935 0.99688 0.63
5 × 5 2.854052961 2 -2.758604754 TIMELIMIT 0.998971 0.384

Table 4
Quantum Solutions to Efficient Instances

Instance HHL Input Size Iterations CPU Efficiency Memory Used (GB)
2 × 2 16 × 16 4 22 H 3.96
3 × 3 32 × 32 6 2 D 3 H 8.46
4 × 4 32 × 32 18 8 D 8 H 23.11
5 × 5 64 × 64 9 36 D 21 H 53.86

Table 5
Quantum Metadata for Efficient Instances

Note that the 4x4 instance requires 18 iterations, but
the number of iterations needed for the other four cases is
similar to the best classical method. The simulation took
a long time because of the large search space. To conduct
a definitive study, more efficient simulation methods are
necessary due to the enormous state space. According
to the data in Table 5, simulation studies are currently
not feasible even on 6x6 instances. Using a quantum
computer to run the proposed algorithm is also currently
not possible until more efficient methods or quantum
memory that can read and write state vectors are de-
veloped. Let 𝐴 be of size 𝑁 × 𝑁 with sparsity 𝑠. If 𝑏 is
encoded as ∑𝑁−1

𝑖=0 𝑏𝑖 |𝑖⟩ then 𝑂(log𝑁) qubits are needed
in the encoding. The HHL algorithm has complexity
𝑂(log𝑁𝑠2𝜅2/𝜖 that depends on the sparseness 𝑠 and the
condition number 𝜅 [10]. So only for sparse matrices an
exponential speedup is observed compared to the best
classical algorithms which have complexity 𝑂(𝑁𝜅). If 𝐴
is dense then a modification of HHL by Wossnig et al.
[25] has complexity 𝑂(√𝑁 log𝑁𝜅2/𝜖). This algorithm
for dense matrices is faster by a quadratic factor. The
speedup for dense matrices is not exponential. There is
a related issue of determining the quantum state from
the measurements using a process known as quantum
tomography. This step is needed to extract the solution
𝑥 from the state vector |𝑥⟩. The complete solution can be
determined by measuring the complete set of observables
whose expectations characterize the state [26]. For most
quantum states the probabilities of observing some spe-
cific basis state can be very low (exponentially small in
𝑁). This means an exponential number of measurements
(in 𝑁) are needed to determine 𝑥 completely. For states
that are matrix product states (MPS) efficient methods
are known for estimating 𝑥 [27]. The complexity of the
proposed algorithms with methods using quantum to-
mography to recover 𝑥 from |𝑥⟩ is Ω(𝑁 + √𝑁 log𝑁𝜅2/𝜖).
This also explains the large running times in Table 5. No
efficient methods are known for quantum tomography in
general. However, there are several types of MPS states
that be efficiently estimated from the quantum state and
for such states the method proposed here can be efficient
[27].

9. Conclusion
Our research proposes a new way to tackle linear pro-
gramming problems by combining the HHL algorithm
with the central path method. We examined three ver-
sions of the Central Path Method: the Linear Central
Path Method, the Nonlinear Central Path Method, and
the Quantum Central Path Method, and conducted exten-
sive experimentation on tridiagonal instances. Though
the HHL algorithm was impressive, the quantum acceler-
ate central path algorithm simulation took too long and
could not complete some instances in the allocated time.
The issue of loading the right-hand side, solution extrac-
tion, and intermediate matrices’ condition number needs
to be further examined. However, integrating quantum
algorithms with classical optimization methods can solve
large-scale linear programs. Our study highlights the
potential of quantum algorithms in solving optimization
problems. It suggests that further optimization of the
integration process and exploration of the practical ap-
plications of this approach in data science is necessary.

Acknowledgments
The authors thank Robert Benkoczi for valuable discus-
sions. The authors thank the reviewers for suggestions
that helped improve the presentation and highlight the
relevance of this work to Data Science. The authors also
thank David Neufeld for detailed comments on a draft
which helped improve the readability.

The NSERC Discovery Grant provided support for this
research. Additionally, the Digital Research Alliance of
Canada (https://alliancecan.ca) played a part in enabling
this research.

References
[1] J. Zhu, S. Rosset, R. Tibshirani, T. Hastie, 1-norm

support vector machines, Advances in neural infor-
mation processing systems 16 (2003).

[2] J. Yang, Y. Zhang, Alternating direction algorithms
for ℓ1-problems in compressive sensing, SIAM jour-
nal on scientific computing 33 (2011) 250–278.

[3] M. Yuan, High dimensional inverse covariance ma-

trix estimation via linear programming, The Journal
of Machine Learning Research 11 (2010) 2261–2286.

[4] B. Recht, C. Re, J. Tropp, V. Bittorf, Factoring non-
negative matrices with linear programs, Advances
in neural information processing systems 25 (2012).

[5] O. Meshi, A. Globerson, An alternating direction
method for dual MAP LP relaxation, in: Machine
Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2011, Athens,
Greece, September 5-9, 2011, Proceedings, Part II
22, Springer, 2011, pp. 470–483.

[6] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh,
L. Daniel, D. Boning, I. Dhillon, Towards fast com-
putation of certified robustness for relu networks,
in: International Conference on Machine Learning,
PMLR, 2018, pp. 5276–5285.

[7] E. Wong, Z. Kolter, Provable defenses against ad-
versarial examples via the convex outer adversarial
polytope, in: International conference on machine
learning, PMLR, 2018, pp. 5286–5295.

[8] G. Fung, R. Rosales, R. B. Rao, Feature selection and
kernel design via linear programming., in: IJCAI,
2007, pp. 786–791.

[9] R. J. Vanderbei, et al., Linear programming,
Springer, 2020.

[10] A. W. Harrow, A. Hassidim, S. Lloyd, Quantum
algorithm for linear systems of equations, Physical
review letters 103 (2009) 150502.

[11] G. B. Dantzig, Maximization of a linear function
of variables subject to linear inequalities, Activ-
ity analysis of production and allocation 13 (1951)
339–347.

[12] N. Karmarkar, A new polynomial-time algorithm
for linear programming, in: Proceedings of the
sixteenth annual ACM symposium on Theory of
computing, 1984, pp. 302–311.

[13] C. Roos, T. Terlaky, J.-P. Vial, Interior pointmethods
for linear optimization (2005).

[14] S. Wright, A path-following infeasible-interior-
point algorithm for linear complementarity prob-
lems, Optimization Methods and Software 2 (1993)
79–106.

[15] S. J. Wright, Primal-dual interior-point methods,
SIAM, 1997.

[16] S. Barz, I. Kassal, M. Ringbauer, Y. O. Lipp, B. Dakić,
A. Aspuru-Guzik, P. Walther, A two-qubit photonic
quantum processor and its application to solving
systems of linear equations, Scientific reports 4
(2014) 6115.

[17] X.-D. Cai, C. Weedbrook, Z.-E. Su, M.-C. Chen,
M. Gu, M.-J. Zhu, L. Li, N.-L. Liu, C.-Y. Lu, J.-W.
Pan, Experimental quantum computing to solve
systems of linear equations, Physical review letters
110 (2013) 230501.

[18] Y. Subaşı, R. D. Somma, D. Orsucci, Quantum al-

gorithms for systems of linear equations inspired
by adiabatic quantum computing, Physical review
letters 122 (2019) 060504.

[19] P. A. Casares, M. A. Martin-Delgado, A quantum
interior-point predictor–corrector algorithm for lin-
ear programming, Journal of physics A: Mathemat-
ical and Theoretical 53 (2020) 445305.

[20] M. Mohammadisiahroudi, R. Fakhimi, T. Terlaky,
Efficient use of quantum linear system algorithms
in interior point methods for linear optimization,
arXiv preprint arXiv:2205.01220 (2022).

[21] Z. Wu, M. Mohammadisiahroudi, B. Augustino,
X. Yang, T. Terlaky, An inexact feasible quan-
tum interior point method for linearly con-
strained quadratic optimization, arXiv preprint
arXiv:2301.05357 (2023).

[22] V. Adoni, A quantum accelerated approach for the
central path method in linear programming, Mas-
ter’s thesis, University of Lethbridge, Faculty of
Arts and Science, 2023.

[23] J. Peng, C. Roos, T. Terlaky, Self-regular functions
and new search directions for linear and semidefi-
nite optimization, Mathematical Programming 93
(2002) 129–171.

[24] A. Abbas, S. Andersson, A. Asfaw, A. Corcoles,
L. Bello, Y. Ben-Haim, M. Bozzo-Rey, S. Bravyi,
N. Bronn, L. Capelluto, et al., Learn quantum com-
putation using qiskit, chapter Investigating Quan-
tum Hardware Using Quantum Circuits: Measure-
ment Error Mitigation (2020).

[25] L. Wossnig, Z. Zhao, A. Prakash, Quantum linear
system algorithm for dense matrices, Physical Re-
view Letters 120 (2018).

[26] K. Vogel, H. Risken, Determination of quasiprob-
ability distributions in terms of probability distri-
butions for the rotated quadrature phase, Physical
Review A 40 (1989) 2847.

[27] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma,
D. Gross, S. D. Bartlett, O. Landon-Cardinal,
D. Poulin, Y.-K. Liu, Efficient quantum state to-
mography, Nature communications 1 (2010) 149.

	1 Introduction
	2 Related Work
	3 Motivation and Contributions
	4 Preliminaries
	4.1 Feasible IPM
	4.2 HHL

	5 Quantum Accelerated Central Path Method
	5.1 Complexity Analysis
	5.2 Discussion

	6 Measures of Performance
	6.1 State Fidelity
	6.2 SSE

	7 Experimental Setup
	7.1 Instance Generation

	8 Results and Discussion
	9 Conclusion

